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Summary. The ever increasing amount of biomolecular data available in public
domain databases for a broad range of organisms coupled with recent advances
in machine learning research has stimulated interest in computational approaches
on gene function prediction. In this context data integration from heterogeneous
biomolecular data sources plays a key role. In this contribution we test the per-
formance of several ensembles of SVM classifiers, in which each component learner
has been trained on different types of data, and then combined using different ag-
gregation techniques. The compared combination methods are the widely adopted
linear weighted combination, the logarithmic weighted combination and the simi-
larity based decision templates approach. The results show that heterogeneous data
integration through ensemble methods represents a valuable research line in gene
function prediction.

1 Introduction

Functional classification of unannotated genes and the improvement of the ex-
isting gene functional annotation catalogs, are of capital importance in mod-
ern functional genomics and bioinformatics. Gene functional classification may
provide useful insights in pharmacogenomics, being able to provide indications
for the development of target specific drugs. More in general, it plays a key
role in molecular biology, given it’s ability to detect previously unknown role
of genes and their products in physiological and pathological processes. Never-
theless, the application of automated systems in this research area is strongly
limited by the intrinsic difficulty of this task, which is mainly originated by
the natural heterogeneity of the involved data. Different types of biomolecular
data, ranging from expression profiles to phylogenetic gene-specific evolution
rates and many others can in principle provide useful information for the au-
tomated assessment of the functional role of genes. The extent of the degree
at which the presence of a specific type of experimental data could result
into an improvement of the classification performances is expected to vary ac-
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cordingly to the specific gene and the particular bio molecular process under
investigation.

Several approaches for heterogeneous biomolecular data integration have
been proposed in the literature. A first one corresponds to the ”early integra-
tion” technique, by which different vectorial data are concatenated [1]. Other
methods are based on modeling networks of functional relationships between
proteins; in this context graphical models provide a probabilistic framework
for data integration [2]. Kernel methods and techniques based on kernel fu-
sion methods represent another important research area with significant ap-
plications in the integration of different bio-molecular data sources for gene
function prediction [3].

In the aforementioned scenario the application of methods able to deal
with both different data sources and the problem to integrate the prediction
obtained from different learners is clearly appealing. It is widely accepted
that combining multiple classifiers can provide advantages over the mono-
lithic approach to pattern classifier design [4], but a systematic evaluation
of the impact on classification performances of different combination rules
suitable to merge the output of gene function classifiers trained on different
data sources, as today, has not been explored. To our knowledge, only some
works have been proposed, such as the "late integration” of kernels trained
on different sources of data [1], or the Naive-Bayes integration of the outputs
of SVMs in the context of the hierarchical classification of genes [5]. In this
work we investigate the effectiveness of three classifier fusion strategies using
ensembles of Support Vector Machines [6] each of which trained to produce a
probabilistic-like classification output [7].

In the next section we present the ensemble methods we used in our ex-
periments. In Sect. 3 we describe the different types of high-throughput bio-
molecular data and the experimental setting we adopted to classify yeast
genes according the highest level classes of the FunCat taxonomy [8]. Sect. 4
presents the main results obtained by comparing performances of single SVMs
with respect to to ensembles that merge 6 different sources of biomolecular
data. The conclusions summarize the main achievements and drawbacks of
the proposed data fusion ensemble approach.

2 Methods

Ensembles of classifiers have enjoyed great attention because of their excellent
generalization performances on a wide spectrum of applications. One of the
main ideas behind the effectiveness of ensemble systems is that if the single
classifiers composing the ensemble are diverse, then they are expected to make
different errors, and combining the output produced by these classifiers can
in principle reduce the error through averaging [9].

Diversity can be achieved using different sources data, thus obtaining dif-
ferent ”views” of the same phenomenon. In particular the objective of data
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fusion is to extract complementary pieces of information from different data
sources and then merge them achieving a more informed decision about the
phenomenon under analysis. Working with heterogeneous data sources, data
fusion can be realized by means of an ensemble system composed by learners
trained on different datasets and then combining the outputs of the compo-
nent learners.

The continuous output assigned to an instance vector x by a binary clas-
sifier can be interpreted as the support given to the membership of x to a
specific functional class. In particular, with SVMs, a probabilistic output can
be obtained by applying a sigmoid fitting to their output [7]. As a conse-
quence a trained classifier computes a function d; : X — [0, 1] that estimates
the probability that a given example x € X belongs to a specific class w;. An
ensemble combines the outputs of T base learners using a suitable combining
function g to compute the overall support (e.g. the probability) u; for a given
class wj:

pi(x) = g(d (), .-, dr ;(x)) (1)

2.1 Linear weighted combination with linear and logarithmic
weights

Among the algebraic combiners, the simplest is the mean rule, which calculates
the support p; for the membership of a current instance x to the w; class as
the average of all classifiers outputs:

1 T
i) = = > di () 2)

In our experiments we used the weighted average rule, in order to take into
account the reliability of each base learner in the computation of the support

Hij
T
pi(x) =Y wydy j(x) (3)

The weights w; are usually computed using an estimate of the overall
accuracy of the base learners, but in our experimental setting, where the gene
functional classes are largely unbalanced (positive examples are largely less
than negative ones), we chose the F-measure (the harmonic mean between
precision and recall) to compute the weights:

23:1 Ft

The F-measure F; of the t'" base learner can be estimated by ”internal”
cross-validation on the training set.

(4)
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It can be shown [10] that if we have T independent classifiers each of which
associated with some performance measure (such as the accuracy or the F-
measure), the accuracy of an ensemble produced by combining the learners
outputs by weighted majority voting is maximized if the output weights satisfy
the proportionality

bt
wy X log1 - (5)
where p; is an estimate of the reliability of the
or F-measure).

In our experiments we implemented the weighted logarithmic combination
by adding a small € in order to avoid division by zero in eq. 5, and then by
normalizing in order to obtain positive weights that sum to 1:

t'" base learner (e.g. accuracy

Fi+e
by = In——— 6
e nl—Ft+€ ()
v, Wy — Ilne ™)

23:1(“% — Ine)

Once computed the weights for each classifier, according to eq. 4 for the
linear weighted combination or to eq. 7 for logarithmic weighted combina-
tion, the final decision D; : X — {0,1} of the ensemble is taken using the
probability pu; for the class w; (eq. 3):

1, if p;(x)>05
Di(x)=<¢" J 8
5(%) {O, otherwise ®)

where output 1 corresponds to positive and 0 to negative predictions for w;.

2.2 Decision Templates

The main idea behind decision templates is to compare a ”prototypical an-
swer” of the ensemble for the examples of a given class (the template), to
the current answer (the decision profile) of the ensemble to a specific example
whose class needs to be predicted [11].

The decision profile DP(x) for a instance x is a matrix composed by the
d:; €[0,1] elements representing the support given by the t*h classifier to
class w;. The decision profiles matrices are effective tools that allows us to
effectively summarize the information produced by all the members of an
ensemble system and also provide conceptual blocks at the basis of the decision
templates technique.

Decision templates DT are the averaged decision profiles obtained from
X, the set of training instances belonging to the class w;:

1
DTj = 1 > DP(x) (9)

X5l &K
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Note that the sum in eq. 9 refers to matrices, and hence decision templates
are matrices with a number of rows equal to the number of the base learners
and a number of columns equal to the number of the classes.

Given a test instance we first compute its decision profile and then we
calculate the similarity S; between DP(x) and the decision template DT} for
each class w;. As similarity measure the Euclidean distance is usually applied:

T C
S50 =1~ 2 S0 S IDT (1) — du () (10)

The final decision of the ensemble is taken by assigning a test instance as:

D(x) = argmjaij(x) (11)

In our experimental setting we consider dichotomic problems, thus obtain-
ing two-columns decision template matrices. Note that for each gene functional
class we have two decision templates, one for the positive examples for that
class (DTp) and another one for the negatives (DT ).

It is easy to see that with dichotomic problems the similarity measure
(eq. 10) for the positive (Sp) and negative (Sy) class becomes:

T

Sp(x) =1- % > [DTp(t,1) = diy (x))? (12)
1 t;l

Sn(x) = 1= = > [DTy(t.1) = dia(x)) (13)

t
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N

and the final decision of the ensemble is:

D(s) = arg max (57 (x). Sy(x) (14)

)

3 Experimental setup

3.1 Heterogeneous biomolecular datasets

In order to test the effectiveness of various continuous-valued predictions fu-
sion methods we collected a set of data sources used in bioinformatics exper-
iments published in literature or obtained from public databases. We chose
to perform our experiments using data collected on S. cerevisiae because it is
among the most studied and well characterized model organisms and because
of the great amount of biomolecular data available for this species.
Biological functions are mediated in cell by several types of molecules but,
in the large majority of biological processes, the final effectors are proteins,
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Despite the complexity of single proteins the realization of a single biomolec-
ular process usually requires the coordinated action of more than a single
molecule, and the composition of the set of molecules preposed to the real-
ization of the steps involved in the entire process is expected to be highly
informative We thus decided to use protein-protein interaction data collected
from BioGrid [12], a database of protein and genetic interactions and from
STRING [13], a collection of protein functional interactions inferred from het-
erogeneous data sources, comprising, among the others, experimental data and
information found in literature.

The evolutionary pressures acting during evolution on genes lead progres-
sively to a saturation of the number of mutations that can be tolerated without
disrupting the functionality of gene products and this reduces the ability to
evolve new biomolecular functions. The conservative action of evolutionary
pressures is particularly strong for single-copy genes but act in a more relaxed
fashion on members of clusters of genes derived from duplication events in
entire genomic regions. Provided the presence of multiple copies of a particu-
lar gene, the organism is allowed to explore evolutionary paths that would be
otherwise precluded and that can lead to the evolution of novel functions by
means of the changes occurring at nucleotide level in DNA sequences encod-
ing protein products. As the evolutionary time increases, the genes belonging
to the gene cluster will get even different at both nucleotide and aminoacidic
sequence level, but the relations between members of the same gene families,
which often share a similar biological role, can be detected using classical align-
ment approaches such as those proposed in [14] and [15]. The use of this type
of experimental data enables the detection and quantification (using oppor-
tune similarity measures) of homology relationships occurring between genes
through a simple nucleotide sequences comparison. In the aim to catch homol-
ogy and, hopefully, functional relations existing between genes belonging to
the same functional classes, we included as data source into our experimental
framework the Pairwise Similarity Smith-Waterman dataset published in [3]
(data kindly provided by the authors).

Even if protein-protein interactions and evolutionary signatures can pro-
vide useful information for functional classification of genes, a potential source
of information about the functional role of a gene could be provided by the
tight connection between the structure of a protein and its ability to perform a
particular biological task. Proteins are constituted by structured regions usu-
ally referred as domains joined by unstructured regions named loops. Each
specific domain constituting a protein is preposed to the realization of a spe-
cific task (either structural or biochemical) and thus the presence of particular
kinds of domains into the protein structure could be of capital importance for
the prediction of its function. In order to account for this source of information
we included data published in [16]. This dataset has been processed in order
to provide two types of information: the presence/absence of a particular pro-
tein domain in the proteins encoded by genes comprised in the dataset and
the E-value assigned to each gene product to a collection of profile-HMMs,
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each of which trained on a specific domain family. The E-values have been
obtained by the HMMR software toolkit (http://hmmer.janelia.org).

The activation of a gene (and its functional products) is strictly regulated
in cell in order to avoid interference between molecular processes, and this
regulation is in part realized by modulating the transcriptional state of the
gene. Genes involved in the realization of the same biological process are ex-
pected to show some similarities in their expression profiles. We thus included
into our experiment a dataset obtained by the integration of microarray hy-
bridization experiments published in [17] [18]. The main data sets used in
the experiments are summarized in Tab. 1.

Table 1. Datasets

Data code[Dataset examples[featuresl
L1 Protein domain binary| 3529 4950
Lo Protein domain log-E 3529 5724
Ls Gene expression 4532 250
Ly PPI - BioGRID 4531 5367
Ls PPI - vonMering 2338 2559
Lg Pairwise similarity 3527 6349

3.2 The Functional Catalogue (FunCat)

In order to associate each of the genes constituting the aforementioned
datasets, we used functional annotations collected in the Functional Cata-
logue (FunCat) database [8], version (2.1), initially developed at MIPS during
the early stages of sequencing of the yeast genome. The Functional Catalogue
is constituted by hierarchically structured controlled vocabulary of functional
categories. FunCat is the natural choice for our experiments, since it was
originally developed to describe yeast functional processes.

In order to reduce the number of classification tasks required by the ex-
perimental setting we choose to consider only the first level FunCat classes. In
other words, we selected the roots of the trees of the FunCat forest (that is the
most general and wide functional classes of the overall taxonomy). We also
removed by the list of the target functional classes all the classes represented
by less than 20 genes. This corresponds to restrict our classifications to only
16 functional classes:
01:METABOLISM
02:ENERGY
10:CELL CYCLE AND DNA PROCESSING
11: TRANSCRIPTION
12:PROTEIN SYNTHESIS
14:PROTEIN FATE (folding,modification,destination)
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16:PROTEIN WITH BINDING FUNCTION OR COFACTOR REQUIRE-
MENT (structural or catalytic)

18:REGULATION OF METABOLISM AND PROTEIN FUNCTION
20:CELLULAR TRANSPORT AND TRANSPORT ROUTES
30:CELLULAR COMMUNICATION/SIGNAL TRANSDUCTION MECH-
ANISM

32:CELL RESCUE, DEFENSE AND VIRULENCE

34:INTERACTION WITH THE ENVIRONMENT

40:CELL FATE

41:DEVELOPMENT(Systemic)

42:BIOGENESYS OF CELLULAR COMPONENTS

43:CELL TYPE DIFFERENTIATION

3.3 Base learners tuning and generation of optimized classifiers

The construction of an ensemble of classifiers trained to perform functional
classification using heterogeneous data (as for any ensemble of classifiers) re-
quires the definition of two key points: the way the base learners have to be
trained and a strategy to combine the output of the different learner compo-
nents. This section is dedicated to the former question while the second one
has just be treated in Sect. 2.

Being the main objective of this experiment the evaluation of different
strategies of fusion of the continuous output produced by different classifiers
on heterogeneous datasets, we chose the simplest way to adapt the single
sources of data: the intersection between all the datasets. This led to the
definition of a common set constituted by 1901 genes.

For each of the 16 target functional classes we tuned the base learners as
binary classifiers (thus labeling samples as belonging to the "target functional
class” or to ”other functional classes”) using a classical inner cross-validation
tuning scheme. More precisely, each dataset was split into a training set and a
test set (composed, respectively, by the 70% and 30% of the available samples)
and the resulting training set was furtherly split into 3 balanced folds, meaning
that the proportion of positive and negative samples constituting each fold
was kept equal for each fold.

The balanced folds have been used to perform a 3-folds cross validation
for model selection. The averaged accuracy, precision, recall and F-measure
across folds were collected for each combination of a list of tuning parame-
ters. We chose RBF gaussian kernels for all the training tasks involved in the
experiment, tuning each SVM for a cost ranging from 1072 to 10? and a value
of sigma varying in the same range. During the tuning stage we experienced
problems in tuning the learners dedicated to the classification of the Pairwise
similarity dataset, for which only negative classifications were produced in 11
out of 16 learning tasks. We thus changed the tuning setting for this dataset
by using a polynomial kernel and varying the degree hyperparameter from 2
to 5 while keeping the cost varying from 102 to 102
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Among the commonly used performance metrics suitable to drive the op-
timization process, considering that negative examples are largely less than
positives, we decided to tune the base learners by choosing the set of param-
eters producing the maximum averaged F-measure during the tuning stage.
Once defined the best set of parameters associated to each learner in each
learning task, we used them to train an optimal model on the whole training
set.

The generalization performances have been estimated on the separated
test set.

For the experiments we used the Lagrange cluster composed by 208 nodes
equipped with Intel Xeon 3.16 GHz QuadCore processors and 16 GB of RAM
memory at each node (http://www.cilea.it).

4 Results

The performances obtained in the learning tasks associated to the prediction
of the FunCat functional classes are reported in Tab. 2.

The table reports the F-measures obtained through the evaluation of the
test set (570 genes) using the best models selected by internal 3-folds cross-
validation. The first column refers to the FunCat identifiers of first-level func-
tional classes. The next 6 columns (from L; to Lg) correspond to single SVMs
trained respectively on the six datasets described in Tab. 1. Lg,4 represents
the averaged results of the single SVMs across the six datasets, and the three
last columns refers respectively to the weighted linear, logarithmic and de-
cision template ensembles. The performances of the best performing single
learner and the best performing ensemble are highlighted in boldface.

Note that among the first level FunCat functional classes, the "DEVEL-
OPMENT(Systemic)” class, (class ID: 41) is not reported because, after the
intersection of the data sources described in Tab. 1, it fails to reach the mini-
mum amount of positive samples (20 genes belonging to the target functional
class) required by our experimental protocol.

Looking at the last row of Tab. 2, we see that, on the average, data inte-
gration methods through ensembles provide better results than single SVMs
trained on homogeneous bio-molecular data, independently of the applied
combination rule. In particular decision templates largely outperform both
the single SVMs and the other ensembles. Performances of weighted and log-
arithmic ensembles are quite comparable, better than the average single SVM
and in most cases better than the single SVM trained on a single data set.

F-measure performances are summarized in Fig. 1: all ensemble methods
outperform the F-measure obtained, on the average, by the single SVMs. The
best single SVM for each task outperforms weighted linear and logarithmic

ensembles, but decision templates are in most cases better than the best single
SVM.
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Table 2. F-measures computed on the test sets (see text for more details)
FunCat
class Ly Lo Ly L Ls Ls | Lavg | Eiin  Eiog Epr
01 0.6240 0.6486 0.4854 0.6461 0.5283 0.7576[0.6150] 0.7835 0.7860 0.7845
02 0.2258 0.3478 0.2941 0.2318 0.3125 0.4000(0.3020| 0.2857 0.3125 0.4324
10 0.5240 0.6819 0.1916 0.4059 0.3800 0.5963 [0.4632| 0.5887 0.5887 0.6666
11 0.5607 0.7213 0.2395 0.4397 0.4524 0.5693 [0.4971] 0.5673 0.5673 0.6722
12 0.6060 0.6616 0.3207 0.4793 0.7361 0.5181 [0.5536/0.6814 0.6412 0.6715
14 0.4331 0.5622 0.4221 0.6234 0.2772 0.6191 [0.4895| 0.6776 0.6581 0.6846
16 0.3771 0.4661 0.2561 0.4086 0.2040 0.5146 [0.37100.5217 0.4978 0.5543
18 0.0000 0.0526 0.1764 0.2352 0.0000 0.2857[0.1249]0.2424 0.2424 0.3333
20 0.4457 0.6461 0.2733 0.4588 0.1492 0.4802 [0.40880.5828 0.5212 0.5465
30 0.0975 0.3913 0.1818 0.2702 0.0000 0.4266(0.2279]0.2285 0.2352 0.5769
32 0.2278 0.2650 0.2025 0.3146 0.0000 0.2684 [0.2130[0.1842 0.1351 0.2500
34 0.3023 0.3544 0.0909 0.2133 0.0000 0.1834 [0.30230.1764 0.1764 0.4509
40 0.2307 0.2745 0.1250 0.1250 0.0000 0.3000(0.1758]0.1304 0.1304 0.3409
42 0.4129 0.5524 0.0847 0.0344 0.1068 0.4052 [0.2660| 0.4736 0.3333 0.5279
43 0.4150 0.6016 0.2000 0.2000 0.0000 0.4153 [0.3053]0.3956 0.3414 0.4600
[AVG  [0.3655 0.4818 0.2363 0.3391 0.2098 0.4493 [0.3544]0.4347 0.4111 0.5302

5 Discussion

The prediction of the functional class of genes using heterogeneous data
sources is among the most difficult problems in bioinformatics. The difficulty
of the task comes mainly from the unavoidable not so strict definition of the
”biological process” entity, due to the high number of interconnections link-
ing biological processes, and to the different relevance of diverse biomolecular
datasets with respect to different functional classes. A dataset providing criti-
cal information for the prediction of a particular functional class could merely
represent noise in a classification task targeting a different functional class.
As shown by data reported in tab. 2, the best performing ensemble sys-
tem outperforms the average performances obtained by the base learners in
all the functional classification tasks. The winner combination method in 13
out of 15 test is the ensemble based on decision templates. If compared with
results obtained by the best performing base learner, the best performing
ensemble systems win on 8 out of 15 test. This comes as a certain sur-
prise because of the presence in these ensembles of base learners with very
poor performances (as reported in the cases of tasks aimed to predict the
20 (CELLULAR TRANSPORT AND TRANSPORT ROUTES), 32 (CELL
RESCUE DEFENSE AND VIRULENCE) and 42 (BIOGENESIS OF CEL-
LULAR COMPONENTS) FunCat classes. In this work we did not explore
the effects on ensembles performance of methods that selects subsets of base
learners. Indeed, in this preliminary test, we were mainly interested in the eval-
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Fig. 1. Comparison of the F-measures achieved in gene prediction: Lavg stands for
the average across SVM base learners; Lbest for the best single SVM; Elin, Elog,
Edt for weighted linear, logarithmic and decision template ensembles.

uation of the potential benefits introduced by the use of data fusion methods
in complex functional prediction tasks, but base learner selection approaches
will be the object of future investigations.

Despite the expected negative effects of poor performing base learners on
the ensemble systems performances, the ensemble systems are surprisingly ro-
bust as demonstrated by the performances obtained in the test prediction of
the class 34 (INTERACTION WITH THE ENVIRONMENT). In this classi-
fication task, despite the presence of 4 out of 6 base learners with performance
around 20% or less, and the remaining learners with a F-measure of 0.3023
and 0.3544 (L; and Lo, respectively), the decision templates based ensemble
system outperform the best base learner of about 10%. This could be inter-
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preted as the ability of the different data sources to provide diverse pieces of
information.

The protein involved in the interaction with the environment are charac-
terized by very peculiar chemical and physical properties, as in the case of cell
membrane spanning proteins (expected to be over represented in this func-
tional class), which are composed by hydrophilic and hydrophobic alternate
regions, making them easily detectable by protein-domain detection methods
and sharing features making them the objective of evolutionary pressures eas-
ily detectable by local alignment methods. The ability of ensemble methods to
correctly predict this FunCat functional class thus comes as a little surprise,
being the aforementioned source of information well represented by 3 out of 6
data sources (the Protein domain binary, Protein domain Log-E and Pairwise
similarity, Tab. 1).

It should be also noted that the realization of the complex pathways en-
abling the cell to correctly interact with its environment requires the interac-
tion between a high number of proteins, making the proteins interaction data
sources potentially informative. This indicates that some poor performances
(either of the base learners or the ensemble systems) could be explained by
the absence of datasets containing relevant information with respect to the
specific functional prediction task. We thus plan to extend the number of the
datasets to be included in further analyses.

6 Conclusions

In this work we investigated the impact on yeast genes functional classifica-
tion performances of data fusion methods based on ensemble methods. Our
experiments consisted in the integration (by mean of a simple intersection
procedure) of 6 different data sources and in the training (using standard
tuning protocols) of 6 SVMs. We then tested linear weighted average, loga-
rithmic weighted average and the decision templates techniques to combine
the output of the 6 base learners and we evaluated the performance of the
single learners and of the ensemble systems. The aforementioned protocol was
repeated (in separated binary classification tasks) for each FunCat functional
class performed on the common set of genes shared by all the data sources to
be integrated.

Our experiments demonstrated the potential benefits introduced by the
use of ensemble-based prediction systems in functional classification of genes.
The ensemble systems were able to outperform the averaged performances of
base learners in all the gene function prediction tasks, and were able to out-
perform the best performing base learner in 8 out of 15 classification tasks.
Considering that poor performances of base learners are functional class spe-
cific, by appropriately combining subsets of base learners for each specific
FunCat class we could in principle improve the performances of SVM ensem-
bles. In conclusion, the results obtained with simple combination strategies
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show that heterogeneous data integration through ensemble methods repre-
sents a valuable research line in gene function prediction.
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