In: New Signal Processing Research ISBN 978-1-60456-479-2
Editor: Takumi Maeda, pp. 1-30 (© 2008 Nova Science Publishers, Inc.

Chapter 1

EXPLORING THE LINK BETWEEN BOLSTERED
CLASSIFICATION ERROR AND DATASET
COMPLEXITY FOR GENE EXPRESSION BASED
CANCER CLASSIFICATION

Oleg Okun?, Giorgio Valentini?, and Helen Priisalu®
lUniversity of Oulu, Finland
2University of Milan, Italy
3Teradata, Finland

Abstract

Gene expression profiles were shown to be useful in genomgi@kprocessing
when discriminating between cancer and normal (healthgjrptes and/or between
different types of cancer. K-nearest neighbors (k-NN) ie ofithe classification al-
gorithms that demonstrated good performance for gene ssiprebased cancer clas-
sification. Given that distance metric is fixed, the convami k-NN has a single
parameter (k - the number of nearest neighbors for each dgatoset, which makes
k-NN a very attractive choice in addition to the fact thataed not need training.

Classification performance of any classifier, including BN; is typically char-
acterized by classification error achieved on independeaneles, which are often
unavailable for the considered task. Thus, unbiased andiéignce error estimation
is of ultimate importance in this case. We found that boéstesrror satisfies these re-
quirements and it was therefore chosen for our study. Beldterror estimation is built
on random sampling in the neighborhood of each example (@gmple-dependent
neighborhood radius) and computing the number of errorseneadsuch artificially
created data. Because of random sampling, all examplesscamployed in assessing
the error, unlike cross-validation or bootstrap procesgure

In this work, we investigate the link between k-NN bolstesrdor and dataset
complexity characterizing how difficult to classify a céntaataset. Our measure for
the dataset complexity is the normalized Wilcoxon rank statistic. Through exten-
sive simulation coupled with the copula method for analg§issociation in bivariate
data, we show that dataset complexity and bolstered ereardated in terms of sev-
eral dependence types such as positive quadrant dependgihoceonotonicity, and
stochastic monotonicity.
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As a result, we propose a hew scheme for generating enseoftteldN classi-
fiers, which is based on the selection of low complexity femgubsets for k-NNs in
the ensemble, which constitutes to choosing accurate k-&tdsrding to the found
dependence relation. The candidate subsets are randompyeshfrom the whole set
of the original features in order to make predictions ofwidiial k-NNs diverse.

Experiments carried out on eight gene expression datasetsining different
types of cancer demonstrate that our ensemble generatieggds superior (in terms
of bolstered resubstitution error) to a single best classifi the ensemble and to the
traditional ensemble construction scheme that is ignoo&mtataset complexity. It
also outperforms the redundancy-based filter, especiafligded to remove irrelevant
genes.

1 Introduction

According to [1], genomic signal processing (GSP) is theregying discipline that studies
the processing of genomic signals, i.e. the measurablesearried out by the genome.
Gene expression is a two-stage process including the trptisn of deoxyribonucleic acid
(DNA) into messenger ribonucleic acid (mMRNA) which is theanslated into protein by
the ribosome. When a protein is produced, a gene is said txfressed. Proteins are
large compounds of amino acids joined together in a chaintlagyg are essential parts of
organisms and participate in every process within cellsP @8als with extracting infor-
mation from gene expression measurements, which is theregsed, analyzed and used
for gaining biological and medical knowledge. Recent adearin microarray technology
facilitate measurement of gene expression levels for gnwds of genes at once.

Cancer classification based on gene expression levelshighilie subject of our study,
is one of the topics of intensive research in GSP, since itshasvn in numerous works
[2, 3, 4] that expression levels provide valuable informatfor discrimination between
normal and cancer examples.

However, the classification task is not easy since thereyaieally thousands of ex-
pression levels versus few dozens of examples. In addigiquression levels are noisy due
to the complex procedures and technologies involved in tbasurements of gene expres-
sion levels, thus causing ambiguity in classification. Herthe original set of genes must
be reduced to those genes that are relevant to discrimmbagitveen different classes. This
operation is called feature or gene selectioGenes preserved or selected as a result of
feature selection are then used to classify data.

Basically, general feature selection methods widely appio the datasets with many
more examples than features can be (and they are) utilizegefoe selection, too. These
methods can be approximately divided into filters and wregpp@/rappers base their de-
cisions on which feature(s) to select by employing a clasgsiffor small sample size gene
expression datasets, they can easily introduce the irgubtas when some genes are pre-
ferred over the others. Since those preferred genes mightenalways relevant to cancer
classification, we turn our attention to the filters that doagyselection independently of
any classifier and solely based on data characteristicscd{d¢hey are less prone to the

IFurther, the words ‘feature’ and ‘gene’ will be used intensheably, since they have the same meaning in
this work.
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induction bias. It should be however noted that even filteghimot be able to completely
avoid this bias since class labels of examples often guide gelection in the filter model.

This brief analysis prompted us to concentrate on randore getection where genes
to be used with a classifier, are randomly sampled from thgradi set of genes, irrespec-
tively of class information and a classifier. The additiciaak that caused us to make such a
decision was the work [5], where it was concluded ttiifferences in classification perfor-
mance among feature selection algorithms are less signifiten performance differences
among the error estimators used to implement these algosthn other words, the way
of how error is computed has a larger influence on classifisaiccuracy than the choice
of a feature selection algorithm. Among several error egtims we opted for the bolstered
resubstitution error because it provides a low-bias, laniance estimate of classification
error, which is what is needed for high dimensional geneasgon data [6].

However, a single random sample cannot guarantee that esdmphes will lead to
good classification results. Hence, we need to sample gexesastimes to be more certain
about the outcome, which, in turn, implies several clasgifins have to be done. Thus,
it is natural to combine predictions of several classifiate ia single prediction. Such a
scheme is termed an ensemble of classifiers in the litergtré is well known that under
certain conditions an ensemble can outperform its mostratzuember. In the context
of dimensionality reduction, an ensemble composed of alsmaiber of classifiers, each
working with a small subset of genes, results in the desifegtte For instance, if the
original set comprises 1000 genes, five classifiers, eaclogmg 20 gene% lead to a 10-
fold dimensionality reduction. Thus, using an ensembl&esus of a single classifier can be
beneficial for both dimensionality reduction and classif@aperformance.

As a base classifier in the ensemble, a k-nearest neighbldNjkis used because it
performed well for cancer classification, compared to maghisticated classifiers [8].
Besides, it is a simple method that has a single parameten(imber of nearest neighbors)
to be pre-defined, given that the distance metric is Eudlidea

Eight gene expression datasets containing different tgpeancer are utilized in our
work. We begin with the recently proposed redundancy-béited[9], especially designed
to filter out irrelevant genes. As this filter turned to be guggressive in removing genes,
we proceed to experiment with k-NN ensembles. In particuilee compare two ensem-
ble schemes: one relying on the concept called dataset egityplvhen choosing which
subsets of features to include into an ensemble and anahering dataset complexity.
Based on the copula method [10, 11, 12], which is useful inaekpy association (depen-
dence or concordance) relations in multivariate data, wethesize that there is positive
dependence between dataset complexity measured by theXdfilcank sum statistic [13]
and the bolstered resubstitution error [6], with low (high)mplexity associated with small
(large) error. As a result, selecting a low-complexity ®ilif genes implies an accurate
k-NN, which, in turn, implies an accurate k-NN ensemble. &kpental results clearly
favor the complexity-based scheme of k-NN ensemble gdparaver 1) the complexity-
ignorant scheme, 2) a single best k-NN in the ensemble, atite3dundancy-based filter,
thus confirming our hypothesis.

The chapter has the following structure. Section 2 dessrijmne expression datasets

2| et us assume that there is no overlap between differenetaib§genes.
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employed in experiments. The redundancy-based filter &fljrintroduced in Section 3.
Section 4 defines the dataset complexity characteristitev@@@ction 5 defines bolstered re-
substitution error. The link between the two is explored andlyzed in Section 6. Uncer-
tainty of single classification is discussed in Section 70 Brmsemble generating schemes
based on random feature selection are presented in Sectind 8xperimental results ob-
tained with them on eight datasets are given in Section 9allyjrSection 10 concludes
the paper. Programming code for random number generatdmathematical derivations
related to copulas are placed in two appendices.

2 Gene Expression Datasets

The following eight datasets were chosen for experiments.

2.1 SAGE Dataset 1

SAGE stands for Serial Analysis of Gene Expression [14, Th]s is technology alterna-
tive to microarrays (complementary DNA and oligonucleesid Though SAGE was orig-
inally conceived for use in cancer studies, there is not rmasbarch using SAGE datasets
regarding ensembles of classifiers. SAGE provides a $tafistescription of the mRNA
population present in a cell without prior selection of tlemes to be studied [16]. This is
the main distinction of SAGE over microarray approachedNA&Rnd oligonucleotide) that
are limited to the genes represented in the chip. SAGE “&uhe number of transcripts
or tags for each gene, where the tags substitute the exmmdssels. As a result, counting
sequence tags Yyields positive integer numbers in contrastdroarray measurements.

In the chosen dataset [17], there are expressions of 822 geiid cases (24 cases are
normal while 50 cases are cancerous) [18]. The datasetiosi@aifferent types of cancer.
We decided to ignore the difference between cancer typesoaimdat all cancerous cases
as belonging to a single class. No preprocessing was done.

2.2 Colon Dataset

This microarray (oligonucleotide) dataset [19], introdddn [2], contains expressions of
2000 genes for 62 cases (22 normal and 40 colon tumor casegyoPessing includes the
logarithmic transformation to base 10, followed by normratiion to zero mean and unit
variance as usually done with this dataset.

2.3 Brain Dataset 1

This microarray (oligonucleotide) dataset [20] introddide [3] contains two classes of
brain tumor. The dataset (also known as Dataset B) containaedlulloblastoma cases,
9 of which are desmoplastic and 25 are classic. Preprogeseimsists of thresholding of
gene expressions with a floor of 20 and ceiling of 16000; filtewith exclusion of genes
with max/ min < 3 or max— min < 100, where max and min refer to the maximum and
minimum expressions of a certain gene across the 34 casesctively; base 10 logarith-
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mic transformation; normalization across genes to zeraaad unit variance. As a result,
5893 out of 7129 original genes are only retained.

2.4 SAGE Dataset 2

This is a larger SAGE dataset [17], containing 31 normal &hdahcer (10 types of cancer)
cases with 27679 expressed genes. As with the smaller tatagereprocessing was done
and all cancer types were assigned to a single class.

2.5 Prostate Dataset 1

This microarray (oligonucleotide) dataset [21] introddide [4] includes the expressions of
12600 genes in 52 prostate and 50 normal cases. No pregrage$she data was done.

2.6 Prostate Dataset 2

This dataset [21] was obtained independently of the oneritbestin the previous section.
It has 25 prostate and 9 normal cases with 12600 expressed.giio preprocessing was
done.

2.7 Brain Dataset 2

This (oligonucleotide) dataset [20] known as Dataset C jre¢Bitains 60 medulloblastoma
cases, corresponding to 39 survivors and 21 nonsurvivarsrding to the patient status.
Preprocessing includes thresholding of gene expressighsaloor of 100 and ceiling of

16000; filtering with exclusion of genes with mamin < 5 or max— min < 500, where

max and min refer to the maximum and minimum expressions eftaio gene across the
60 cases, respectively; base 10 logarithmic transformatiormalization across genes to
zero mean and unit variance. As a result, 4459 out of 712%afigenes are only retained.

2.8 Diffuse Large B-Cell Lymphoma (DLBCL) Dataset

This (oligonucleotide) dataset [22] described in [23] eims 6149 gene expression levels
characterizing 58 patients with diffuse large B-cell lyrmopia according to their health
status: 32 cured patients or those who died from other thaapyma causes (‘cured’
class) and 26 patients who died of lymphoma or whose diseas#éhier progressive or
recurrent refractory (‘fatal/refractory’ class). Prepessing includes thresholding of gene
expressions with a floor of 20 and ceiling of 16000; filterinihwexclusion of genes with
max,/ min < 3 ormax—min< 100, where max and min refer to the maximum and minimum
expressions of a certain gene across the 60 cases, reshedis a result, 6149 out of 7129
original genes are only retained.

2.9 Dataset Summary

Table 1 provides a summary for all datasets.
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Table 1. Summary of eight gene expression datasets.
Dataset no. Cancertype(s) Ref. # expression levels # cases

1 Multiple [18] 822 74

2 Colon [2] 2000 62
3 Brain [3] 5893 34
4 Multiple [18] 27679 90
5 Prostate [4] 12600 102
6 Prostate [4] 12600 34
7 Brain [3] 4459 60
8 Lymphoma  [23] 6149 58

3 Redundancy-Based Filter

The redundancy-based filter (RBF) [9] is based on the corafequt approximate Markov
blanket (AMB). Finding the complete Markov blanket is cortgiionally prohibitive for
high dimensional gene expression data, thus the apprarimiatused instead. The goal is
to find for each gen& an AMB M; that subsumes the information contentof In other
words, if M; is a true Markov blanket foF;, the clas<C is conditionally independent &%
givenM;, i.e. p(C|F,M;) = p(C|M;).

To efficiently find an AMB two types of correlations are empdy 1) individualC-
correlation between a gefreand the clas€ and 2) combine-correlation between a pair
of gened andF; (i # j) and the clas€. Both correlations are defined through symmetrical
uncertaintySU(X,C), whereX is eitherF; (individual C-correlation) orF; j (combinedC-
correlation), withSU(X,C) defined as

IG(X|C)
SUX.C) =2 5 e

whereH () is entropy,|G(X|C) = H(X) —H(X|C) is information gain from knowing the
class information. SU is a normalized characteristic whose values lie betweend0lan
where 0 indicates that andC are independent.

To reduce the variance and noise of the original data, contis expression levels were
converted to nominal values -1, 0, and +1, representing tiieemexpression, baseline,
and over-expression of genes, which correspond-te,pu—o/2), [u—0/2,u+0/2|, and
(L+ 0/2,+), respectively, withu and o being the mean and the standard deviation of
all expression levels for a given gene. For nominal vargbilee entropies needed in the
formulas above are computed as follows:

H(X) = =3 P(x)loga(P(x)),

H(X|C) = — Z P(ck) Y P(x|ck) loga(P(xi[ck)),

whereP(x;) is the probability thaX = x; andP(x;|cx) is the probability thaX = x; given
C = ¢. For combinedC-correlation,x; in these formulas should be replaced with the pair
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(Xi,x;) so that

= — > P(x,X))10g,(P(%, X)),
1]

H(X|C) = ZP c) D P(xi,Xjlc) loga (P, X [c)).-
I7

Sincex; (xj) can take only three values: -1, 0, +1, there are nine palts1{, (-1,0), (-1,+1),
(0,-1), (0,0), (0,+1), (+1,-1), (+1,0), (+1,+1)) for whigmobabilities (and hence, entropies)
need to be evaluated.

RBF starts from computing individu&@-correlation for each gene and sorting all cor-
relations in descending order. The gene with the largeselation is considered as pre-
dominant (no AMB exists for it) and hence it is put to the B0f the selected genes and
used to filter out other genes. After that, the iteration begiith picking the first gene
F from S and proceeds as follows. For all remaining genes; fborms an AMB forF;,
the latter is removed from further analysis. The followiranditions must be satisfied for
this to happen: 1) individual-correlation forF must be larger than or equal to individual
C-correlation forF;j, which means that a gene with a larger individual corretapoovides
more information about the class than a gene with a smalividual correlation, and 2)
individual C-correlation forF must be larger than or equal to combir@dtorrelation for
F andF;, which means that if combining; andF; does not provide more discriminative
power tharF alone,F; is decided to be redundant. After one round of filtering, R&kes
the next (according to the magnitude of individ@atorrelation) still unfiltered gene and
the filtering process is repeated again. Since a lot of germetypically removed at each
round (gene expression data contain a lot of redundancyyeadved genes do not par-
ticipate in the next rounds, the RBF is much faster than the#y hill climbing (greedy
forward or backward search).

4 Dataset Complexity

It is known that the performance of classifiers is strongliagdependent. To gain insight
into a supervised classification probl&mne can adopt dataset complexity characteristics.
The goal of such characteristics is to provide a score réiftgtiow well classes of the data
are separated. Given a set of features, the data of eachactapsojected onto the diago-
nal linear discriminant axis by using only these features details, see [24]). Projection
coordinates then serve as input for the Wilcoxon rank sutfaegqual medians [13] (the
null hypothesis of this test is two medians are equal at theskfftificance level). Given

a sample divided into two groups according to class memlperali the observations are
ranked as if they were from a single sample and the rank suisti&t&V is computed as the
sum of the ranks in the smaller group. The value of the rank statistic is employed as a
score characterizing separability power of a given setatifiees. The higher this score, the
larger the overlap in projections of two classes, i.e. these@eparation between classes.
To comparaV coming from different datasets, eahcan be normalized by the sum of all

3Two-class problems are assumed.
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ranks, i.e. ifN is the sample size, then the sum of all ranks Willﬁéli. The normalized
W lies between 0 and 1.

Our complexity characteristic is classifier-independémt, it does not depend on a
certain classifier. Employing a classifier-dependent atartic would not provide an ab-
solute scale for comparison. For example, it is well knowat thnearest neighbor classifier
can sometimes easily classify nonlinearly separable data.

Our choice for such a dataset complexity characteristicvegccidental. Since gene
expression data are very high dimensional, it is not surgithat two classes could be
linearly separable in high dimensional space (howeves,dbes not make the classification
task easy as interclass distances could be still smallarititieaclass distances, thus giving
rise to classification errors). That is, the k-NN decisiomuary can be assumed to be a
hyperplane. Onthe other hand, the complexity charadtevigt employ belongs to the class
of linear discriminants estimating how well a line sepasateo classes. As a result, we
have a good match between the behavior of a classifier andddelrof class separability
encoded in the complexity characteristic. To confirm ourdtlgpsis, we computed the
index of linear separability.1 [25], which is the objective function value for the linear
programme, by using all features for each dataset. Therddst zero, the more a given
dataset linearly separable. It can be seen in Table 2 thalatdisets can be considered
to be linear separable. However, SAGE 1 seems to be muchinessly separable than
Prostate 2.

Table 2: Dataset ranking based on the linear separabiligxinl multiplied by 1015, The
lower the rank is (1 - lowest rank, 8 - highest rank), the l@ssarly separable two classes
are.

Dataset no. 1 2 3 4 5 6 7 8
L1 2.2 0.77 0.027 0.15 0.19 1.2e-019 0.054 4.8e-010
rank 1 2 6 4 3 8 5 7

5 Bolstered Resubstitution Error

This is a low-variance and low-bias classification erromeation method proposed in [6].
Unlike the cross-validation techniques reserving a patheforiginal data for testing, it
permits to use the whole dataset. Since sample size of gpnession datasets is very small
compared to the data dimensionality, using all availabta #san important positive factor.
However, one should be aware of the effect of overfitting is ttase when a classifier
demonstrates excellent performance on the training ddtéaltsl on independent unseen
data. Braga-Neto and Dougherty [6] avoided this pitfall Bgdomly generating a number
of artificial points (examples) in the neighborhood of eaelining point. These artificial
examples then act as a test set and classification error @séhiis called bolstered. In
this paper, we utilize the bolstered variant of the conwerati resubstitution error known as
bolstered resubstitution error

Briefly, bolstered resubstitution error is estimated alofes [6]. LetAg andA; be two
decision regions corresponding to the classification gaadrby a given algorithm\ be
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the number of training points, arddyc be the number of random samples drawn from
the D-variate normal distribution per training poirf¥{,c = 10 as advocated in [6]). The
bolstered resubstitution error is then defined as

1 N Mmc Mwmc
€presub™~ Zl Ix;ealy =0+ Ixiemly=1 | , 1)
NMwc & ,Zl J ,Zl J

.....

substitution error is thus equal to the sum of all error dbations divided by the number of
points. Samples are drawn based on the Marsaglia polar hoeaimdom number generator
(see Appendix B).

In a 2-D space, samples come from a circle centered at aydarticaining point. In
a D-dimensional case, they are drawn from a hypersphere. Hémeaadius of this hy-
persphere, determined lay, is of importance since its selection amounts to choosieg th
degree of bolstering. Typically; should vary from point to point in order to be robust to
the data. In [6]o; = oT(yi)/cpfor i=1,...,N, where&(yi) is the mean minimum distance
between points belonging to classyf(y; can be either 0 or ) andcp is the constant
called the correction factor defined as the inverse of thesghare cdf (cumulative distribu-
tion function) with parameters®andD, because interpoint distances in the Gaussian case
are distributed as a chi random variable witlilegrees of freedom. Thuspis the function
of the data dimensionality. The parametes & chosen so that points inside a hypersphere
will be evenly sampled.

6 Link Between Dataset Complexity and Classification Error

Our main idea to build ensembles of k-NNs is based on the hgsit thathe dataset
complexity and bolstered resubstitution error are relatdd verify our hypothesis, 10000
feature subsets were randomly sampled for each dataseiefssibe ranged from 1 to 50)
and both complexity and bolstered resubstitution erro3foiN were computed. Anoma-
lous complexity values lying three standard deviationsnftbe average complexity were
treated as outliers and therefore removed from furtheryaigal The result of such simula-
tion is shown in Figs. 1-8 together with marginal histogrdorseach variable. It can be
observed that univariate distributions vary from datasetdtaset and often they are non-
Gaussian. Besides, the complexity and error distributfons certain dataset belong to
different types, e.g. one is normal while another is exptiaerHowever, the dependence
between complexity and error is clearly detectable whekitgpat Figs. 1-8. Besides,
one characteristic important for successful ensemblergdar is present: diversity among
predictions since one complexity value corresponds torakdéferent error values.

To quantify this dependence, the rank correlation coeffisieSpearman’ and
Kendall'st were computed (see Table 3) and the test on positive caomelat the signifi-
cance level 0.05 was done which confirmed the existence of socelation (all p-values
were equal to zero). The rank correlations measure the elégrehich large (small) values

46(yi) is determined by first computing the minimum distance froohgaointx; to all other points; (j # )
of the same class as thatxpfand then by averaging thus obtained minimum distances.
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Figure 1: (SAGE 1) Bivariate distribution of normalized golexity and bolstered resubsti-
tution error and univariate marginal histograms.
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Figure 2: (Colon) Bivariate distribution of normalized cplaxity and bolstered resubstitu-
tion error and univariate marginal histograms.
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Figure 3: (Brain 1) Bivariate distribution of normalizedraplexity and bolstered resubsti-
tution error and univariate marginal histograms.
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Figure 4: (SAGE 2) Bivariate distribution of normalized colexity and bolstered resubsti-
tution error and univariate marginal histograms.
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Figure 5: (Prostate 1) Bivariate distribution of normatizzomplexity and bolstered resub-
stitution error and univariate marginal histograms.

031

0.25

0.2

0.15

0.1p

Bolstered resubstitution error

0.05¢

(G2
0.08 0.09

01 011 012 0413
Dataset complexity

Figure 6: (Prostate 2) Bivariate distribution of normatizmmplexity and bolstered resub-
stitution error and univariate marginal histograms.
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Figure 7: (Brain 2) Bivariate distribution of normalizedraplexity and bolstered resubsti-
tution error and univariate marginal histograms.
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Figure 8: (Lymphoma) Bivariate distribution of normalizedmplexity and bolstered re-
substitution error and univariate marginal histograms.
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of one random variable correspond to large (small) valuemother variable (concordance
relations among variables). They are useful descriptors in our came $iigh (low) com-
plexity implies that the data are difficult (easy) to accefatlassify, which, in turn, means
high (low) classification error. Unlike the linear corrétet coefficient,p andt are pre-
served under any monotonic (strictly increasing) tramafdion of the underlying random
variables.

Table 3: Spearmanis and Kendall'st estimated for all datasets.

Dataset no. T p
1 0.3100 0.4468
2 0.3446 0.4964
3 0.3991 0.5581
4 0.4173 0.5864
5 0.4288 0.6006
6 0.3887 0.5107
7 0.3117 0.4486
8 0.3993 0.5667

To deeply explore dependence relations, we employed thdaopethod [10, 11, 12].
The word copula is a Latin noun which means ‘a link, tie or Bomas first introduced by
Abe Sklar in [10]. Copulas are functions that describe ddpenies among variables and
allow to model correlated multivariate data by combiningvanate distributions. Using
copulas is an appropriate solution since the assumptidriitbgoint distribution of random
variables is normal often does not hold for multivariateadatpractice even if the marginal
distributions are normal.

A copula is a multivariate probability distribution, whesach random variable has a
uniform marginal distribution on the interval [0,1]. Thep#mdence between random vari-
ables is completely separated from the marginal distiimstin the sense that random vari-
ables can follow any marginal distributions, and still hétve same rank correlation. This
is one of the main appeals of copulas: they allow separatiatependence and marginal
distribution. Though there are multivariate copulas, wk arily talk about bivariate ones
since our dependence relation includes two variables.

Sklar's theorem, which is the foundation theorem for copukates that for a given
joint multivariate distribution functiond (x,y) = P(X < x,Y <) of a pair of random vari-
ablesX andY and the relevant marginal distributioR$x) = P(X < x) andG(y) = P(Y <Yy),
there exists a copula functidd relating them, i.e.H(x,y) = C(F(x),G(y)). If F andG
are continuousC is unique. Otherwise( is uniquely determined on RXrx RarY, where
‘RanX’ (‘RanY’) stands for the range of (Y). In other words, for each pair of real numbers
(x,y) there are three numbeFgx), G(y), andH (x,y) lying in the interval [0,1]. Alterna-
tively, each pailx,y) is matched by a poir( (x), G(y)) in the unit squaré? : [0,1] x [0, 1],
and this ordered pair in turn is associated with a nuntbggy) in [0,1]. The correspon-
dence assigning the value of the joint distribution functio each ordered pair of values of

5Since the definitions of these relations fpyandt are different, there is a difference in absolute values in
Table 3.
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the individual distribution functions is a copula functiGri11].
Thus, a copula is a functia® from 12 to | with the following properties [11]:

1. Foreveryu,vinl,
C(u,0) =0=C(0,v)

and
C(u,1) =u,C(1,v) = V.

2. for everyup,up,v1, Vs in | such thaty < u, andvy < vy,

C(ug,V2) —C(uz,v1) —C(ug,Vv2) +C(ug,v1) >0

If F andG are continuous, the following formula is used to construgiutas from the
joint distribution functions:C(u,v) = H(F~%(u),G~%(v)) [11], whereF ~! means a quasi-
inverse ofF, G~! means a quasi-inverse & andU andV are uniform random variables
distributed between 0 and 1. That is, the typical copulathamalysis of multivariate (or
bivariate) data starts with the transformation from (XeY) domain to theJ,V domain,
and all manipulations with data are then done in the latteichSa transformation to the
copula scale (unit squaié) can be achieved through a kernel estimator of the cumelativ
distribution function (cdf) (we used the MATLAB functidtsdensity. After that the copula
function C(u,v) is generated according to the appropriate definition forréaire copula
family (see, e.g. Eq. 2 below).

In [26] it was shown that Spearmanpsand Kendall'st can be expressed solely in terms
of the copula function as follows:

p= lZ//(C(u,v) —uv)dudv= lZ//C(u,v)dudv— 3,
1= 4/ /C(u,v)dC(u,v) -1,

where integration is over.

The integrals in these formulas can be interpreted as theceegh value of the function
C(u,v) of uniform [0,1] random variablet) andV whose joint distribution function is
C,ie.

p=12E(UV)-3, 1=4E(C(u,v))—1.

As a consequence, for a pair of continuous random variab¥eandY is identical to
Pearson’s linear correlation coefficient for random vdeab = F (X) andV = G(Y) [11].

In general, the choice of a particular copula may be baseldenaliserved data. Among
numerous copula families, we preferred the Frank copulangghg to the Archimedean
family based on the visual look of plots in Figs. 1-8 and fopeledence in the tail. Be-
sides, this copula type permits negative as well as pogitygendence. We are particularly
concerned with lower tail dependence when low complexigssociated with small classi-
fication error as this forms the basis for ensemble consbruat our approach. The Frank
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copula is a one-parametdd is a paramete €] — o, +-00[\0) copula defined for uniform
variablesdJ andV (both are defined over the unit interval) as

—0u __ —0v __
Co(uy) =~ <1+ e 1)> , @

with 6 determining the degree of dependence between the mar§ivealseto to Pear-
son’s correlation coefficient betwe&h andV so that ad) increases, the positive depen-
dence also increases). Fig. 9 shows 500 random points geddram the Frank copula
whenB = 8.

0.9
0.8

0% ste:

Figure 9: A random sample (500 points) generated from thekzapula withd = 8.

Correlation coefficients measure the overall strength efdhksociation, but give no
information about how that varies across the distributibime magnitude of or p is not an
absolute indicator of such strength since for some dididbs the attainable interval can be
very small, say between -0.1 and +0.2 so that finding coroglaitf 0.2 and concluding that
there is only weak dependence between variables would betakmisince these variables
are actually perfectly related. Hence, additional charéstics of dependence structure are
necessary. They are quadrant dependence, tail monopsicithastic monotonicity, with
guadrant dependence being the weakest form of associationgpall the three.

6.1 Quadrant Dependence

Random variableX andY are positively quadrant dependent (PQDY(ik,y) in R?, either
inequality holds [11]:

PX <xY <y)>P(X <x)P(Y <vy),

P(X>xY >y) >P(X>x)P(Y >vy).
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X andY are PQD if the probability that they are simultaneously $ifwal simultaneously
large) is at least as it would be were they independent. mgafC, the PQD conditions
can be written a€(u,v) > uvfor all (u,v) in 12. By checking the last inequality, we found
that complexity and bolstered resubstitution error are RQL2ll datasets. Spearmarps
(or, to be precisep/12) can be interpreted as a measure of “average” quadraahdepce
(both positive and negative) for random variables whoseileoisC [11].

Itis interesting to ask when one continuous bivariate ithistion H1 is more PQD (more
concordant) than anothét,. The answer is readily provided by comparip@r t [12]: if
p(H1) < p(H2) or t(Hy) < 1(H2), thenH; is more PQD (more concordant) thel. From
Table 3 it can be seen that Prostate 1 is more PQD than otheseatsti.e. concordance
relations between complexity and bolstered resubstitudimor are much stronger for this
data than those for other datasets.

6.2 Tail Monotonicity

As we mentioned above, we are interested in tail dependehea fow (high) complexity

associates small (large) classification error. Tail monioity reflects this type of asso-
ciation and it is a stronger condition for dependence tha® Pi@t X andY be random

variables. Then four types of tail monotonicity can be defias follows [11]:

- Y is left tail decreasing iX (LTD(Y |X)) if P(Y <y|X <Xx) is a nonincreasing func-
tion of x for all y.

- Xis left tail decreasing ilY (LTD(XY)) if P(X < x|]Y <) is a nonincreasing func-
tion of y for all x.

- Y is right tail increasing irX (RTI(Y|X)) if P(Y >y|X > x) is a nondecreasing func-
tion of x for all y.

- Xisright tail increasing ity (RTI(X|Y)) if P(X > x|Y >y) is a nondecreasing func-
tion of y for all x.

In terms of a copula and its first-order partial derivativesse conditions are equivalent
to

- LTD(Y |X) iff for any vin I, dC(u,v)/0u < C(u,v)/u for almost allu.
- LTD(X]Y) iff for any uin I, 0C(u,v)/dv < C(u,v)/v for almost allv.
- RTI(Y|X) iff for any vin I, dC(u,v)/ou < (v—C(u,v))/(1—u) for aimost allu.
- RTI(X]Y) iff for any uin I, 0C(u,v)/dv < (u—C(u,Vv))/(1—v) for aimost allv.

For the Frank copula, the first-order partial derivatives (gee Appendix A)

aCo(uv) 6 8u(e Ov_1) .
ou  ef_1t(efu_1)(ev_1) 3)
OCG(UN) B efGV(equ _ 1)

v e® 1i(eu_1)e™_1) (4)
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Tail monotonicity is also guaranteeddf> 1 > 0 is met [11].

We verified that for all datasets bolstered resubstitutiooreds left tail decreasing in
complexity, complexity is left tail decreasing in bolstéreesubstitution error, bolstered
resubstitution error is right tail increasing in complgxiand complexity is right tail in-
creasing in bolstered resubstitution error. Thus, depsralin the tail between these two
variables exists.

6.3 Stochastic Monotonicity

Stochastic monotonicity is stronger than tail monotogiciccording to [11],

- Y is stochastically increasing X (SI(Y|X)) if P(Y > y|X =X) is a nondecreasing
function ofx for all y.

- X is stochastically increasing i (SI(X]Y)) if P(X > x|Y =) is a nondecreasing
function ofy for all x.

Alternatively, stochastic monotonicity can be expressed a
- SI(Y|X) iff for any vin I, C(u,V) is a concave function of.
- SI(X]Y) iff for any uin I, C(u,V) is a concave function of.

A concave function implies that the second-order derieatmust be less than or equal
to zero. For the Frank copula, these derivatives are (seerip A)

0%Co(u,v)  Be Me®-_1)(e®—_e"? )
o [e®—1+(e®u—_1)(e®— 1)]2’

aZCe(U, ) ee—GV(e—Gu _ 1)(e—9u _ e—e)

0 [ef 14(eu_1)e® 17 ©)

SinceB > 0 in our case (positive dependence as expressed by the rarkation coef-
ficients), it is easy to verify ths&% <0 and% < 0, which, in turn, implies that
Ce(u,Vv) is concave (see also Appendix A). Thus, for all datasets irstudy, bolstered re-
substitution error is stochastically increasing in corrjpyeand complexity is stochastically
increasing in bolstered resubstitution error.

7 Uncertainty of Single Classification

There exist many classifiers (k-NN, linear and quadraticrdisinant analysis, support vec-
tor machine) showing good performance on gene expresstar{&la Each of them has its
strong and weak points and that is why none of them is supieriathers. In addition, when
feature selection precedes classification, there can bipiewdubsets of genes resulting in
the same error rate. The fact that different subsets of gesre®e equally relevant when
predicting cancer has been already highlighted in sevesets\[27, 28, 29]. It was argued
that one of the possible explanations for such multiplieibd non-uniqueness is a strong
influence of the training set on gene selection. In other wjadiferent groups of patients
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can lead to different gene importance rankings due to gerdifferences between patients
(cancer grade, stage, etc.).

To mitigate this problem (complete alleviation seems to beently impossible due
to small sample size of gene expression datasets), we @dapamploy an ensemble of
classifiers instead of a single classifier, where each &ikassi the ensemble works with its
own feature subset. Potential gains in doing so are twofsdcbr rate can be significantly
reduced and fewer biologically relevant genes can be misbet all subsets of genes are
combined together for further analysis.

8 Ensemble of Classifiers

An ensemble of classifiers consists of several base clasgjfirembers) that make predic-
tions independently of each other. After that, these ptietis are combined together to
produce the final prediction. Though ensemble members dandé¢o different types of
algorithms, because of our interest in k-NN classifiers vilzeatonly this algorithm. More-
over, the value ok is fixed to 3 for all ensemble membé&r#s a combination technique, the
conventional majority vote was selected in order to denratesthat ensembles built with
our approach demonstrate good performance even when enmgplsynple non-trainable
combiners.

It is well known that an ensemble is able to outperform it pesforming member if
ensemble members make mistakes of different samples sth#iapredictions are uncor-
related and diverse as much as possible. On the other hamshsamble must include a
sufficient number of accurate classifiers since if there ahg few good votes, they can be
easily drowned out among many bad votes. As a result, an drsaran predict wrongly
most of the time.

So far many definitions of diversity were proposed [7, 30},unfortunately the precise
definition is still largely illusive and as commented in [3tHe link between diversity of the
ensemble members and prediction accuracy of an ensemigdessaightforward. Because
of this fact, we decided not to follow angxplicit definition of diversity, but introduce
diversity implicitly instead. Since we fixed the base clssiand its parameter, one of the
solutions is to let each ensemble member to work with its ceature subset.

Feature subset selection can be done in two ways: eitheyiag certain feature se-
lection algorithm or a group of such algorithms, or randosdynpling features from the
original feature set. As concluded in [5], differences iasslification performance among
feature selection algorithms are less significant tharoperdince differences among the er-
ror estimators used to implement these algorithms. In otleeds, the way of how error
is computed has a larger influence on classification accutey the choice of a feature
selection algorithm. Since bolstered resubstitutionreg@ low-biased and low-variance
estimate of classification error, which is what is heededifgh dimensional gene expres-
sion data, we opt for random feature selection. Figs. 1-84hat random feature selection
leads to diversity since one complexity value correspoadeteral different errors. Given
that it is difficult to carry out biological analysis of mangmes, we restricted the number
of genes to be sampled to 50, i.e. each ensemble member witk4d vo 50 randomly

81n our opinion,k = 1 tends to lead to optimistic estimation of bolstered resuli®n error.
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selected (sampled with replacement) genes. This will enthat the combined list of all
genes is not too long.

Based on the abovementioned, two approaches to form enseednsisting ok clas-
sifiers are explored:

1. Randomly seledt feature subsets, one subset per classifier, as describegl diassify
the data with each classifier and combine votes.

2. Randomly selecM > L (e.g. M = 100) feature subsets and compute the dataset com-
plexity for each of them. Rank subsets according to theirperity and select
least complex subsets while ignoring the others. Claskdydiata with each classifier
and combine votes.

We will call the first approach conventional to distinguisfram ours, which is the sec-
ond approach. The typical (and perhaps the earliest) exadfiphe former is [32]. As one
can see, the main difference between two approaches lié® iway of choosing feature
subsets: in the conventional approach, subsets are chegardiess of their classification
power. As a result, one may equally expect both very good anglhad ensemble predic-
tions. In contrast, in our approach, subsets are chosed baghe measurdirectly related
to classification performance. As lower complexity is agsed with smaller bolstered
resubstitution error as shown in Section 6, selection ofstifesets of smaller complexity
implies more accurate classifiers included into an ensenfiibles, with our approach, both
diversity and accuracy requirements for ensembles arsfiedti Hence, we can expect
betteraverageclassification performance with our approach compareddatmventional
approach.

9 Experimental Results

In ensemble applications to bioinformatics problems, allsamal accurate ensemble is of
importance, since too many ensemble members would conmlidalogical understanding
of relations among genes. Bearing this in mind, we set thebeurof 3-NNs () in the
ensemble to be equal 3,5, 7,9, and 11.

Table 4 represents the dataset complexity as estimatedebgpdimalized rank sum
statisticW (see Section 4) for different values bfwhen ensembles were built with our
approach. For each dataset, two values are given: averag@um and average maximum
complexity (averaging over 100 runs) of the selected fesdubsets. It can be observed that
complexity for each dataset is rather stabldagows. Prostate 1 appears to be far more
complex than the other datasets while Prostate 2 seems teeleast complex. For the
latter, the minimum and maximum complexity stays the sanfigiimplies that the com-
plexity reached saturation during ensemble generatiore fatt that saturation happened
atL as low as 3 implicitly points to low complexity of Prostate Eor the conventional
ensemble approach ‘avr.max’ often went to a very big valusammng poor class separation
according to the Wilcoxon rank sum test. For comparison|eTabists dataset complexity
when all features are considered in computiigAgain Prostate 1 looks the most complex
while Prostate 2 and Brain 1 are among least complex.
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Table 4: Average minimum and maximum normaliz®dfor feature subsets selected with
our ensemble generating approach for various valués of

Dataset no. L=3 L=5 L=7 L=9 L=11
1 avr.min 0.1544 0.1517 0.1551 0.1546 0.1547
avr.max 0.1638 0.1681 0.1725 0.1749 0.1776
2 avr.min 0.1587 0.1584 0.1581 0.1587 0.1584
avrmax 0.1676 0.1723 0.1769 0.1800 0.1845
3 avr.min 0.0761 0.0760 0.0761 0.0760 0.0759
avr.max 0.0781 0.0803 0.0818 0.0831 0.0841
4 avr.min 0.1501 0.1494 0.1493 0.1503 0.1498
avr.max 0.1584 0.1619 0.1655 0.1683 0.1707
5 avr.min 0.3105 0.3117 0.3121 0.3105 0.3104
avrmax 0.3274 0.3349 0.3417 0.3447 0.3480
6 avr.min 0.0756 0.0756 0.0756 0.0756 0.0756
avr.max 0.0756 0.0756 0.0756 0.0756 0.0756
7 avr.min  0.1987 0.1979 0.1990 0.1978 0.1995
avrmax 0.2086 0.2140 0.2174 0.2190 0.2217
8 avr.min  0.2566 0.2565 0.2554 0.2553 0.2563

avrmax 0.2692 0.2756 0.2798 0.2837 0.2867

Table 5: Unnormalized and normalized rank sum statitiwhen all features are used.

Dataset no. 1 2 3 4 5 6 7 8
W 465 409 48 496 1959 45 410 439
N 74 62 34 90 102 34 60 58

normalizedv. 0.17 0.21 0.08 0.12 0.37 0.009 0.22 0.26

Table 6 summarizes the average bolstered resubstitution @ver 100 runs) and its
standard deviation achieved with two ensemble schemean@'O’ stand for the conven-
tional and our approaches to ensemble construction, riagggclt is clearly noticable that
both the average error and its standard deviation are anfialleur approach, regardless of
the number of k-NNs in the ensemble. It should be noted thatstiould not seek depen-
dence between ensemble error in Table 6 and feature sulbmeglecdty in Table 4, since
our hypothesis is only applied to the error of the individdlakssifiers.

For comparison, we also included experiments with RBF [@lpfved by 3-NN classi-
fication using selected genes. Table 7 lists the averagéebadsresubstitution error and its
standard deviation computed over 100 runs when RBF wasagpjgieach dataset prior to
3-NN classification. The third column contains the numbegegies retained after filtering.
Results of 3-NN classification without prior gene selectioe given in the last column.

It can be observed that our ensemble scheme almost alwgysrfaurtns RBF+3-NN,
except for Brain 1 dafa which were easy to classify according to dataset compleit
contrast, the conventional scheme was inferior to RBF+3-d¥iNmany more occasions,

L=3,5.
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Table 6: Average bolstered resubstitution error and itsdsted deviation for two ensemble

schemes for different values bf

L=3

L=5

L=7

L=9

L=11

0.14%10.025
0.119+0.016

0.125:0.024
0.10%0.017

0.119:0.021
0.098:0.014

0.118:0.018
0.094:0.014

0.11%0.018
0.0880.015

0.11G6:0.025
0.092:0.014

0.09%0.019
0.07#0.012

0.086:0.013
0.07%0.014

0.074:0.015
0.066:0.010

0.068:0.013
0.064:0.010

0.129:0.035
0.08H-0.022

0.11#0.032
0.0620.019

0.10%0.031
0.054:0.017

0.092:0.027
0.04#0.016

0.088:0.028
0.043:0.015

0.1720.034
0.13G6t0.023

0.168-0.040
0.113-0.022

0.152-0.040
0.098:0.019

0.143:0.039
0.093:0.017

0.15%0.043
0.0820.016

0.1410.034
0.101-0.022

0.11%0.026
0.078&0.016

0.096:0.020
0.07%0.012

0.084:0.016
0.066:0.011

0.076:0.014
0.063:0.010

0.046:0.039
0.023t0.018

0.02%0.026
0.01%0.012

0.015:0.014
0.00#0.008

0.013:0.014
0.004:0.005

0.013:0.013
0.004-0.005

0.172:0.024
0.145+0.017

0.14#0.021
0.119-0.015

0.133:0.020
0.104:0.014

0.128:0.019
0.098:0.014

0.128-0.016
0.092:0.013

ul
oNeolloNelioNelloNolIoNolIoNolIoNelIONe]

0.188:0.036
0.164+0.027

0.158-0.029
0.138:0.022

0.122-0.025
0.092:0.020

0.103:0.023
0.08#0.021

0.08#0.019
0.0730.020

Table 7: Average bolstered resubstitution error and itsdsted deviation 1) when RBF was
applied before 3-NN classification (RBF+3-NN) and 2) witiNBI classification without
gene selection.

Dataset no. RBF+3-NN #genes 3-NN
1 0.199+0.011 12 0.16€0.005
2 0.10A0.010 3 0.0980.006
3 0.055+0.010 6 0.074-0.008
4 0.145+0.005 152  0.1320.001
5 0.11A4-0.008 2 0.092-0.002
6 0.003+0.003 1 0.022-0.000
7 0.173t0.013 15 0.2140.009
8 0.2140.014 37 0.174-0.005

which again confirms the superiority of our approach to efdemonstruction.

We also provide a comparison of both conventional and ourcambes to ensemble
construction versus a single best classifier (SBC) in eash. chetesgc andesns be bol-
stered resubstitution error achieved with a SBC and an drisemespectively. To meet
our goal, the following statistics widely used in machinarféng and data mining were
computed over 100 ensemble generations:

- win-tie-loss count, where ‘win’/‘tie’/'loss’ means thaumber of times when an en-
semble was superior/equal/inferior in terms of bolsteestibstitution error to a SBC
in the ensemble (in other words, the number of times Wéag < espc, EEns= €sBG
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€ENs> Espg respectively).

- ‘min. win’, ‘max. win’, ‘avr. win’ (minimum, maximum, and zerage differences
esgc— eenswhen an ensemble outperforms its SBC,

- ‘'min. loss’, ‘max. loss’, ‘avr. loss’ (minimum, maximumpd average differences
eens— esscwhen a SBC outperforms an ensemble.

Tables 8-12 contain values of these statistics. If therewernosses, this fact is marked
as ‘no’. As one can see, both ensemble schemes were super@oSBC on all eight
datasets for the most part. The degree of success, howewvird vdepending on dataset
complexity. For example, Prostate 2 was much easier toifglassnpared to other datasets
and therefore a SBC often reached the top performance saritetsemble had nothing to
improve on. When analyzing the performance of two ensentilerses, it was observed
that on average, our approach yields better results in theesthnat its win (loss) count is
typically higher (lower) and the absolute losses to a SBC@awer, too. In contrast, the
conventional ensemble generating approach sometimessspaetacular results (e.g. the
high max.win count), but it also suffers many defeats fronB&LSThat is, its results are
less predictable since there is no control over compleXith@selected feature subsets and
hence, if such ‘complex’ subsets are selected, a SBC caerendemble efforts to further
lower error fruitless. With the explicit selection of leastmplex subsets, our approach is
able to succeed where the comparative approach failed.

Table 8: Comparison of a SBC and two ensembles whers.

win-tie-loss  min.win  max.win avr.win min.loss max.loss r.loss
84/1/15 0.0014 0.0608 0.0234 0.0014 0.0446  0.0137
90/1/9 0.0014 0.0649 0.0277<10* 0.0135 0.0066
84/3/13 0.0032 0.0629 0.0275<10* 0.0548 0.0166
96/2/2 0.0016 0.0532 0.0232 0.0065 0.0145 0.0105
79/2/19 0.0029 0.0824 0.0324 0.0029 0.0324 0.0135
98/0/2 0.0029 0.0794 0.0428 0.0059 0.0059 0.0059
81/1/18 0.0011 0.0700 0.0355 0.0011 0.0578 0.0252
99/0/1 0.0022 0.0856 0.0434 0.0056 0.0056 0.0056
86/0/14 0.0039 0.0824 0.0360 0.0020 0.0735 0.0212
92/1/7 0.0020 0.0657 0.0311 0.0020 0.0265 0.0116
55/7/38 <10* 0.0618 0.0224 0.0029 0.1412 0.0292
68/4/28 <104 0.0559 0.0195 0.0029 0.0382 0.0123
91/1/8 0.0067 0.0750 0.0358 0.0017 0.0133 0.0081
100/0/0 0.0100 0.0750 0.0426 no no no
93/1/6 0.0052 0.0931 0.0429 0.0172 0.0569 0.0279
99/0/1 0.0017 0.1000 0.0499 0.0103 0.0103 0.0103

oNolioNelloNolioNelloNolIoNelIoNolIONe)
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Table 9: Comparison of a SBC and two ensembles wherb.
win-tie-loss min.win  max.win avr.win min.loss max.loss r.lss

1 C 89/0/11 0.0027 0.0716 0.0310 0.0014 0.0581 0.0219
O 96/0/4 0.0027 0.0703 0.0361 0.0068 0.0405 0.0196
2 C 93/1/6 0.0016 0.0694 0.0359 0.0032 0.0274  0.0137
O 100/0/0 0.0016  0.0597 0.0340 no no no
3 C 76/2/22 0.0029 0.0853 0.0352 0.0029 0.0735 0.0217
O 99/1/0 0.0059 0.1000 0.0536 no no no
4 C 84/0/16 0.0033 0.1022 0.0449 0.0022 0.0800 0.0296
O 99/0/1 0.0122 0.1089 0.0578 0.0022 0.0022 0.0022
5 C 96/0/4 0.0029 0.0902 0.0455 0.0078 0.0333 0.0159
O 92/0/8 0.0010 0.0784 0.0386<10* 0.0167 0.0056
6 C 60/11/29 <104 0.0765 0.0232 0.0029 0.0941 0.0221
O 80/4/16 <10* 0.0588 0.0201 0.0029 0.0176  0.0083
7 C 100/0/0 0.0033 0.0883 0.0484 no no no
O 100/0/0 0.0200 0.0933 0.0602 no no no
8 C 99/0/1 0.0121 0.1121 0.0682 0.0121 0.0121 0.0121
O 100/0/0 0.0328 0.1224 0.0763 no no no
Table 10: Comparison of a SBC and two ensembles viherv.
win-tie-loss min.win  max.win avr.win min.loss max.loss r.loss
1 C 90/2/8 0.0014 0.0649 0.0308 0.0014 0.0297 0.0084
O 96/1/3 0.0054 0.0662 0.0353 0.0081 0.0270 0.0158
2 C 99/011 0.0032 0.0726  0.0400 0.0113 0.0113 0.0113
O 99/1/0 0.0016 0.0694 0.0353 no no no
3 C 88/2/10 0.0029 0.0971 0.0394 0.0088 0.0412 0.0235
O 99/0/1 0.0088 0.1088 0.0566 0.0029 0.0029 0.0029
4 C 80/0/20 0.0022 0.1256 0.0474 0.0044 0.0700 0.0267
O 100/0/0 0.0178 0.1033 0.0652 no no no
5 C 96/0/4 0.0039 0.1078 0.0502 0.0069 0.0363 0.0223
O 96/0/4 0.0039 0.0843 0.0391 0.0029 0.0147 0.0078

6 C 73/3/24 <10*% 0.0529 0.0194 0.0029 0.0618 0.0105
O 79/11/10 0.0029 0.0500 0.0176 0.0029 0.0176 0.0068

7 C 100/0/0 0.0183 0.0983 0.0595 no no no
O 100/0/0 0.0267 0.1067 0.0701 no no no

8 C 99/0/1 0.0241 0.1379 0.0874 0.0483 0.0483 0.0483
O 100/0/0 0.0414 0.1362 0.0956 no no no

10 Conclusion

We proposed a new ensemble generating scheme using a k-Nbaas alassifier. Our ap-
proach leads to lower bolstered resubstitution error coatptp the conventional ensemble
approach, purely based on random selection of featurespansingle best classifier in the
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Table 11: Comparison of a SBC and two ensembles viherp.
win-tie-loss min.win  max.win avr.win min.loss max.loss r.lss

1 C 92/1/7 0.0014 0.0811 0.0329 0.0027 0.0270  0.0097
O 97/0/3 0.0027 0.0824 0.0375 0.0014 0.0203 0.0086

2 C 99/011 0.0016  0.0903 0.0424 0.0226 0.0226  0.0226
O 100/0/0 0.0032 0.0677 0.0363 no no no

3 C 91/1/8 0.0059 0.1206 0.0405 0.0029 0.0382 0.0158
O 100/0/0 0.0176  0.1029 0.0598 no no no

4 C 83/1/16 0.0011 0.1011 0.0491 0.0011 0.1022 0.0326
O 100/0/0 0.0322 0.1056 0.0709 no no no

5 C 98/0/2 0.0020 0.0990 0.0541 0.0020 0.0039 0.0029
O 100/0/0 0.0029 0.0765 0.0420 no no no

6 C 72/5/23 <104 0.0618 0.0189 0.0029 0.0324 0.0106
O 76/8/16 0.0029 0.0500 0.0173 0.0029 0.0118 0.0051

7 C 100/0/0 0.0167 0.1017 0.0611 no no no
O 100/0/0 0.0400 0.1183 0.0767 no no no

8 C 100/0/0 0.0310 0.1655 0.1036 no no no
O 100/0/0 0.0207 0.1603 0.1038 no no no

Table 12: Comparison of a SBC and two ensembles viheri 1.
win-tie-loss  min.win  max.win avr.win min.loss max.loss r.loss

1 C 91/0/9 0.0014 0.0635 0.0304 0.0014 0.0284 0.0135
O 97/211 0.0054 0.0811 0.0401 0.0014 0.0014 0.0014

2 C 100/0/0 0.0016 0.0806  0.0469 no no no
O 100/0/0 0.0081 0.0726  0.0376 no no no

3 C 83/6/11 0.0029 0.0853 0.0422 0.0059 0.0676  0.0193
O 98/0/2 0.0147 0.0941 0.0562 0.0029 0.0029 0.0029

4 C 82/0/18 0.0022 0.0967 0.0422 0.0056 0.0911  0.0380
O 100/0/0 0.0256 0.1133 0.0741 no no no

5 C 100/0/0 <10* 0.0990 0.0566 no no no
O 98/0/2 0.0059 0.0794 0.0412 0.0088 0.0108 0.0098

6 C 76/6/18 0.0029 0.0353 0.0168 0.0029 0.0412 0.0108
O 67/21/12 0.0029 0.0441 0.0158 0.0029 0.0265 0.0074

7 C 100/0/0 0.0200 0.1083 0.0653 no no no
O 100/0/0 0.0383 0.1167 0.0766 no no no

8 C 100/0/0 0.0448 0.1603 0.1126 no no no
O 100/0/0 0.0603 0.1603 0.1112 no no no

ensemble. In addition, our scheme outperforms a 3-NN pegtby the RBF algorithm [9],
especially proposed to deal with redundancy among genes.

Our approach originates from the link between dataset oexitpl and bolstered re-
substitution error established through the copula metihwid.found that there is positive
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dependence between complexity and error, where low (highjptexity corresponds to
small (large) error. Hence, the dataset complexity serges reliable indicator of the ex-
pected classification performance. As a result, selecfitegast complex subsets of features
implies more accurate ensemble members and thereforeuite=nbetter ensemble perfor-
mance. Extensive experiments with eight gene expressitas@la containing different
types of cancer show feasibility of our approach. Its extteaetiveness comes from the
fact that good ensemble performance is achieved with a féiiN83 to 11), which limits
the number of genes to further analyze.

A Derivatives for the Frank Copula

The definition of the Frank copula is

(7)

e®_-1

Co(Uv) = _% n <1+ (e —1)(e & — 1)) '

The first-order derivative afg(u,v) wrt uis

0Co(u,V) 1 1 ev_1 Pt
ou B, (€™ D™D e e

eb-1

After simplifications, we obtain that

0Cs(u,v) e e -1 ®)
ou  ef-14(eu_1)(e-1)
By analogy, the first-order partial derivati@(u,v) wrt vis
0Cs(u,v) e et-1) ©)
ov e f%-14(eu-_1)(e-_1)

Then, the second-order partial derivatgu,v) wrt u is

0%Cs(u,v) (e _1) o
o - [e®—14(eBu_1)(e®—_1)? [ee (e 1)

_ ee_eu <e—9 14+ (e—eu _ 1) (e_ev B 1))]
_ B (e - 1) o v
et 14 (e u_1)(e_1)? [e (e 1)
— e 1 (eM_1) (e 1)]

N b e 7Y [e—9<U+v> —etu

e®—1+(eu—-1)(e— 1)]2
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After some terms cancel out each other, we obtain that

0%Co(u,v)  Be e -1 (e®-e?

= , 10
auz [e*e —1+ (efeu _ 1)(e79v _ 1)]2 ( )
and by analogy, the second-order partial derivaiyeu,v) wrt v is
2 —6v(a—6u _ —6u__ ~—6
0°Co(u,V) _ Be (e 1)(e ev) (11)

V2 [e®—1+4 (e ®u—1)(e® 1))

Given thatd > 0 (positive dependence observed between dataset comypdexitbol-
stered resubstitution error), the following pairs of inalifies holdvu,v € [0, 1]:

e _1<0, e®_eP¥>0,
e_1<0 e%_ef>0.

Hence, the product of the inequalities in each row abovesis lean or equal to zero.
. . e 26 (UV) 9%Co(u,Vv)
Gl\{en that othgr ter.ms in Egs. 10-}1 are positive, it meaalﬁ&%‘zz— <0 andT <0,
which, in turn, implies tha€g(u, V) is concave.

B Marsaglia Polar Method

This is the polar form of the Box-Muller transformation [38tended to generate Gaussian
pseudo-random numbers from the uniform pseudo-random exgndts C-like pseudo-
code is given below, whemand() is the function for uniform [0,1] random number gener-
ation, p is the data dimensionality) is equal toMyc (see Section 5)pg() is the natural
logarithm,m ands are the mean and the standard deviation, respectivelyr 8dteh itera-
tion overi two samples are generated and storeX Bo that aften/2 iterations, we have
2Mpc/2 = Myc samples.

for (i =0, i <nl2, i+4)
{
[* Cenerate nornmal random nunbers */
for (j =0, j <p; j++)

{
do
{
ul = 2.0*rand()/RAND MAX - 1;
u2 = 2.0*rand()/RAND_MAX - 1;
r = ul*ul + u2*uz,
} while(r == 0 || r >= 1);
r =sqgrt(-2*log(r)/r);
Xi*ptj)] = nfj] + s[j]*r*ul;
\ X[(i+n/2)*p+j] = nfj] - s[j]*r*uz;
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