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True Path Rule hierarchical ensembles for

genome-wide gene function prediction
Giorgio Valentini

Abstract

Gene function prediction is a complex computational problem, characterized by several items: the number

of functional classes is large, and a gene may belong to multiple classes; functional classes are structured

according to a hierarchy; classes are usually unbalanced, with more negative than positive examples; class

labels can be uncertain and the annotations largely incomplete; to improve the predictions, multiple sources of

data need to be properly integrated. In this contribution we focus on the first three items, and in particular on the

development of a new method for the hierarchical genome-wide and ontology-wide gene function prediction.

The proposed algorithm is inspired by the “true path rule” that governs both the Gene Ontology and FunCat

taxonomies. According to this rule, the proposed True Path Rule (TPR) ensemble method is characterized by

a two-way asymmetric flow of information that traverses the graph-structured ensemble: positive predictions

for a node influence in a recursive way its ancestors, while negative predictions influence its offsprings. Cross-

validated results with the model organism S. cerevisiae, using 7 different sources of biomolecular data, and

a theoretical analysis of the the TPR algorithm show the effectiveness and the drawbacks of the proposed

approach.

Index Terms

Gene function prediction, ensemble methods, hierarchical classification, Functional Catalogue.
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1 INTRODUCTION

Exploiting the wealth of biomolecular data accumulated by novel high-throughput biotechnologies, “in

silico” gene function prediction methods [1] provide hypothetical annotations that can drive the biological

validation and discovery of novel functions of genes and gene products, thus resulting in a relevant saving

of experimental resources [2].

Gene function prediction is a multiclass, multilabel classification problem characterized by hundreds

or thousands of functional classes structured according to a predefined hierarchy.
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From a general standpoint several approaches have been proposed for multilabel classification, with

applications ranging from gene function prediction, to music categorization and semantic scene classifica-

tion [3], [4], [5]. Classifications of hierarchically structured classes have been applied in several contexts,

such as the automatic classification of World Wide Web documents [6] or the prediction of enzyme classes

according to the Enzyme Classification scheme [7].

In the framework of gene function prediction, the two main taxonomies of gene functional classes

are represented by the Gene Ontology (GO) [8], and The Functional Catalogue (FunCat) [9]. The GO

is composed by thousands of functional classes structured according to a directed acyclic graph, and

it is set out in three separated ontologies: ”Biological Processes”, ”Molecular Function” and ”Cellular

Component”. Indeed a gene can participate to specific biological processes (e.g. cell cycle, metabolism,

nucleotide biosynthesis) and at the same time can perform specific molecular functions (e.g. catalytic or

binding activities, that occur at the molecular level) in specific cellular components (e.g. mitochondrion or

rough endoplasmic reticulum). The FunCat represents a more simple and concise set of gene functional

classes: it consists of 28 main functional categories (or branches) that cover general fields like cellular

transport, metabolism and cellular communication/signal transduction. These main functional classes

are divided into a set of subclasses with up to six levels of increasing specificity, according to a tree-

like structure that accounts for different functional characteristics of genes and gene products. Genes

may belong at the same time to multiple functional classes, since several classes are subclasses of more

general ones, and because a gene may participate in different biological processes and may perform

different biological functions.

Several gene function prediction methods considered a relatively small set of functional classes [10], [11],

[12], while others provided predictions extended to larger sets, using graph based or machine learning

methods such as functional linkage networks [13], [14], Bayesian Networks [11], Support Vector Machines

and semidefinite programming [10], artificial neural networks [15], or methods that combine functional

linkage networks with learning machines using a logistic regression model [16] or simple algebraic

operators [17]. Other promising approaches are represented by structured-output methods, based on

the joint kernelization of both input variables and output labels, using e.g. perceptron-like learning

algorithms [18] or maximum-margin algorithms [19], and by methods that improve the prediction of

GO annotations by extracting implicit semantic relationships between genes and functions [20]. Several

methods tried to take advantage of the intrinsic hierarchical nature of gene function prediction, explicitly

considering the relationships between functional classes [21], [22], [23], [24], [25].

Our proposed approach not only explicitly takes into account the hierarchical relationships between

functional classes, but it is also directly inspired by the true path rule that can be summarized as fol-

lows [26]: “An annotation for a class in the hierarchy is automatically transferred to its ancestors,

while genes unannotated for a class cannot be annotated for its descendants”. According to this rule,

that governs the annotations of both GO and FunCat taxonomies, the proposed ensemble method is
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characterized by a two-way asymmetric flow of information that traverses the graph-structured ensemble:

positive predictions for a node influence in a recursive way its ancestors, while negative predictions

influence its offsprings. The resulting ensemble embeds the functional relationships between functional

classes that characterize the hierarchical taxonomy. Our approach is related to two recently proposed

methods [27], [28]. In [27] a probabilistic model, that combines relational protein-protein interaction data

and the hierarchical structure of GO to predict true-path consistent function labels, obeys the true path

rule by setting the descendants of a node as negative whenever that node is set to negative. Nevertheless,

this approach propagates information only towards the bottom of the graph, differing from our proposed

method that propagates information also from bottom to top of the overall hierarchy.

The proposed True Path Rule (TPR) ensemble method is also related to the approach proposed by [28],

by which predictions of an ensemble of SVMs, each specialized to identify genes belonging to a specific

GO class, are hierarchically combined, extending a previous approach based on Bayesian networks [29].

More precisely in [28] two local strategies are proposed to take into account the relationships between

GO nodes: the first one is based on the Markov blanket associated to each node (that is the subgraph

involving its parents, children and children’s parents), and the other one on a breadth first search to

recover all descendants up to a maximum of 30 GO nodes. Differently from [28], in our approach the

flow of information between nodes is not limited for each node to a specific subgraph of the taxonomy,

but it traverses the graph involving a large set of classes of the hierarchy. This global strategy, even if in

principle applicable with slight modifications to the GO, has been applied to FunCat, where graphs are

simpler and structured according to a tree forest.

The TPR method can be applied to predict the annotations of genes at the level of the entire taxonomy

or considering specific subsets of the hierarchical functional classes, and provides probabilistic and

structured predictions of gene annotations. Moreover, by tuning a single global parameter, it allows to

regulate the trade-off between precision and recall that characterizes gene function prediction problems.

We applied the True Path Rule hierarchical ensemble method to the prediction of gene functions in yeast,

using probabilistic SVMs as base learners [30], but the algorithm is general enough to be used with any

probabilistic base learner and with other model organisms. Considering that data integration is crucial

to improve prediction performances [31], TPR ensembles can be easily integrated with state-of-the-art

biomolecular data integration methods [32], such as vector-space integration [33], kernel fusion [10] or

ensembles of learning machines [34], without any modification of the algorithmic scheme.

A basic version of the TPR ensemble method has been recently presented in two conferences on

ensemble methods and multilabel learning [35], [36]. In this paper we present an extended and enhanced

version in order to discuss in detail the characteristics and the theoretical properties of TPR ensembles,

their application to the genome-wide gene function prediction in model organisms, and new possible

research lines in the context of the hierarchical classification of gene functions. More precisely this paper

is organized as follows: in Sect. 2 the ensemble method inspired by the true path rule is presented, and its

December 24, 2009 DRAFT



IEEE ACM TRANS. ON COMP. BIOL. AND BIOINFORMATICS 4

properties are analyzed and discussed. Sect. 3 summarizes the experimental set-up, and introduces the

types of bio-molecular data used in the experiments and the performance measures applied to properly

evaluate the results in a multi-label hierarchical context. Sect. 4 shows genome-wide gene function predic-

tion results obtained with the model organism S. cerevisiae using the proposed methods compared with

hierarchical top-down and Flat ensemble approaches, and discusses the pros and cons of the true path

rule-based ensembles. The conclusions summarizes the main contributions and depicts possible future

developments of this work. Detailed experimental results are available as Supplementary Information at:

http://homes.dsi.unimi.it/∼valenti/SupplInfo/TPR. Source R code implementing the TPR

algorithm is available upon request from the author.

2 METHODS

2.1 Notation and basic definitions

Genome-wide gene function prediction can be modeled as a hierarchical, multiclass and multilabel

classification problem. Indeed a gene/gene product x can be assigned to one or more functional classes

of the set C = {c1, c2, . . . , cm}. The assignments can be coded through a vector of multilabels y =<

y1, y2, . . . , ym >∈ {0, 1}m, by which if x belongs to class ci, then yi = 1, otherwise yi = 0, where the

variable i, 1 ≤ i ≤ m, refers to the indices corresponding to the m classes belonging to the set C.

In both the Gene Ontology (GO) and FunCat taxonomies the functional classes are structured according

to a hierarchy and can be represented by a directed graph, where nodes correspond to classes, and arcs

to relationships between classes. Hence the node corresponding to the class ci can be simply denoted by

i. We represent the set of children nodes of i by child(i), and the set of its parents by par(i). Moreover

ychild(i) denotes the labels of the children classes of node i and analogously ypar(i) denotes the labels of

the parent classes of i. Note that in FunCat only one parent is permitted, since the overall hierarchy is a

tree forest, while in the GO, more parents are allowed, because the relationships are structured according

to a directed acyclic graph. A classifier D : X → {0, 1}m computes the multilabel associated to each gene

x ∈ X , and di(x) ∈ {0, 1} is the label predicted by the classifier for class ci. For the sake of simplicity if

there is no ambiguity we represent di(x) simply by di.

2.2 A gene function prediction method inspired by the True Path Rule

The True Path Rule enforces the consistency of gene function annotations in both GO and FunCat

taxonomies:

“If the child term describes the gene product, then all its parent terms must also apply to that

gene product”

In other words, if a gene is annotated with a specific functional term (functional class), then it is annotated

with all the ”parent” classes, and with all its ancestors in a recursive way. If a gene x is not annotated to a
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class c, the situation is slightly different in the GO and FunCat. Indeed in FunCat x cannot belong to none

of the offsprings classes of c, because each node can have only one parent; in the GO, being structured

according to a direct acyclic graph, x can be annotated to some of the offsprings of c, if there are one or

more ancestors of the offsprings of c for which the gene x is annotated. Fig. 1 shows an example of the

application of the True Path Rule with the FunCat taxonomy.
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Fig. 1. FunCat tree rooted at class 11 (Transcription): if example x belongs to class 11.06.03.01 then it

belongs also to class 11.06.03, 11.06 and 11. On the contrary, if a gene x does not belong to class 11.02 it

cannot belong, e.g., to class 11.02.03 or 11.02.03.01.

For a given example x, considering the parents of a given node i, a classifier that respects the true

path rule needs to obey the following rules:



di = 1 ⇒ dpar(i) = 1

di = 0 ; dpar(i) = 0
(1)

On the other hand, considering the children of a given node i, a classifier that respects the true path

rule needs to obey the following rules:



di = 1 ; dchild(i) = 1

di = 0 ⇒ dchild(i) = 0
(2)

From eq. 1 and 2 we can observe an asymmetry in the rules that govern the assignments of positive and

negative labels. Indeed we have a propagation of positive predictions from bottom to top of the hierarchy

(eq. 1), and a propagation of negative labels from top to bottom (eq. 2). On the contrary negative labels

cannot propagate from bottom to top, and positive predictions cannot propagate from top to bottom.

2.3 The True Path Rule (TPR) ensemble algorithm

The proposed hierarchical ensemble algorithm puts together the predictions made at each node by local

”base” classifiers to realize an ensemble that obeys the “true path rule”.
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The basic ideas behind the true path rule ensemble algorithm can be summarized as follows:

a. Training of the base learners: for each node of the hierarchy a suitable learning algorithm (e.g. a

multi-layer perceptron or a support vector machine) provides a classifier for the associated functional

class.

b. In the evaluation phase the trained classifiers associated to each class/node of the graph provide a

local decision about the assignment of a given example to a given node.

c. Positive decisions may propagate from bottom to top across the graph: they influence the decisions

of the parent nodes and of their ancestors in a recursive way, by traversing the graph towards

higher level nodes/classes. On the contrary negative decisions do no affect decisions of the parent

node (that is they do not propagate from bottom to top, eq. 1).

d. Negative predictions for a given node (taking into account the local decision of its descendants) are

propagated to the descendants, to preserve the consistency of the hierarchy according to the true

path rule. On the contrary positive decisions do not influence decisions of child nodes (eq. 2).

The ensemble combines the local predictions of the base learners associated to each node with the

positive decisions that come from the bottom of the hierarchy, and with the negative decisions that

spring from the higher level nodes. More precisely, base classifiers estimate local probabilities p̂i(x) that

a given example x belongs to class ci, but the core of the algorithm is represented by the evaluation

phase, where the ensemble provides an estimate of the “consensus” global probability pi(x).

Let us consider the set φi(x) of the children of node i for which we have a positive prediction for a

given example x:

φi(x) = {j|j ∈ child(i), dj(x) = 1} (3)

The global consensus probability pi(x) of the ensemble depends both on the local prediction p̂i(x) and

on the prediction of the nodes belonging to φi(x):

pi(x) =
1

1 + |φi(x)|


p̂i(x) +

∑

j∈φi(x)

pj(x)


 (4)

The decision di(x) at node/class i is set to 1 if pi(x) > t, and to 0 otherwise (a natural choice for t is

0.5). Note that the restriction to nodes belonging to φi(x) in the summation of eq. 4 depends on the

true path rule: indeed only children nodes for which we have a positive prediction can influence their

parent. In the leaf nodes the sum of eq. 4 disappears and eq. 4 becomes pi(x) = p̂i(x). In this way positive

predictions propagate from bottom to top. On the contrary if for a given node di(x) = 0, then this decision

is propagated to its subtree.

A high-level representation of the evaluation phase of the algorithm for a tree-structured graph is given

in Fig. 2. The pseudocode of the algorithm is characterized by two main for loops: the external for (from

row 1 to 18) handles a per level bottom-up traversal of the tree, while the internal (from row 2 to 17)

scans the nodes at each level. If a node is a leaf (row 3), then the consensus probability pi is equal to the
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Fig. 2. True Path Rule bottom-up hierarchical algorithm

Input:

- gene x whose classes need to be predicted

- tree T of the m hierarchical classes

- set of m classifiers (one for each node) each predicting p̂i(x), 1 ≤ i ≤ m

begin algorithm

01: for each level k of the tree T from bottom to top do

02: for each node i at level k do

03: if i is a leaf

04: pi(x)← p̂i(x)

05: if (pi(x) > t) di(x)← 1

06: else di(x)← 0

07: else

08: φi(x)← {j|j ∈ child(i), dj(x) = 1}
09: pi(x)← 1

1+|φi(x)|
(
p̂i(x) +

∑
j∈φi(x) pj(x)

)

10: if (pi(x) > t) di(x)← 1

11: else

12: di(x)← 0

13: for each j ∈ subtree(i) do

14: dj(x)← 0

15: if (pj(x) > pi(x)) pj(x)← pi(x)

16: end for

17: end for

18: end for

end algorithm.

Output: for each node i

- the ensemble decisions di(x) =





1 if x belongs to node i

0 otherwise
- the probabilities pi(x) that x ∈ X belongs to the node i ∈ T

local probability p̂i(x). Note that a positive decision is taken if pi(x) is larger than a threshold t (row 5).

If a node is not a leaf (rows 7-16), at first the set φi(x) collects all the children nodes for which we have

a positive prediction, and the consensus probability pi of the ensemble is computed by considering both

the local estimate of the probability p̂i and the probabilities computed by the children nodes for which
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a positive decision has been taken (row 9). In case of a negative decision for a node i, all the classes

belonging to the subtree rooted at i are set to negative, and their probabilities are set to pi if larger than

pi (rows 13-16). Indeed, according to the hierarchical structure of GO and FunCat taxonomies, if a gene

does not belong to a class, it cannot belong to the descendants of that class. The algorithm provides both

the multilabels associated to the example x and the probabilities pi that a given example belongs to the

class i, 1 ≤ i ≤ m.

The bottom-up per level traversal of the tree assures that all the offsprings of a given node i are taken

into account for the ensemble prediction. For the same reason we can safely set the classes belonging to

the subtree rooted at i to negative, when di(x) is set to 0. It is worth noting that we have a two-way

asymmetric flow of information across the tree: positive predictions for a node influence its ancestors,

while negative predictions influence its offsprings. This comes from the fact that the ensemble respects

the true path rule.

Note that in the TPR algorithm there is no way to explicitly balance the local prediction p̂i(x) at node

i with the positive predictions coming from its offsprings (eq. 4). By balancing the local predictions with

the positive predictions coming from the ensemble, we can explicitly modulate the interplay between

local and descendant predictors. To this end we introduce a parent weight w, 0 ≤ w ≤ 1, such that if

w = 1 the decision at node i depends only by the local predictor, otherwise the prediction is shared

proportionally to w and 1−w between respectively the local parent predictor and the set of its children:

pi(x) = w · p̂i(x) +
1− w

|φi(x)|
∑

j∈φi(x)

pj(x) (5)

Hence we can obtain a variant of the TPR algorithm, that we name weighted True Path Rule (TPR-w)

hierarchical ensemble algorithm by substituting rows 8 and 9 of the basic algorithm with the following

pseudocode:

φi(x)← {j|j ∈ child(i), dj(x) = 1}
if (|φi(x)| > 0)

pi(x)← w · p̂i(x) + 1−w
|φi(x)|

∑
j∈φi(x) pj(x)

else

pi(x)← p̂i(x)

2.4 Analysis of the propagation of positive decisions

While the propagation of negative decisions from top to bottom nodes is quite straightforward and

common to the hierarchical Top-Down algorithm, the propagation of positive decisions from bottom to

top nodes of the hierarchy is specific to the TPR algorithm. In this section we analyze the contribution

of the descendants nodes/classifiers to the decision of the upper nodes, that is we study the influence of
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the positive decisions of the descendants on the decision of their ancestors. This analysis aims at a better

understanding of the characteristics of the TPR algorithm, and at suggesting new research lines based

on variants of the proposed true path rule-based algorithms.

We define nodes at level k as nodes with distance k from the root, that is nodes with a path to the

root of length k. The root is at level 0, its children at level 1, its grandchildren at level 2 and so on. A

generic node at level k is any node whose distance from the root is equal to k. The posterior probability

computed by the ensemble for a generic node at level k is denoted by qk. Note that qk differs from pi

defined in Sect. 2.3, since pi refers to the probability computed for the node i of the hierarchy, while qk

to the probability computed for a generic node at level k of the hierarchy. More precisely we denote by

qk the probability computed by the ensemble and by q̂k the probability computed by the base learner

local to a node at level k. Moreover we define qj
k+1 as the probability of a child j of a node at level k,

where the index j ≥ 1 refers to different children of a node at level k. Finally, define a node at level k

positive when it is assigned to a node at level k by the ensemble, that is whenever qk ≥ t.

We start by considering a simplified setting, where for a node at level k we have exactly one positive

descendant for each of the m lower levels below. Considering that in this case we have exactly 1 child

for each level, to simplify the notation we set qj
k ≡ qk.

Proposition 1 (Influence of positive descendant nodes with one child): In a TPR-w ensemble, for a generic

node at level k, with a given parameter w, 0 ≤ w ≤ 1, balancing the weight between parent and children

predictors, and having exactly one positive descendant for each of the m lower levels below, that is such

that qk+j > t, 1 ≤ j ≤ m, the following equality holds for each m ≥ 1:

qk =
m−1∑

j=0

w(1− w)j q̂k+j + (1− w)mqk+m (6)

Proof: By induction, see Appendix A.

Remark 1: From Proposition 1 we can observe that considering the node at level k + m, if we have

exactly m positive descendants of the node at level k, then qk+m = q̂k+m. As a consequence the influence

due to the node at level k + m is (1 − w)mq̂k+m. To get insights into the influence of the mth positive

node on the prediction of node k, we can study the function f(w) = (1− w)m, with w ∈ [0, 1] (last term

of eq. 6). It is easy to see that for each m ≥ 1:

arg max f(w) = 0, arg min f(w) = 1

Looking at the graph of f(w) for different values of m ≥ 1 (Fig. 3), we can observe that the deeper the

node is (the larger the value of m), the lesser is the influence of the node at level k + m on the ancestor

node at level k.
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Fig. 3. Plot of f(w) = (1− w)m, while varying m from 1 to 10.

Remark 2: From Proposition 1, positive nodes above the deepest one, that is nodes at level k+j, j < m,

affect qk by the quantity w(1−w)j q̂k+j (eq. 6). Considering the function g(w) = w(1−w)j , with w ∈ [0, 1],

we have that arg max g(w) = 1
j+1 (see Appendix B for details). Fig. 4 shows the plot of g(w) for different

values of j: the nodes closer to the main node at level k have always larger influence independently of

the value of w. Nevertheless, for large values of w (e.g. w = 0.8), nodes below 3 levels (j ≥ 3) in practice

are uninfluential on the node k. On the contrary for small w values (e.g. w = 0.1) also nodes at deep

levels can play a certain role. The vertical lines in Fig. 4 highlight the differences between the relative

influence of the nodes at different levels j from k for respectively small, medium and large values of the

parameter w.

Remark 3: Proposition 1 and remarks 1 and 2 show that the contribution of the positive descendant

nodes decays exponentially with their level. The intensity of the decay depends on the parameter w, and

the parameter w affects the contribution of the different levels (Fig. 3 and 4).

Proposition 1 can be easily extended to the more general case when we have a variable number of

positive children for each descendant node. To this end, recalling that φi is the set of children of i for

which we have a positive prediction (eq. 3), we can extend its definition for a generic node at level k:

φk is the set of children of the generic node at level k for which we have a positive prediction, and eq. 5

for a generic node at level k becomes:

qk(x) = w · q̂k(x) +
1− w

|φk(x)|
∑

j∈φk(x)

qj
k+1(x) (7)
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Fig. 4. Plot of g(w) = w(1 − w)j , while varying j from 1 to 10. The integers j refer to internal nodes at

distance j from the reference node at level k

We can observe that the quantity 1
|φk(x)|

∑
j∈φk(x) qj

k+1(x) in eq. 7 is the average of the probabilities

computed by the positive children nodes of a generic node at level k. For brevity, we define this average

as ak+1:

ak+1 =
1
|φk|

∑

j∈φk

q̂j
k+1 (8)

The average of the probability averages of the positive grandchildren of a node at level k is:

ak+2 =
1
|φk|

∑

j∈φk

1
|φj

k+1|
∑

l∈φj
k+1

q̂l
k+2 (9)

At a next level, the average of the averages of the probability averages of a node at level K is:

ak+3 =
1
|φk|

∑

j∈φk

1
|φj

k+1|
∑

l∈φj
k+1

1
|φl

k+2|
∑

r∈φl
k+2

q̂r
k+3 (10)

By extending these definition across levels, we can obtain the following proposition that generalizes

Proposition 1:

Proposition 2 (Influence of positive descendant nodes with a variable number of children): In a TPR-w ensem-

ble, for a generic node at level k, with a given parameter w, 0 ≤ w ≤ 1, balancing the weight between

parent and children predictors, and having a variable number larger or equal than 1 of positive descen-

dants for each of the m lower levels below, the following equality holds for each m ≥ 1:

qk = wq̂k +
m−1∑

j=1

w(1− w)jak+j + (1− w)mak+m (11)
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Proof: See Appendix C

Remark 4: Note that the form of Proposition 2 is very similar to that of Proposition 1, by substituting

qk with ak. For this reason, the remarks 1, 2 and 3 can be extended to the general case when positive

nodes have a variable number of positive children. Indeed, also in the general case the contribution of

the descendant nodes decays exponentially with their depth and depends critically on the choice of the

w parameter.

To get a quantitative insight into the influence on a given node at level k of its positive descendants,

using the results of Proposition 2, we can study the function:

h(q̂k, a, w, m) = wq̂k +
m−1∑

j=1

w(1− w)jak+j + (1− w)mak+m (12)

by varying q̂k, and w. We numerically simulated the results of the predictions of a generic node at level

k in TPR-w by varying q̂k and w between 0 and 1; m is fixed to 5 (5 levels of positive descendants) and

we considered the following cases for the averages ak+j , 1 ≤ j ≤ m:

Local rule : No influence of descendant nodes.

Constant rule : ak+j = 0.75.

Decreasing rule : ak+j = 1.1− 0.1 · j.

Increasing rule : ak+j = 0.5 + 0.1 · j.

Of course these rules represent an oversimplification of real cases, because ak+j may vary with different

and non monotone rules across levels. Nevertheless this setting can be useful to shed light on the general

behaviour of the algorithm in simplified and well characterized situations.

Fig. 5 summarizes the results. Fig. 5 (a) reports results when there is no influence of positive descendants

(Local rule). The decision depends only on the probability computed by the local predictor: a positive

prediction is given when the probability of the local classifier is larger than 0.5. This situation happens

when no positive descendants are available (that is, all the children of the node give a negative prediction).

Note that this is equivalent to the situation of Flat ensembles that do no take into account the decisions

of the other nodes. Fig. 5 b, c and d show that the decision of a node in a TPR-w ensemble is influenced

by the positive decisions of its offsprings. Indeed, the pink and red areas (probability of the ensemble

larger than 0.5) cross on the left side the vertical dotted line representing the 0.5 probability of the local

predictor, thus resulting in a modification of the negative decision of the local classifier to a positive

one of the overall ensemble. It is worth noting that the value of the ensemble parameter w (abscissa

of Fig. 5) affects significantly the prediction of the ensembles: high values enforce the prediction of the

parent classifiers, while low values increase the influence of the descendant nodes. The results depend

of course also on the “strength” (i.e. the probability) of the predictions of the offsprings and by their

level. Indeed, when the probabilities computed by the deeper nodes (decreasing rule, Fig. 5 c) are lower,

even for low values of w (that is, giving more weight to the positive descendant nodes) the intensity
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Fig. 5. Influence of positive descendants on the prediction of a node in TPR-w ensembles by varying the

values of ak+j according to the Local, Constant, Decreasing and Increasing rules. Abscissa: probability q̂k

predicted by the parent local classifier; ordinate: value of the w parameter. Colors represent the probability

computed by the ensemble (red: high probability; green: low probability). The vertical dotted line highlights

the 0.5 probability computed by the local predictor for a node at level k. (a) Local rule; (b) Constant rule; (c)

Decreasing rule; (d) Increasing rule.

of the modification toward a positive decision of the ensemble is significant, but lower with respect to

the increasing rule case, where the probabilities computed by the deeper nodes are larger than those

computed by high level nodes (Fig. 5 d). In Fig. 5 b (constant rule) we are in an intermediate case. These

results are explained by Proposition 2, since the impact of lower level nodes on the decision of a node
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at level k decreases exponentially with their depth, but depends also on the average of the probabilities

computed by the positive descendants at each level, and on the global parameter w.

Summarizing, this section provides a quantitative analysis of the influence of the positive predictions

of descendant nodes on a generic node at level k. This analysis shows that the posterior probability

computed by a generic node of the ensemble depends non linearly on the weight parameter and on

the nested average of the probabilities computed by the positive descendants nodes at each level. These

results can also suggest some modifications of the TPR-w algorithm, as briefly discussed in Sect. 4.8.

3 EXPERIMENTAL SET-UP

We considered the functional classification of yeast genes at genome-wide level for a large number

of classes structured according to the FunCat (Functional Catalogue), a hierarchically tree-structured,

controlled classification system enabling the functional description of proteins from any organism [9].

For each data set we evaluated the performance of four different ensembles: the Flat ensemble, the

Hierarchical Top-down [37], [38] and the proposed True Path Rule (TPR ) hierarchical ensemble and its

weighted variant (TPR-w, Sect. 2.3).

The Flat ensemble does not take into account the hierarchical structure of the data and simply returns

the predictions of each base classifier trained to recognize the genes belonging to a specific functional

class. In other words its output is the set of predictions made separately by the base learners without any

correction due to the hierarchical relationships between the classes. The hierarchical Top-down algorithm

classifies an example x, where di(x) is the classifier decision at node i and root(T ) denotes the set of

nodes at the first level of the tree T , in the following way:

yi =





di(x) if i ∈ root(T )

di(x) if i /∈ root(T ) AND ypar(i) = 1

0 if i /∈ root(T ) AND ypar(i) = 0

For each ensemble we used two different types of SVM base learners (linear and gaussian). The probabilis-

tic output of the SVMs composing TPR ensembles has been computed using the sigmoid fitting proposed

in [30]. The performance of the ensembles have been compared using 5-fold cross-validation techniques.

The selection of the w parameter in TPR-w ensembles has been performed by internal cross-validation.

The threshold t of TPR ensembles has been set to 0.5 in all the experiments.

3.1 Data sets

For the prediction of gene function in the yeast we used 7 bio-molecular data sets. For each data set we

selected only the genes annotated to FunCat 1, using the HCgene R package [39]. We also removed the

1. We used the funcat-2.1 scheme, and funcat-2.1 data 20070316 data, available from the MIPS web site

(http://mips.gsf.de/projects/funcat).
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genes annotated only with the ”99” FunCat class (”Unclassified proteins”) and selected classes with at

least 20 positive examples, in order to get a not too small set of positive examples for training. From

the data sets we removed also uninformative features (e.g. features with the same value for all the

available examples). At the end of these pre-processing steps we obtained data whose characteristics are

summarized in Tab. 1.

TABLE 1

Biomolecular data sets used in the experiments; n.feat stands for the number of features.

Data set Description n.samples n. feat. n.class

Pfam-1 protein domain binary data from Pfam [40] 3529 4950 211

Pfam-2 protein domain log E data from Pfam [41] 3529 5724 211

Phylo phylogenetic data [33] 2445 24 187

Expr gene expression data [42], [43] 4532 250 230

PPI-BG PPI data from BioGRID [44] 4531 5367 232

PPI-VM PPI data from von Mering experiments [45] 2338 2559 177

SP-sim Sequence pairwise similarity data [10] 3527 6349 211

Pfam-1 data have been originally analyzed by Deng et al. [40]: for each gene product the presence or

absence of 4950 protein domains obtained from the Pfam (Protein families) database [41] is stored as a

binary vector. Moreover we used also an enriched representation of Pfam domains (Pfam-2), by replacing

the binary scoring with log E-values obtained with the HMMER software toolkit [46].

Phylogenetic data (Phylo) are obtained through BLAST searches: each feature corresponds to the

negative logarithm of the lowest E-value reported by BLAST version 2.0 in a search against a complete

genome, with negative values (corresponding to E-values greater than 1) truncated to 0 [33].

We merged the experiments of Spellman et al. (gene expression measures relative to 77 conditions) [42]

with the transcriptional responses of yeast to environmental stress (173 conditions) by Gasch et al. [43]

to obtain the gene expression (Expr) data set.

Protein-protein interaction data (PPI-BG) have been downloaded from the BioGRID database, that

collects PPI data from both high-throughput studies and conventional focused studies [44]. BioGRID

houses high-throughput two-hybrid [47], mass spectrometric protein interaction data [48] and synthetic

lethal genetic interactions obtained through synthetic genetic array and molecular barcode methods [49],

as well as a vast collection of well-validated physical and genetic interactions from literature. Data are

binary: they represent the presence or absence of protein-protein interactions.

We used also another data set of protein-protein interactions (PPI-VM) that collects binary protein-

protein interaction data from yeast two-hybrid assay, mass-spectrometry of purified complexes, correlated
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mRNA expression and genetic interactions [45]. These data are binary too.

Finally we considered pairwise similarities between yeast genes (SP-sim), by using data collected by

William Noble and colleagues [50]. They computed the Smith and Waterman log-E values between all

pairs of yeast sequences, obtaining a symmetric matrix that expresses the pairwise similarities between

yeast genes.

Different strategies can be chosen to select negative examples for each functional class [51], [39]. In

this work negative examples for each class have been selected in such a way that they are not annotated

for the class, but belong to the parent class (i.e. positive for the parent class). In this way only negative

examples that are not too dissimilar to the positive ones are selected.

3.2 Performance metrics

Considering the unbalance between positive and negative examples, we adopted the classical F-score to

jointly take into account the precision and recall of the ensemble for each class of the hierarchy.

Nevertheless, the classical precision and recall measures, conceived for unstructured classification

problems, appear to be inadequate to fully address the hierarchical nature of functional annotation. To

this end we used the Hierarchical F-measure that represents a generalization of the classical F-measure [52].

Indeed, functional classes are structured according to a direct acyclic graph (Gene Ontology) or to a

tree (FunCat), and we need measures to accommodate not just “exact matches” but also “near misses”

of different sorts. In other words we need specific measures to estimate how far a predicted structured

annotation is from a correct one. For instance, correctly predicting a parent or ancestor annotation, while

failing to predict the most specific available annotation should be “partially correct”, in the sense that

we can gain information about the more general functional characteristics of a gene, missing only its

most specific functions. To capture these characteristics of functional annotations, we should consider

how much the entire path from the most specific upward to the more general annotation is correctly

predicted or not. More precisely, given a general taxonomy G representing the graph of the functional

classes, for a given gene/gene product x consider the graph P (x) ⊂ G of the predicted classes and the

graph C(x) of the correct classes associated to x, and let be l(P ) the set of the leaves (nodes without

children) of the graph P . Given a leaf p ∈ P (x), let be ↑p the set of ancestors of the node p that belong to

P (x), and given a leaf c ∈ C(x), let be ↑c the set of ancestors of the node c that belong to C(x), we can

define the following definitions of Hierarchical Precision (HP), Hierarchical Recall (HR) and Hierarchical

F-score (HF) [52]:

HP =
1

|l(P (x))|
∑

p∈l(P (x))

max
c∈l(C(x))

| ↑c ∩ ↑p|
| ↑p|

HR =
1

|l(C(x))|
∑

c∈l(C(x))

max
p∈l(P (x))

| ↑c ∩ ↑p|
| ↑c|

HF =
2 ·HP ·HR

HP + HR
(13)
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It is easy to see that in the case of the FunCat taxonomy, since it is structured as a tree, we can simplify

HP , HR and HF as follows:

HP =
1

|l(P (x))|
∑

p∈l(P (x))

|C(x) ∩ ↑p|
| ↑p|

HR =
1

|l(C(x))|
∑

c∈l(C(x))

| ↑c ∩ P (x)|
| ↑c|

HF =
2 ·HP ·HR

HP + HR
(14)

An overall high hierarchical precision is indicative of most predictions being ancestors of the correct

predictions, or in other words that the predictor is able to detect the most general functions of genes/gene

products. On the other hand a high average hierarchical recall indicates that most predictions are succes-

sors of the actual, or that the predictors are able to detect the most specific functions of the genes. The

hierarchical F-measure expresses the correctness of the structured prediction of the functional classes,

taking into account also partially correct paths in the overall hierarchical taxonomy, thus providing in a

synthetic way the effectiveness of the structured hierarchical prediction.

4 RESULTS AND DISCUSSION

The performances of Flat, HTD, TPR and TPR-w ensembles have been compared using 5-fold cross-

validation techniques, as explained in Sect. 3. We performed two nested cross-validation procedures

with TPR-w ensembles . The ”external” cross-validation has been applied to estimate the generalization

capabilities of the ensemble, while the ”internal” one to select the best w parameter. In this way the

selection of the best value for w was independent of the test data used in the external cross-validation.

We tested the ensembles using the “per-class” and hierarchical F-measures (Sect. 4.1), then we analyzed

the performance of the ensembles at each level of the FunCat hierarchy (Sect. 4.2) and we also considered

separated subtrees of the overall hierarchy related to the main functional categories of the taxonomy

(Sect. 4.3). In Sect. 4.4 the precision/recall characteristics of TPR-w ensembles have been studied as

a function of the global parameter w. We analyzed also whether the proper choice of the threshold

parameter t (Sect. 2.3) can influence the performance of TPR-w ensembles (Sect. 4.5) and we investigated

also the effectiveness of the TPR algorithms using different probabilistic base learners (Sect. 4.6). In

Sect. 4.7 we evaluated whether local optimization techniques are able to improve the overall classification

results, and finally we discuss the main advantages and limitations of the proposed methods, considering

both the theoretical analysis of the proposed algorithms (Sect. 2.4) and the experimental results presented

in this section.

4.1 “Per class” and hierarchical F-measure results

At first we compared the performance of ensemble methods considering the “per class” F-measure

averaged across all FunCat classes for each data set. The results show that hierarchical methods largely
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outperform Flat ensembles (Fig. 6). The first seven groups of barplots refer to the 7 data sets used in

the experiments (Tab. 1), while the last one reports the results averaged across all the data. Using linear

SVM as base learners, Flat ensembles obtain an average F-measure across the 7 data sets used in the

experiments of 0.15 against respectively 0.22, 0.18 and 0.24 with HTD, TPR and TPR-w ensembles. With

gaussian SVMs Flat ensembles achieve an average F-measure of 0.14 against respectively 0.18, 0.19 and

0.23 with HTD, TPR and TPR-w ensembles. The comparison of the algorithms using the Wilcoxon signed-

ranks test [53] shows that TPR-w ensembles outperform all other methods at 0.01 significance level with

gaussian base learners, and at 0.02 significance level with linear SVMs, while no significant difference can

be detected between HTD and TPR ensembles. The difference between hierarchical and Flat methods is

always significant (Tab. 2).

TABLE 2

Comparison between F-scores of ensemble methods across the data sets; each cell shows the p-values

computed according to the Wilcoxon signed-ranks test; differences at 0.02 significance level are

highlighted in bold.

Linear SVMs

Flat HTD TPR

HTD 0.0195

TPR 0.0195 0.9453

TPR-w 0.0039 0.0195 0.0039

Gaussian SVMs

Flat HTD TPR

HTD 0.0546

TPR 0.0039 0.3203

TPR-w 0.0039 0.0078 0.0078

As explained in the experimental set-up (Sect. 3), the F hierarchical measure is a more appropriate

performance metric for the hierarchical classification of gene functions. Note that we did not report the

results obtained with Flat ensembles because in all cases they were very significantly worse than those

achieved with hierarchical ensemble methods. Fig. 7 shows that on the average TPR-w achieves the best

results using both linear and gaussian SVMs as base learners: 0.34 versus 0.25 and 0.29 with respect to

TPR and HTD ensembles using linear SVMs, and 0.32 versus 0.27 and 0.25 with gaussian SVMs 2. Note

that TPR-w obtains equal or better results than HTD ensembles with respect to all the data sets. More

2. We used a polynomial kernel with SP-sim data, since the gaussian kernel showed convergence problems on this classification

task.
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Fig. 6. Per-class F-measure comparison between Flat, Top-down (HTD), True Path Rule (TPR), and TPR

weighted (TPR-w) ensembles. Top: linear SVMs; bottom: gaussian SVMs

precisely considering the three repetitions of 5-fold cross validation results for each the 7 considered data

sets (21 hierarchical classification tasks), TPR-w reported better results than HTD at 0.05 significance level

on 14 tasks with linear SVMs and on 18 tasks with gaussian SVMs, according the 5-fold cross-validated

paired t-test [54]. Comparison between algorithms using the Wilcoxon signed-ranks test show that TPR-

w ensembles significantly outperform all the other hierarchical methods, while the difference between

Top-down and TPR is not significant (Tab. 3). These results show that we need the weighted version of

TPR ensembles to enhance HTD predictions.

4.2 Per-level F-measure analysis

To get more insights into the reasons why TPR-w achieve better results, we performed a per-level analysis

of the F-measure of the FunCat trees. Tab. 4 shows the per level F-measure results with Pfam-1 protein

domain data and Pairwise sequence similarity data (SP-sim). Level 1 refers to the root nodes of the

FunCat hierarchy, level i, to nodes at depth i, 2 ≤ i ≤ 5.

Looking at the results, we can observe that Flat ensembles tend to have the highest recall, Top-down the

highest precision, while TPR-w tends to stay in the middle with respect to both the recall and precision,
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TABLE 3

Comparison between hierarchical F-scores of ensemble methods across the data sets; each cell shows

the p-values computed according to the Wilcoxon signed-ranks test; differences at 0.05 significance level

are highlighted in bold.

Linear SVMs

HTD TPR

TPR 0.9023

TPR-w 0.0039 0.0039

Gaussian SVMs

HTD TPR

TPR 0.3203

TPR-w 0.0039 0.0390
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Fig. 7. Hierarchical F-measures comparison between Top-down (HTD), True Path Rule (TPR), and TPR

weighted (TPR-w) ensembles. Top: linear SVMs; bottom: gaussian SVMs

thus achieving the best F-measure at each level.

These results can be explained analyzing the behaviour of HTD and TPR-w algorithms. Indeed for
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TABLE 4

Per level precision, recall, F-measure and accuracy comparison between Flat, Top-down, True Path Rule

weighted (TPR-w) ensembles. Left: Pfam-1 protein domain data with gaussian SVMs as base learners.

Right: SP-sim Pairwise sequence similarity data with polynomial SVMs as base learners.

Protein domain (Pfam-1) Sequence similarity (SP-sim)

Flat Flat

Level Prec. Rec. F Acc. Level Prec. Rec. F Acc.

1 0.7633 0.3110 0.4337 0.8888 1 0.5507 0.4143 0.4703 0.8722

2 0.4027 0.4753 0.3505 0.8098 2 0.0822 0.3401 0.1189 0.7454

3 0.3187 0.4683 0.2725 0.7711 3 0.0305 0.2940 0.0502 0.7380

4 0.1500 0.6370 0.1561 0.5400 4 0.0205 0.4962 0.0371 0.5251

5 0.1517 0.3819 0.1707 0.8567 5 0.0058 0.2989 0.0110 0.6857

HTD HTD

Level Prec. Rec. F Acc. Level Prec. Rec. F Acc.

1 0.7633 0.3110 0.4337 0.8888 1 0.5507 0.4143 0.4703 0.8722

2 0.6945 0.2926 0.3978 0.9597 2 0.3091 0.1765 0.2148 0.9440

3 0.6289 0.2580 0.3519 0.9792 3 0.2305 0.0945 0.1221 0.9718

4 0.5627 0.2372 0.3193 0.9811 4 0.2141 0.0777 0.0956 0.9746

5 0.4774 0.2013 0.2736 0.9906 5 0.0498 0.0394 0.0316 0.9871

TPR-w TPR-w

Level Prec. Rec. F Acc. Level Prec. Rec. F Acc.

1 0.7244 0.3618 0.4727 0.8911 1 0.4432 0.5573 0.4898 0.8489

2 0.6445 0.3400 0.4319 0.9597 2 0.2723 0.4044 0.3156 0.9273

3 0.5656 0.3052 0.3812 0.9787 3 0.1949 0.2384 0.1995 0.9621

4 0.5245 0.2764 0.3430 0.9804 4 0.1579 0.1973 0.1532 0.9673

5 0.4547 0.2143 0.2623 0.9901 5 0.0503 0.1254 0.0695 0.9846

both hierarchical algorithms we have a “negative” flow of information from top to bottom: when a node

answers “no”, its prediction is propagated to the subtree below, and the specificity and the precision are

increased. Moreover TPR-w shows also a positive flow of information in the opposite direction: “yes”

answers of the descendants nodes influence the decisions of the parent nodes, thus improving the recall

of the overall system. Indeed TPR-w recall tends to be larger than the corresponding Top-down recall at

each level, and sometimes even larger than the recall of Flat ensembles. In other words the two fluxes of

information tend to balance precision and recall, thus resulting in an improved F-measure at each level

of the FunCat hierarchy (Tab. 4).

Note that the accuracy is high at each level (at least with hierarchical ensemble methods), but these

results are not significant, considering the large unbalance between positive and negative genes for each
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Fig. 8. Precision, Recall and F-measure as a function of the parent weight in TPR-w ensembles. PPI

BioGRID data: (a) linear (b) gaussian kernel; Pairwise sequence similarity data: (c) linear (d) polynomial

kernel.

functional class (Tab. 4).

4.3 Classification of specific subtrees

Even if the main goal of this work consists in the development of a hierarchical algorithm that can

be applied to the prediction of the overall taxonomy of a gene, we can restrict the analysis to specific

subtrees of the taxonomy. For instance, with the tree rooted at the “protein fate” FunCat class (FunCat

ID = 14), composed by 15 nodes (Fig. 9), using Pfam-1 data we obtain an average precision equal to 0.79,

an average recall of 0.48, and an average F-measure of 0.58 (Tab. 5), and for several classes we obtain

an F-measure larger than 0.70, even if only 1 source of data is used for the hierarchical classification.

Other results relative to specific subtrees of the FunCat taxonomy are available in the Supplementary

Information. It is worth noting that for each subtree and more in general for each functional class the

results largely depend on the choice of the data set. Indeed each type of biomolecular data captures
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specific characteristics of genes that may correspond to different functional features. For instance, gene

expression data obtained from time series experiments can be informative to classify cell-cycle related

classes, while are less informative or unuseful to classify several other classes (e.g. classes related to signal

transduction and interaction with the environment).

14

14.01 14.04 14.07

14.07.01 14.07.02

14.07.02.02

14.07.03 14.07.04 14.07.05 14.07.11

14.10 14.13

14.13.01

14.13.01.01

Fig. 9. Tree of the FunCat classes rooted at Funcat ID=14 (Protein fate).

4.4 Tuning precision and recall in TPR-w ensembles

Another advantage of the TPR-w ensembles is the capability of tuning precision and recall rates, through

the parameter parent weight w (eq. 5). Fig. 8 shows, the hierarchical precision, recall and F-measure as

functions of the parameter w. For small values of w (w can vary from 0 to 1) the weight of the decision of

the parent local predictor is small, and the ensemble decision depends mainly by the positive predictions

of the offsprings nodes (classifiers): as a consequence we obtain a higher hierarchical recall for the TPR-w

ensemble. On the contrary higher values of w correspond to a higher weight of the parent predictor, with

a resulting higher precision. The opposite trends of precision and recall are quite clear in all graphs of

Fig. 8. The best F-score is in “middle” values of the parameter parent weight: in practice in most of

the analyzed data sets the best F-measure is achieved for w between 0.5 and 0.8, but if we need higher

recall rates (at the expense of the precision) we can choose lower w values, and higher values of w are

needed if precision is our first aim. Other results and graphs are available on-line in the Supplementary

Information.
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TABLE 5

Classification results on the FunCat tree rooted at ”Protein fate”. Each row represents a functional class of

the FunCat taxonomy. Prec. stands for precision, Rec. recall, Sp. specificity, F F-measure, Acc. accuracy.

FunCat ID Description Prec. Rec. Sp. F Acc.

14 Protein fate (folding, modification, destination) 0.8342 0.5182 0.9645 0.6393 0.8503

14.01 protein folding and stabilization 0.8437 0.6585 0.9970 0.7397 0.9892

14.04 protein targeting, sorting and translocation 0.6224 0.2760 0.9888 0.3824 0.9441

14.07 protein modification 0.8287 0.5753 0.9816 0.6791 0.9274

14.07.01 modification with fatty acids 0.8333 0.2083 0.9997 0.3333 0.9943

14.07.02 modification with sugar residues 0.9090 0.4615 0.9991 0.6122 0.9892

14.07.02.02 N-directed glycosylation, deglycosylation 0.7826 0.4390 0.9985 0.5625 0.9920

14.07.03 modification by phosphorylation 0.8717 0.7445 0.9955 0.8031 0.9858

14.07.04 modification by acetylation 0.8823 0.3061 0.9994 0.4545 0.9897

14.07.05 modification by ubiquitination 0.8846 0.6865 0.9982 0.7731 0.9923

14.07.11 protein processing (proteolytic) 0.7142 0.3846 0.9971 0.5000 0.9858

14.10 assembly of protein complexes 0.7555 0.2048 0.9967 0.3222 0.9594

14.13 protein/peptide degradation 0.7986 0.5609 0.9912 0.6590 0.9662

14.13.01 cytoplasmic and nuclear protein degradation 0.6940 0.5886 0.9878 0.6369 0.9699

14.13.01.01 proteasomal degradation 0.6629 0.5619 0.9912 0.6082 0.9784

4.5 Choice of the decision threshold and its impact on the performance of TPR-w ensembles

The output of TPR ensembles is probabilistic, but the decision di(x) of the ensemble at node i for a

given gene x depends on the threshold t (see lines 05 or 10 of the pseudocode of the algorithm, Fig. 2).

A reasonable choice for t is 0.5, but in this section we analyze the behaviour of the TPR algorithm by

varying the value of the threshold t between 0 and 1, in order to understand whether a proper choice of t

could improve the performance of the ensemble. To this end, we studied the hierarchical precision, recall

and F-score of two TPR-w ensembles trained respectively with linear and gaussian SVMs on the data sets

Pfam-1 and PPI-VMs (Sect.3.1), by varying the decision threshold between 0.05 and 0.95. Fig. 10 shows

that the best results in terms of the F hierarchical score (solid lines with crosses) are achieved when the

threshold is close to 0.5: more precisely 0.45 with both Pfam-1 and PPI-VM data. It is worth noting that

with values in the range [0.4, 0.6] we obtain in any case comparable results. As expected, the hierarchical

recall decreases monotonically by increasing the threshold, while the precision at first increases, then

reaches a quite ”smooth” maximum and then decreases for the largest values of the threshold. The

”smooth” maximum is due to the joint effect of the reduction of both false and true positives with the

increment of the threshold, with opposite effects on the precision. Of course, when we have large values

of the threshold, both precision and recall undergo a substantial reduction that leads to small values of

the F-score. Summarizing, choosing a threshold close to 0.5 seems to be an acceptable choice, even if

December 24, 2009 DRAFT



IEEE ACM TRANS. ON COMP. BIOL. AND BIOINFORMATICS 25

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

threshold

P
re

c.
 R

ec
. F

−
m

ea
s.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Precision
Recall
F−measure

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

threshold

P
re

c.
 R

ec
. F

−
m

ea
s.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Precision
Recall
F−measure

(a) (b)

Fig. 10. Precision, Recall and F-measure as a function of the decision threshold t in TPR-w ensembles.

(a) Pfam-1 data (b) PPI-VM data

optimizing this parameter can lead to a slight improvement of the performance of the ensemble.

4.6 Using logistic regression classifiers as base learners

The proposed hierarchical ensembles can use different probabilistic classifiers as base learners. In this sec-

tion we compare the results obtained with Flat, Top-down, TPR and TPR-w ensembles using probabilistic

SVMs and logistic regression models as base classifiers. Logistic regression classifiers directly estimate

the posterior probabilities of the classes [55], while probabilistic SVMs model posterior probabilities by

fitting a sigmoid on the output of the discriminant function computed by the SVM algorithm [30]. The

5-fold cross-validation results with Expr and PPI-VM data show that TPR-w ensembles achieve equal or

better results than those obtained with the other methods, independently of the base learner used (Tab. 6).

In particular, on these two data sets, logistic regression base classifiers behave better than probabilistic

linear SVMs, and sometimes also better than probabilistic radial SVMs (e.g. with PPI-VM data, Tab. 6).

Summarizing, these results show that the proposed TPR ensemble methods can be applied using different

probabilistic base learners.

4.7 Testing local optimization techniques

Finally we tested whether local optimization techniques can improve the overall performance of the TPR

ensembles. We analyzed the results obtained through: a) computationally intensive “per node” model

selection techniques b) local cost-sensitive strategies. In both cases we used linear SVMs as base learners
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TABLE 6

Comparison of hierarchical F-measure results using different probabilistic base learners with Flat,

Top-down, TPR and TPR-w ensembles.

Gene Expression data (Expr)

Flat HTD TPR TPR-w

Radial SVM 0.1153 0.2270 0.2390 0.2638

Linear SVM 0.1246 0.1166 0.1696 0.1784

Log. regression 0.1384 0.1672 0.1859 0.2453

Protein-protein interaction data (PPI-VM)

Flat HTD TPR TPR-w

Radial SVM 0.1720 0.4169 0.3983 0.4381

Linear SVM 0.1658 0.3977 0.2796 0.4000

Log. regression 0.1833 0.4382 0.3392 0.4553

and only 2 data sets: PPI-VM and Phylo. Results obtained with 5-fold cross validation and internal 3-

fold cross validation for model selection did not result in an improvement of the overall performance

of the hierarchical ensembles. This could seem quite surprising, but in this context, where examples

can be at least partially mislabeled and data can be noisy (at least for certain data sets relatively to

specific functional classes) a too intensive model selection can lead to overfitting. On the contrary, using

local cost-sensitive strategies, we can achieve a certain improvement of the overall performances. More

precisely we imposed different costs for misclassifications of positive and negative examples for training

linear SVMs, simply by setting the cost for misclassification of negative examples to 1 and the cost of

misclassification of positive examples to the ratio between negative and positive examples in the training

set. With PPI-VM data we observed a slight increment from 0.40 to 0.41 of the F-hierarchical measure

with TPR-w ensembles and a slight decrement from 0.28 to 0.27 with TPR ensembles. With phylogenetic

data the increment is from 0.22 to 0.24 with TPR-w and from 0.20 to 0.21 with TPR ensembles.

These results (no influence of the C regularization factor and a certain impact of local cost-sensitive

strategies) confirm previous findings observed with the classification of GO hierarchies [28].

4.8 Advantages and limitations of the TPR-based algorithms

F hierarchical measures results show that TPR-w achieves equal or better results than the TPR and Top-

down hierarchical strategy, and both hierarchical strategies achieve significantly better results than Flat

classification methods, using the classical ”per-class” F-measure, while no significant difference, according

to the Wilcoxon signed-ranks test can be registered between Top-down and the basic TPR algorithm.

The analysis of the per-level classification performances shows that TPR-w, by exploiting a global

December 24, 2009 DRAFT



IEEE ACM TRANS. ON COMP. BIOL. AND BIOINFORMATICS 27

strategy of classification, is able to achieve a good compromise between precision and recall, enhancing

the F-measure at each level of the taxonomy.

We can note for both hierarchical algorithms a degradation of both precision and recall (and as a

consequence of the F-measure) by descending the levels of the trees. This fact could be at least in part

due to the lack of annotations at the lowest levels of the hierarchy, where we may have several genes

with unannotated specific functions. We also conjecture that experimenting with different strategies to

assign negative examples in the training phase could improve the performance at the lower levels of the

hierarchy [51].

Another advantage of TPR-w consists in the possibility of tuning precision and recall by using a global

strategy: large values of the w parameter improve the precision, and small values the recall. The choice

to favor precision or recall depends on the researcher’s experimental objectives. In most data sets the

best compromise between precision and recall is achieved for weights in the range between 0.5 and 0.8,

that is giving a weight equal or larger to the parent predictor with respect to the predictions taken by its

offsprings. In other words we may obtain different precision-recall curves for different values of w: the

weight is a global parameter that affects the general precision/recall characteristics of the ensemble.

It is worth noting that we may vary the threshold t to obtain precision recall curves for a fixed value

of w: this can slightly enhance the overall performance of TPR-w ensembles. Moreover TPR and TPR-w

ensembles provide also a probabilistic estimate of the prediction reliability for each functional class of

the overall taxonomy.

In Sect. 2.4 we discussed how the decisions performed at each node of the hierarchical ensemble are

influenced by the positive decisions of its descendants. The results of this analysis can be summarized

as follows:

• Weights of descendants decrease exponentially w.r.t their depth. As a consequence the influence of

descendant nodes decays quickly with their depth.

• The parameter w plays a central role in balancing the weight of the parent classifier associated to

a given node with the weights of its positive offsprings: small values of w increase the weight of

descendant nodes, large values the weight of the local parent predictor associated to that node.

• The effect on the overall probability predicted by the ensemble is the result of the choice of the w

parameter , the strength of the prediction of the local learners and of its descendants. Different behav-

iors of the ensemble have been characterized according to some general rules by which probabilities

are assigned to the positive offsprings (Sect. 2.4, Fig. 5).

These characteristics of TPR-w ensembles are well-suited for the hierarchical classification of gene

functions, considering that annotations of deeper nodes are likely to have less experimental evidence

than higher nodes. Moreover, by enforcing the strength of the descendant nodes through low w values,

we can improve the recall characteristics of the overall system (at the expense of a possible reduction in

precision).
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Nevertheless we can note that positive children of a node at level i of the hierarchy have the same

weight, independently of the size of their hanging subtree. In some cases this could be useful, for the

reasons discussed above, but in other cases it could be desirable to directly take into account the fact

that a positive prediction is maintained along a path of the tree: indeed this witnesses for a positive

annotation of the node at level i. The proposed algorithm weights the positive predictions of deeper

nodes with an exponentially decrement with respect to their depth (Sect. 2.4), but other rules (e.g. linear

or polynomial) could be considered as the basis for the development of new algorithms that put more

weight on the decisions of deep nodes of the hierarchy.

Another possible research line could consist in the integration of the recently proposed hierarchical

method based on isotonic regression [6] with the true path rule that governs both the GO and Fun-

Cat taxonomies. Indeed, this more general and principled approach to hierarchical classification could

overcome the heuristic nature of the TPR algorithm, by adapting isotonic regression to the biological

characteristics of gene function taxonomies.

5 CONCLUSIONS

In this paper we proposed a new hierarchical strategy, inspired by the true path rule, for gene function

prediction extended to the overall functional taxonomy of genes.

TPR-w ensembles significantly outperform both the basic TPR and Top-down ensembles in the genome

and ontology-wide prediction of gene functions in S. cerevisiae. The analysis of the experimental results

and a theoretical investigation of the flow of information that traverses the hierarchical ensemble show

the reasons why TPR-w are well-suited to the prediction of gene functions, and suggest new research

lines for the development of new hierarchy-aware gene function prediction methods.

The overall results show that using a single source of evidence we can obtain a high precision and recall

for specific trees of the FunCat forest. Nevertheless, we need to integrate multiple data sources to obtain

methods to predict functions of hypothetical genes, or to discover or complete the functional annotation

of genes whose function is incomplete or unknown. To this end, the proposed approach can be easily

integrated with at least three different general strategies for biomolecular data integration: vector space

integration [33], kernel fusion [10] and ensemble methods [56]. Indeed for each node/class of the tree

we may substitute a classifier trained on a specific type of biomolecular data with a classifier trained on

concatenated vectors of different data, or trained on a (weighted) sum of kernels, or with an ensemble

of learners each trained on a different type of data. This is the object of our planned future research.
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APPENDIX A

PROOF OF PROPOSITION 1: INFLUENCE OF POSITIVE DESCENDANT NODES WITH ONE

CHILD

In a TPR-w ensemble, for a generic node at level k, with a given parameter w, 0 ≤ w ≤ 1, balancing the

weight between parent and children predictors, and having exactly one positive descendant for each of

the m lower levels below, that is such that qk+j ≥ 0.5, 1 ≤ j ≤ m, the following equality holds for each

m ≥ 1:

qk =
m−1∑

j=0

w(1− w)j q̂k+j + (1− w)mqk+m (15)

Proof: The proof is by induction. Considering that in TPR-w ensembles for a given node at level k

we have (eq.7):

qk(x) = w · q̂k(x) +
1− w

|φk(x)|
∑

j∈φk(x)

qj
k+1(x)

for m = 1, having 1 positive child for a node at level k, we obtain:

qk = wq̂k + (1− w)qk+1 (16)

and hence eq. 15 holds for m = 1.

We suppose that eq. 15 is true for m = n:

qk =
n−1∑

j=0

w(1− w)j q̂k+j + (1− w)nqk+n (17)

We show now that the equality holds also for m = n + 1. Indeed for the node at level k + n we have:

qk+n = wq̂k+n + (1− w)qk+n+1 (18)

By substituting eq. 18 in eq. 17 we obtain:

qk =
n−1∑

j=0

w(1− w)j q̂k+j + (1− w)n(wq̂k+n + (1− w)qk+n+1) (19)

=
n−1∑

j=0

w(1− w)j q̂k+j + w(1− w)nq̂k+n + (1− w)n+1qk+n+1

=
n∑

j=0

w(1− w)j q̂k+j + (1− w)n+1qk+n+1

¤.
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APPENDIX B

COMPUTATION OF THE MAXIMUM OF g(w)

Considering the function g(w) = w(1− w)j , w ∈ [0, 1], j ≤ 1, we have that arg max g(w) = 1
j+1 . Indeed:

dg
dw = (1− w)j − jw(1− w)j−1 = (1− w)j−1(1− w − jw)
dg
dw = 0⇐⇒ (

(1− w)j−1 = 0
) ∨ ((1− w − jw) = 0)

(1− w)j−1 = 0⇐⇒ (w = 1) ∨ (j →∞, w 6= 0, w 6= 1)

(1− w − jw) = 0⇐⇒ 1− w(1 + j) = 0⇐⇒ w(1 + j) = 1⇐⇒ w = 1
j+1

Hence we have:

dg

dw
= 0⇐⇒





w = 1

w 6= 0, w 6= 1, j →∞
w = 1

j+1

It is easy to see that w = 1 is a minimum, w 6= 0, w 6= 1, j →∞ is another minimum, while w = 1
j+1 is a

maximum.

APPENDIX C

PROOF OF PROPOSITION 2: INFLUENCE OF POSITIVE DESCENDANT NODES WITH A VARI-

ABLE NUMBER OF CHILDREN

In a TPR-w ensemble, for a generic node at level k, with a given parameter w, 0 ≤ w ≤ 1, balancing the

weight between parent and children predictors, and having a variable number larger or equal than 1 of

positive descendant for each of the m lower levels below, the following equality holds for each m ≥ 1:

qk = wq̂k +
m−1∑

j=1

w(1− w)jak+j + (1− w)mak+m (20)

Proof: If a generic node at level k has only one level of positive descendants (m = 1), we have, by

using eq. 8:

qk = wq̂k +
1− w

|φk|
∑

j∈φk

q̂j
k+1 = wq̂k + (1− w) ak+1 (21)

If k has two levels of positive descendants (m = 2), by using eq. 9, we have:

qk = wq̂k +
1− w

|φk|
∑

j∈φk

q̂j
k+1 (22)

qj
k+1 = wq̂j

k+1 +
1− w

|φj
k+1|

∑

l∈φj
k+1

q̂l
k+2 (23)
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By putting eq. 23 in eq. 22:

qk = wq̂k +
1− w

|φk|
∑

j∈φk


wq̂j

k+1 +
1− w

|φj
k+1|

∑

l∈φj
k+1

q̂l
k+2


 (24)

= wq̂k +
w(1− w)
|φk|

∑

j∈φk

q̂j
k+1 +

(1− w)2

|φk|
∑

j∈φk

1
|φj

k+1|
∑

l∈φj
k+1

q̂l
k+2

By using eq. 8 and 9 we finally obtain:

qk = wq̂k + w(1− w) ak+1 + (1− w)2 ak+2 (25)

We can repeat this procedure for m levels below a node at level k:

qk = wq̂k + w(1− w) ak+1 + w(1− w)2 ak+2 + . . . + w(1− w)m−1 ak+m−1 + (1− w)m ak+m (26)

= wq̂k +
m−1∑

j=1

w(1− w)jak+j + (1− w)mak+m

¤.
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