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Abstract

The analysis of non–coding DNA regulatory regions is one of the most challenging
open problems in computational biology. In this paper we investigate whether we
can predict functional information about genes by using information extracted from
their sequences together with expression data. We formalize this problem as a clas-
sification problem, and we apply Support Vector Machines (SVMs) with non linear
kernels to predict classes of co-expressed genes obtained from clustering procedures.
SVMs are trained using information about selected motifs extracted from DNA reg-
ulatory regions through combinatorial and statistical methods. In our experiments,
we show that functional classes of genes can be predicted from biological sequence
data in S. cerevisiae, achieving results competitive with those recently presented in
the literature.

Key words: Gene classification, motif extraction and selection, Gene expression
and bio-sequence data integration, Combinatorial and machine learning methods
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1 Introduction

Genome sequencing projects have produced the full DNA sequence of human
and a number of other organisms, opening new avenues for research in biology
and medicine. Fundamental units of the information encoded in a genome
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are genes. Roughly speaking, a gene can be described as a specific region
of double–stranded DNA which is transcribed into a single–stranded RNA
sequence, which is in turn translated into a protein [1] (see Fig. 1). While the
annotation of the whole gene repertoire of the different genomes available is
still ongoing, a striking feature that has emerged is the fact that genes are not
all simultaneously activated and translated into a protein (expressed); rather,
specific subsets of genes are active at any given time in a given cell, according
for example to the type of cell itself (the genes that are active in a neural
cell are different from those active, say, in a muscle cell - thus leading to cell
differentiation) or to external stimuli. As a matter of fact, genetic diseases
are often caused by alterations occurring not within the genes themselves and
the protein they encode, but in the apparatus governing their activation, thus
leading to anomalous expression levels. Thus, one of the main challenges in
modern biology in general, and in the analysis of genomic data in particular,
is to understand the complex mechanisms that regulate the expression of the
genes of a given organism.

An important step toward this direction is the identification of the motifs
(short oligonucleotide sequences) responsible for the binding of transcription
factors (TF) that regulate the expression of genes. A common computational
approach to this problem consists in looking for overrepresented sequence mo-
tifs in DNA regulatory regions of co-expressed genes [2]. Unfortunately these
statistical methods are in some cases unsuccessful, because the degree of con-
servation in binding sites for the same TF is often very low, and because
co-expression is in general not synonymous with co-regulation [3].

To address these problems, in this paper we apply a machine learning approach
to classify sets of co-expressed genes using information extracted from their
regulatory regions. Our goal is to investigate whether functional information
about genes can be inferred from the sequences of the corresponding DNA
regulatory regions, and the motifs extracted from them. Indeed, if classes
of co-regulated genes can be predicted from their regulatory motifs, we can
indirectly gain information about their biological significance. To this end, we
propose a computational approach that integrate heterogeneous bio-molecular
data with a ”heterogeneous” learning system. More precisely, on the one hand
we adopt a ”data fusion” approach integrating numerical gene expression data
of co-regulated genes with sequences extracted from their corresponding DNA
regulatory regions. On the other hand, from an algorithmic viewpoint, we
combine machine learning methods to classify classes of co-expressed genes
with combinatorial algorithms to extract motifs from sequence data, and with
statistical methods to select subsets of significant motifs.

Within this proposed integrated learning system, Support Vector Machines
(SVMs) play a central role in answering to the main question arisen from this
work: given that specific regulatory regions are responsible for the regulation
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Fig. 1. Gene expression: from DNA to RNA to protein.

of gene expression, to which degree gene expression can be predicted from
those local regulatory DNA sequences?

In the next section we discuss more in detail the biological problem of gene
expression regulation and some of the main computational approaches to this
problem. Then in Sect. 3 we introduce our method. In Sect. 4 we briefly dis-
cuss commonalities and differences with other methods related to our work.
Finally, we present experimental results we obtained from the analysis of pro-
moter sequences in yeast, showing that they compare favourably with recent
literature presenting similar techniques.

2 Computational approaches to the analysis of gene expression
regulation.

The expression of a gene starts when the corresponding region in the double–
stranded DNA sequence is transcribed into a single stranded RNA sequence.
Transcription is initiated when one or more dedicated molecules called tran-
scription factors (TFs) (that are proteins in turn encoded by some genes in
the genome) bind to the DNA region adjacent to the gene (region called pro-
moter of the gene), causing the double–strand to open and thus allowing the
transcription of the gene. In some cases, the binding of a TF has the oppo-
site effect, blocking (or, silencing) transcription. Each TF recognizes a set of
specific targets along the sequence, that is, short nucleotide fragments it can
bind to, called binding sites (TFBSs). Binding sites thus function as regula-
tory signals in the genome, that can be seen as buttons, that can be pushed
by the different TFs recognizing them. When all the buttons are pushed, by
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the right TFs at the right time, transcription starts.

Since the experimental in vivo and in vitro characterization and identification
of the binding sites for a given TF is a long and painstaking work, the huge
amount of genomic data now available to researchers provides a invaluable
source of information for shedding further light on this process. If we identify in
the promoter of a gene known TFBSs, we may better understand by what, and
when a gene is activated. Unfortunately, also the computational description
and discovery of the binding sites of a given TF is far from being an easy task.
The main difficulty lies in the very fact that each TF does not recognize a
single binding site, but a set of them, that, although similar, differ in their
nucleotide composition. This set of similar DNA words recognized by a TF is
usually referred to as signal or motif. A typical TFBS motif is usually 6–15
nucleotides long.

On the other hand, recent lab techniques like microarray chips have allowed
researchers to gather data about the simultaneous expression level of several
genes under different conditions [4]. Briefly, the expression level of the genes
is measured according to how much transcripts they produce. For each gene,
two different experimental conditions are usually compared, measuring the
difference in the transcript levels produced. Then, clustering algorithms are
usually applied to identify groups of co-expressed genes, that is, genes whose
expression varies in a similar fashion in two or more different experiments [5].
Genes belonging to the same cluster are thus very likely to be co-regulated,
that is, activated by the same set of TFs [6].

Thus, a very common computational approach to the problem is, given a set
of co-expressed or co-regulated genes, to look for conserved motifs in their
regulatory regions, usually the promoters. Motifs represent the binding speci-
ficity of the TF(s). In other words, we expect to find in each (or most) of the
regions short DNA fragments (called oligonucleotides or shortly oligos), simi-
lar enough to each other to be considered as instances of binding sites for the
same TF. Computational methods for this task are thus based on two steps:
first, one or more than one group of similar oligos are detected, and, second,
their presence/conservation is evaluated from a statistical point of view, that
is, how likely would be the same group to be detected with the same degree of
conservation in a set of random sequences, i.e., from genes not co-regulated [2].

As different tests have shown [3], the problem formalized in this way is very
hard, given the often low degree of conservation in sites for the same TF. Fur-
thermore, what researchers often have at their disposal is a set of co-expressed
genes (e.g. obtained from a microarray experiment). Although subtle, the dif-
ference is important: co-regulation means having the same TF(s) regulating
all the genes, while co-expression implies that several different TFs can be
involved in the regulation, each one on a subset of the genes, and thus in turn
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conserved motifs do not appear in every input sequence and their statistical
significance often is too low to discriminate them from random similarities.

All in all, the result is that available methods usually output a long list of
motifs, containing inevitably many false positives, leaving researchers with
several candidates to test. Furthermore, while in simple eukaryotes like yeast
the promoter sequence very often contains all the TFBSs that regulate the
transcription of a gene, in higher organisms, including naturally human, pro-
moter sequences alone often are not enough to fully explain the regulation of
a gene, that can be influenced by TFBSs located within distal elements like
enhancers or silencers that can be situated even at several thousands of base
pairs from the gene itself; and motif discovery algorithms do not give any in-
formation whether motifs found are sufficient to explain the co-regulation (or
co-expression) of the genes investigated. Another important issue is, given the
motifs extracted from the sequences, to determine whether additional genes,
for which for example expression data are not available, can be predicted to
have the same expression profile. In this case, the traditional approach is lo-
cate in their promoter or other regulatory regions one or more motifs, and to
give a statistical estimate of the significance of finding them: however, it is
very hard to have a feasible prediction of the expression of a gene from motifs
occurrences alone.

Researchers, however, often have at their disposal more information than a
single set or cluster of co-expressed genes. From the analysis of a microarray
experiment, for example, it is common to have different clusters of genes,
expressed in different ways: thus, additional help in the analysis could be
gained by the comparison of clusters of genes with different expression profile,
rather than the analysis of a single one. Traditional approaches can be modified
to take this into account, merging numerical data concerning gene expression
with sequence analysis, by looking for motifs over–represented in a set and at
the same time under–represented in other set (see for example [7]), but the
issues just outlined remain open.

3 Combining combinatorial, statistical and machine learning meth-
ods for motif-based prediction of genes

The basic idea behind our approach is that, given a set of sequences (e.g pro-
moters) from a set of co-expressed genes containing the TFBSs responsible for
the regulation, we should be able to train a classifier that based on sequence
information alone would discriminate genes with different expression pattern
or simply picked at random from the same organism. Since regulation is based
on common TFBSs (motifs), then one possible approach is first to extract
motifs from the sequences of the training set, then to train the classifier on
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the motifs extracted. This, in turn, would allow us to define which minimal
motif set is sufficient for obtaining successful predictions, in other words, to
explain the co-expression (or co-regulation) of the genes. Also, failure in the
training or in the testing of the classifier could imply that the sequences ana-
lyzed are not enough; in other words, that other elements not included in the
input sequences are involved in the regulation of the genes and responsible for
their co-expression. For example, failure to predict tissue–specific expression
for human genes based on promoter sequence alone might imply that other
elements (like enhancers) could be involved.

Given a set of co-expressed genes (the positive set) and another one with dif-
ferent expression pattern or composed of genes picked at random from the
same organism (the negative set), the approach we propose merges a combi-
natorial approach aimed at the extraction of motifs from the input sequences
with statistical methods for the identification of the most relevant motifs, and
with machine learning techniques, integrating sequence data (the promoter
sequences from the genes) with numerical expression data, used to identify
clusters of co-expressed genes. Our algorithm can be thus split into two major
points:

(1) Motif extraction and selection: motifs are extracted and scored from se-
quences (e.g. promoters) of genes in both the positive and the negative
set. Then using the previously computed scores, the most significant mo-
tifs are selected.

(2) Gene classification: a classifier is trained, on the basis of the motifs se-
lected from the two sets at the previous step.

The different steps of our method are summarized in Figure 2.

The trained classifier should be able to predict whether the expression of one
or more additional genes can be associated with either cluster. Furthermore,
our idea is to find motifs that are sufficient to discriminate one cluster from
the other: in this way, a minimal set of motifs can be identified. Thus, as stated
before, information on which motifs are actually responsible for the expression
of the genes could be gathered.

In the next subsections we detail our motif extraction, selection and gene
classification procedures.

3.1 Motifs extraction and selection

For the first step, extracting motifs from the input sequences, several different
methods and approaches have been proposed [2]. Roughly speaking, motif dis-
covery algorithms can be split into two broad categories: exhaustive or heuris-
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Fig. 2. The structure of the algorithm. Each sequence is converted into a motif
vector representing the score contribution of the sequence to each of the 4m possible
motifs of length m. Feature selection techniques are applied to the vectors, in order
to select the most significant motifs for either cluster. A classifier is then trained on
the resulting vectors.

tic methods. In the former, the algorithms evaluate the statistical significance
of all possible motifs, and output a ranked list. We deemed this approach very
suitable for our task, since it spares from the need of pre–selecting a subset of
motifs to use in the classification. In other words, we wanted to consider every
possible motif, so to be able to identify subtle motifs appearing for example
in a limited subset of genes but nevertheless able to characterize one cluster
of genes with respect to the other.
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Thus, for this task, we employed the Weeder algorithm [8], that has also the
merit of achieving better performances than most of the other methods in-
troduced for the same task [3,9]. Weeder represents motifs with a consensus,
describing the most frequent nucleotide appearing in each position of the differ-
ent motif instances. All oligos differing from the consensus in a limited number
of substitutions can be thus a priori considered as valid motif instances.

The basic idea of the algorithm is that in a set of promoters from co-regulated
genes, one should detect one or more oligos (motifs) appearing (approximately)
in the sequences a number of times significantly higher than the one that
would be obtained from a set of sequences picked at random from the same
organism. For this task, for each oligo of suitable size the algorithm uses pre–
computed frequencies obtained from the analysis of all the promoter sequences
of different species. Thus, the number of occurrences of each oligo is compared
to the expected value, as follows.

Chosen a length m for the motifs and a set of k input sequences, all the
4m possible oligos are scored, according to their number of occurrences in
the sequences and their conservation. The basic Weeder score for motif M is
defined as

W (M) =
k∑

i=1

I(i, e) log
Occ(i, ei)

Exp(i, ei)

where e is the maximum number of substitutions allowed in the occurrences
of the motif; I(i, e) equals 0 if M does not appear in sequence i with at most
e substitutions, 1 otherwise; ei is the minimum number of substitutions with
which M appears in sequence i; Occ(i, ei) is the number of times M appears
in sequence i with ei substitutions; and finally Exp(i, ei) is the expected value
for Occ(i, ei) that can be computed by performing an oligo analysis of all the
sequences of the same type (e.g. promoters) from the same species of the input
organism [8].

Notice that the score can be split into k terms, one for each sequence analyzed.
Moreover, given motif length |M |, this score is computed for all the possible
4|M | motifs. The result is that we can define for each input sequence a vector
of 4|M | elements, denoting the score contribution given by the sequence on the
overall score of each motif. In the experiments we present in this article, we
ran Weeder on motifs of length 6 and 8 (sixmers and eightmers), allowing at
most 1 substitution in their occurrences. The result obtained from the first
phase is thus a 46 or 48 elements vector for each input sequence.

It is worth noting that the Weeder algorithm, using suffix trees, has a time
complexity linear in the overall length of the analyzed sequences, thus allowing
an efficient computation of the motif scores [8].
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The next step consists in identifying subsets of motifs characteristic of specific
sets of co-expressed genes (expression patterns), when compared to each other.

This problem can be formalized in different ways: we chose a statistical ap-
proach, since it permits the computation of significance levels to be associated
with the motif scores. Therefore, we applied a statistical test of hypothesis to
select:

(1) Subsets of the most significant motifs related to a specific set Ca of co-
expressed genes versus another Cb, b 6= a.

(2) Subsets of the most significant motifs related to a specific set Ca versus
sets of genes randomly drawn from the same organism.

For each n-dimensional motif vector of Weeder scores xj = (xj1, . . . , xjn),
1 ≤ j ≤ m, where n is the number of genes, m is the number of motifs, and
y ∈ {+,−}n is the vector of the labels of the sets of genes, we computed the
corresponding Welch t-statistic Tj to take into account possible differences in
the variance of motif-scores between the two sets of genes:

Tj =
x̄+

j − x̄−j√
s+
j

n+ +
s−j
n−

(1)

where x̄+
j and x̄−j are the sample means of the the positive and negative sets

of genes for the jth motif and s+
j and s−j the corresponding sample variances.

Using Eq. 1 we applied the two–sample Welch t-test to verify the null hypoth-
esis Hj of no difference between the means of motif scores of the two given
positive and negative sets of n genes at a given significance level α. In this
way we can obtain a subset J ⊂ {1, . . . ,m} of motifs selected at α-significance
level, that can be used to classify the classes of co-regulated genes:

J = {j||Tj| > tα/2,n−1} (2)

where tα,n is defined according to the integral of the Student t-distribution
f(t) with n degrees of freedom:

∞∫

tα,n

f(t)dt = α (3)

Note that our approach implicitly assumes that there are no correlations be-
tween motifs. This is clearly an oversimplification, since motifs for co-operating
or competitive factors are often found to co-occur in regulatory sequences.
Anyway, considering that in general the interactions are quite limited (con-
sidering the overall number of motifs involved), and the signals (motifs) are
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quite noisy, with a certain approximation the independence assumption can
be considered acceptable.

3.2 Genes classification

Using the subset of motifs selected according to the procedures described in
the previous section, we obtain the examples zi, 1 ≤ i ≤ n (one example for
each gene) with only the Weeder scores relative to the subset of selected motifs
(eq. 2):

zi = {xji||Tj| > tα/2,n−1} (4)

where xji is the weeder score of the jth motif of the ith gene. These data are
then used to classify classes of co-regulated genes.

For this difficult task we chose soft margin Support Vector Machines (SVMs).
The SVM algorithm minimizes both the empirical risk and the margin between
the convex hulls of the two classes, thus assuring at the same time an accurate
learning of the training data and generalization capabilities [10]. In our case
the classification problem is highly non linear and then we need to apply
kernels to perform a linear separation in the corresponding inner product
feature space. In the dual formulation of the constrained quadratic program
underlying SVMs, we need to solve the following optimization problem:

Maximize Φ(α) =
∑n

i=1 αi − 1
2

∑n
i=1

∑n
j=1 yiyjαiαjK(zizj)

subject to
∑n

i=1 yiαi = 0

0 ≤ αi ≤ C, 1 ≤ i ≤ n

where n is the number of examples, K(z, z′) is a symmetric function satisfying
Mercer’s conditions [11], C is the regularization parameter controlling the
trade-off between the accuracy on the training set and the width of the margin,
while αi are the Lagrange multipliers raised from the solution of the primal
constrained optimization problem.

The discriminant function obtained from the solution α∗ of this quadratic
optimization problem is:

f(z, α∗, b∗) =
n∑

i=1

yiα
∗
i K(zi, z) + b∗

The symmetric function K(·, ·) must be chosen among the kernels of Repro-
ducing Kernel Hilbert Spaces; we chose:
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• Gaussian kernels: K(u,v) = exp(−‖u− v‖2/σ2)
• Sigmoid kernels: K(u,v) = tanh(c1(u · v) + c2)

where σ, c1 and c2 are tunable kernel parameters.

4 Related work

Motif extraction and classification of sequences based on the motifs is an
approach that has already been introduced. In the seminal work of Beer and
Tavazoie [12], for example, motifs representing known instances of TFBSs
coupled with novel motifs extracted from promoter sequences are used to
predict the expression profile of yeast genes by training a Bayesian network on
49 gene clusters obtained from cell-cycle and environmental stress microarray
data. The overall classification accuracy was around 73%, showing that indeed
it was possible to predict gene expression from sequence information alone,
provided that the latter contains all the information needed. Anyway it is
worth noting that the authors used a priori known regulatory motifs for their
predictions, while in our approach we did not exploit any a priori biological
knowledge about known motifs.

The same objection can be applied to [14], that employs models of known
sites for TFs responsible for tissue–specific expression to predict tissue–specific
genes in human and mouse, with an accuracy around 60–65% in most of the
tissues considered.

In [13], instead, motifs are extracted by using sequence and position conserva-
tion in order to characterize signals in core promoters and introns for promoter
and splicing prediction by training a Support Vector Machine.

Recently, an approach similar to ours, implemented with a Relevance Vector
Machine (RVM) coupled with a Bayesian method for feature selection has been
applied to genes taken from Arabidopsis thaliana (thale cress) [15]. In this case,
the overall accuracy obtained was around 70% of the genes considered, but the
analysis was performed only on two particular condition–specific expression
sets.
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Table 1
The seven yeast gene classes used for the pairwise cluster classification, with number
of genes, and functional enrichment of the genes contained in each.

Cluster No. # of genes Functional class

1 138 ribosome biogenesis

2 123 none

3 115 none

4 114 rRNA transcription

5 89 C-compound metabolism

6 86 aminoacyl-tRNA-synthetases

7 84 stress response

5 Results

5.1 Experimental setup

Classes of co-expressed genes in S. cerevisiae (yeast) have been obtained from
the clustering results reported in [12]: 49 clusters of genes with similar ex-
pression profile have been detected, using a modified version of the k-means
algorithm applied to DNA microarray experiments relative to environmental
stresses [16] and cell cycle [17], for 255 total conditions. From the original 49 we
excluded eight clusters with a too low number of examples, in order to obtain
more reliable supervised predictions. As a consequence, for our experiments
we used only the 41 clusters with the highest number of examples. Clusters
are numbered according to their size (from the largest to the smallest), and
we denote them with C1, C2, . . . , C41.

For each gene, we retrieved from the S. cerevisiae promoter database (SCPD, [20])
the 800 base pairs upstream of the start codon (as in [12]). Motif extraction
was performed by the Weeder algorithm using motifs of length 6 and 8, allow-
ing one substitution (mismatch) in their occurrences.

We considered two types of experiments:
(a) pairwise classification of a single cluster against another single cluster;
(b) classification of a single cluster against a random combination of examples
chosen from the remaining clusters, that is, genes picked at random.

More precisely, for type (a) experiments, from the set U = {C1, C2, . . . , C41} of
all the clusters used in our experiments, we selected the set S = {C1, C2, . . . , C7}
of the first seven clusters (the clusters containing more examples, summarized
in Table 1 together with their functional enrichment, that is, the gene func-
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Table 2
Summary of the classification results.

Pairwise classification

Kernel/mers C1 C2 C3 C4 C5 C6 C7 Mean

Sigmoid sixmers 0.7646 0.6897 0.7205 0.7427 0.7572 0.6833 0.7354 0.7276

Sigmoid eightmers 0.7797 0.6778 0.6927 0.7686 0.7377 0.6862 0.7066 0.7213

One vs random classification

Sigmoid sixmers 0.6644 Sigmoid eightmers 0.6509

tion that is significantly over–represented in the cluster). Then for each cluster
C ∈ S we performed a pairwise classification against each C ′ ∈ U , such that
C ′ 6= C, for a total of 7× 40 = 280 pairwise classification tasks.

For type (b) experiments we considered a classification of each of the clusters
C ∈ U against a random choice of examples belonging to the remaining 40
clusters. That is, for each C ∈ U we built up the corresponding negative set
of examples by randomly choosing examples from the set R =

⋃
C′∈U,C′ 6=C C ′,

for a total of 41 pairwise classification tasks.

In these dichotomic classification tasks we balanced the number of the exam-
ples of the two classes: about the same number of examples has been chosen
for both.

To estimate the classification performance of SVMs we applied a multiple
hold–out technique: the overall data have been randomly split 5 times in a
training set (70% of examples) and a test set (30%) and the results on the test
set have been averaged. We carefully considered the selection bias problem [18]:
for each training set we extracted from the promoters a subset of motifs using
a t-test on the motif scores computed by Weeder (see Sect. 3.1), and we used
the same subset of motifs to estimate the generalization error on the test set.
Note that in this way it is likely that for each train/test split of the data we
select a slightly different subset of motifs. For each training set, we selected
motifs at 0.005 significance level, according to the two-sample t-test; in case
the test selected less than 100 motifs, we used the 100 top ranked motifs
according to the Welch t–statistic.

5.2 Classification of co-expressed genes

At first we tried to apply linear methods to separate different classes of co-
expressed genes. In particular we used perceptrons and linear SVMs, with quite
unsatisfactory results. The average accuracy of the perceptron was around
55%, while linear SVMs reached 65%; thus, in order to obtain a higher classi-
fication accuracy we employed non–linear methods.
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Fig. 3. Boxplots of the pairwise classification of the first 7 clusters against all the
others; the last boxplot represents the one vs random subsets of the other clusters
accuracy distributions (a) Sigmoid kernels applied to sixmers (b) Sigmoid kernel
applied to eightmers.

As noted in Sect. 3.2, we used gaussian and sigmoid kernels. We performed a
tuning of the parameters of the SVMs, considering C values between 10−3 and
103, and varying the σ parameter of the gaussian kernel between 10−5 and 105,
and the c1 parameter of the sigmoid kernel between 10−5 and 105 as well (see
Sect. 3.2). In any case we performed only a coarse tuning of the parameters,
because our main aim was to understand whether gene expression could be
predicted from local sequence data in gene promoters.
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Fig. 4. SVMs with sigmoid kernel classification accuracies; results obtained with
sixmers and eightmers are compared. (a) Pairwise classification of the first cluster
vs each one of the other clusters (b) Pairwise classification of the second cluster vs
each one of the other clusters (c) Classification of each cluster vs. a random set of
genes selected from the others.
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Fig. 5. Mean pairwise classification accuracies of each cluster vs each of the first
seven clusters. SVM sigmoid kernels results obtained with sixmers and eightmers
are compared.

Table 2 summarizes the overall mean results of the pairwise classification.
The first column represents the kernel type/motif length (six or eight) used in
the experiment. The columns from C1 to C7 represent the average accuracy
of each of the clusters C ∈ S vs. each of the other clusters C ′ ∈ U . The
last column simply reports the mean of each row, that is, the ”mean of the
means” with respect to the clusters C ∈ S. The ”mean of the means” column
shows that for both sixmers and eightmers we obtain an accuracy above 0.70.
In particular, concerning single clusters, the percentage of genes in test sets
correctly classified ranged from 68% to 76%, thus showing the robustness of
the method regardless of the clusters selected for the comparison. The gaussian
kernel yielded a slightly lower accuracy (about 2% less on the average) both
with sixmers and eightmers (data not shown). The accuracy we obtained is
similar to the result reported in [12], although a direct comparison is not
possible. First of all, we compared pairs of classes, while in [12] a multi–class
classification was performed; also, we did not resort to known TFBSs instances.

The last row of the table instead summarizes the results of the classification of
each of the 41 clusters versus a random subset of examples drawn at random
from the other classes (experiment (b)). Also in this case the accuracy is sig-
nificantly larger than 0.5, with an average of about 66.5%. The lower accuracy
w.r.t. the previous test can be explained by the fact that, by choosing genes
at random, we had no guarantee of picking genes with a completely different
expression profile, that is, regulated by different sets of motifs as in the pair-
wise cluster comparison. Again, the gaussian kernel reached a slightly lower
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accuracy level.

Figure 3 shows the distribution of the accuracy summarized in Table 2. The
box–plots represent the distribution of the accuracy of the pairwise and one–
versus–random classification tasks. Independently of the length of the motifs,
the distributions of the accuracies are significantly higher than 0.5 in all the
clusters. The variations can be also due to the fact that some of the clusters
are less ”well defined”, and thus the corresponding genes have an expression
profile similar to other genes belonging to other clusters.

Figure 4 details the results w.r.t. the pairwise classification of cluster 1 (Fig. 4a)
and cluster 2 (Fig 4b) against each one of the other 40 clusters, as well as the
classification of each of the 41 clusters against a random gene set (Fig. 4c).

The results show that there is no definite preference on the motif size used
for the classification: better results are achieved either by six- or eightmers for
different pairs of clusters.

Anyway, by looking at Fig. 5, showing the mean pairwise classification accu-
racy of each cluster vs. each of the first seven, we can see that there is no
significant difference on the average accuracy obtained by six- or eightmers.
The only visible difference is on the worse performance of eightmers in the
last clusters, that can be due to the small size of the clusters themselves (15–
20 genes in each), that in turn makes possible the extraction of a too small
number of significantly conserved motifs of size eight, making the classifica-
tion task harder. This fact is mirrored by the greater accuracy yielded by
eightmers in the first (largest) classes (more than 100 genes in each). All in
all, both Fig. 4 and 5 show that the overall accuracy is quite well balanced
by the accuracy obtained in each comparison, with no significant oscillations.
Also, the sensitivity and specificity values obtained in all the experiments are
balanced and consistent with accuracy levels, while linear classifiers tended
to generate unbalanced errors with significant differences between sensitivity
and specificity (data not shown).

6 Conclusions and Further Work

The results of the tests we performed can be considered quite satisfying. The
classification accuracy is comparable with other state of the art studies based
on the same principle, that report an accuracy rate around 70%, showing all
the potential of an heterogeneous approach merging sequence analysis with
microarray clustering, and combinatorial algorithms with statistical and ma-
chine learning approaches.
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An important difference between our method and recent literature is that,
even if the overall accuracy is comparable, in our work we did not resort to
descriptors of known TFBSs as in most of the other approaches. This choice
is due to the fact that our main goal was to assess the feasibility of a com-
plete ab initio fully automated method, without the introduction of any prior
knowledge of the factors involved in the regulation of the genes. Including this
information, we can reasonably expect could further improve the reliability of
our method.

Other improvements could be obtained by a more fine–grained tuning of the
SVM parameters, which in our experiments played an essential role in the per-
formance of the classifier: small variations in fact led to significant improve-
ments. Also, we employed fixed significance thresholds for the motif selection
step: motifs scored by Weeder could be submitted to a further procedure ex-
plicitly aimed at selecting the optimal subset yielding the best discrimination
between two classes of genes, in turn providing another measure to assess the
significance of conserved motifs, one of the most challenging open problems
of motif discovery. Also, we did not consider explicit information about posi-
tion, orientation and correlations between motifs in the sequences analyzed,
all factors that have been proven to play significant roles in the regulation of
transcription, especially in metazoa. As a future work we aim to investigate if
correlations among different motifs could be significant for identifying classes
of co-regulated genes. To this end we could apply wrapper methods such as
forward and backward feature selection methods or floating search methods
with backtracking [19] that are able to take into account interactions between
motifs in the feature selection process.

Moreover, the presence of conserved TFBSs in a promoter sequence does not
guarantee the transcription of the corresponding gene, since also the TF bind-
ing the site has to be present. This kind of information is anyway very hard
to gather, since it involves knowledge about the association between the DNA
binding specificity of the TFs and the conserved motifs found in the sequences.
Another important issue that has to be considered is that clusters of co-
expressed genes (like the ones we employed in our experiments) are obtained
by the application of clustering algorithms: thus, some genes might be ”mis–
labelled” or have low correlation in expression with the other genes assigned
to the same cluster, and hence very hardly co-regulated and likely to undergo
a different regulation process.

From an experimental point of view, the next logical step in our work is to
apply our technique to other organisms, like human, where the regulation of
transcription is governed in a more complex way, involving regions outside
the core promoter of the genes. Recent research, however, has pointed to the
opposite direction, showing for example that promoter sequences in human
and mouse genes differ according to the tissue–specificity of the gene itself [14].
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Applying our method also to case studies like these will perhaps help to shed
further light on this issue, that remains one of the most relevant and studied
in bioinformatics and molecular biology.
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