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Non-uniqueness of the Solution
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Abstract—The existence of multiple solutions in clustering,
and in hierarchical clustering in particular, is often ignored in
practical applications. However, this is a non-trivial problem, as
different data orderings can result in different interpretations of
the same data. The method presented here offers a solution to this
issue. It is based on the definition of an equivalence relation over
dendrograms that allows developing all and only the significantly
different dendrograms for the same dataset, thus reducing to
polynomial the computational complexity from the exponential
one obtained when all possible dendrograms are considered.
Experimental results in the neuroimaging and bioinformatics
domains show the effectiveness of the proposed method.

Index Terms—Hierarchical clustering, dendrogram equiva-
lence relation, bioinformatics, neuroimaging

I. INTRODUCTION

D ISCOVERING similarities in the real world is a funda-
mental task for both humans and machines, as it allows,

for instance, reasoning by categories [1]. This task can be
carried out by clustering, that groups elements into subsets,
called clusters, according to some homogeneity measure, so
that objects inside a cluster are more similar among them, and
more dissimilar to objects belonging to other clusters [2]–[4].

Although other clustering algorithm families have been pro-
posed (e.g. spectral [5]), two main families are usually iden-
tified: hierarchical and partitional clustering. In hierarchical
clustering (HC), a progressive partitioning of the data elements
is achieved by iterative operations (either merging or splitting)
on the data set aimed at grouping pairs of elements that are
closest according to a given similarity measure. In partitional
clustering, instead, a set of prototypes is positioned and moved
inside the data space to obtain the best representation of the
input data according to a specified cost function.

The algorithms of both families suffer from several issues,
most notably the optimal value of the cost function is rarely
reached. In partitional clustering, local minima cannot be
easily escaped. Mechanisms proposed in the literature include
convex relaxations [6], the costly stochastic optimization [7],
and careful initialization of cluster prototypes [8], [9], but they
do not provide a general solution to this problem. Similarly,
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in (agglomerative) HC, although each processing step can be
locally optimal since the pair of elements to be merged is
chosen so as to minimize a dissimilarity function, the global
optimality of the clustering solution cannot be guaranteed [10,
p. 330]. Although statistical methods can be employed for both
obtaining and validating clusters from data whose distribution
is known, or can be reasonably assumed, in the most general
case (i.e. no assumptions can be safely made) there is still lack
of clear theoretical foundations for clustering [11].

A reasonable requirement for clustering is that the returned
solution is unique. However, in HC multiple solutions can be
returned for the same dataset, depending on the input data
order [12], [13]. This problem ”certainly is not widely known“
[14] and it is usually disregarded. Thus, actual conclusions
drawn from clustering may be only the result of a particular
presentation order of the input data. The large data sets
avalable today lead to a possible explosion of the number
of clustering solutions, as the authors themselves experienced
when working on real-world datasets (like the BioGRID one
[15], and the neuroimaging activation data [20]; see Results
section). This provides a well-grounded practical motivation
for the present research.

Few attempts have been made to solve this problem. In
[14] it is suggested to run the clustering process on different
permutations of the input data and to choose the solution that
minimizes the defined cost function. However, it cannot be
guaranteed that a different data permutation would not produce
an even better solution. On the other side, an exhaustive gen-
eration and exploration of all alternative solutions associated
with a dataset is computationally infeasible. A solution based
on simultaneously merging all those clusters sharing the same
minimal distance into one “supercluster” has been advanced
[16]. However, this choice may not produce the same clusters
that would be obtained merging two clusters at a time.

We propose here a novel approach that addresses directly
this problem. It is based on generating only the subset of
significantly different solutions, thus keeping the computa-
tional load relatively low but, at the same time, ensuring
that no interesting solution is missed. The algorithm is based
on an equivalence definition of HC solutions associated with
a dataset. The method has been extensively applied to the
analysis of both bioinformatics and functional neuroimaging
data achieving a dramatic reduction in the number of solutions
generated (Sect. IV), demonstrating the relevance and practical
utility of the approach.
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Fig. 1. At start, each input element (IDs on the x-axis) is assigned to a
singleton cluster (partition S1). At each step, the two closest clusters are
merged, decreasing the number of clusters by one. At the last step, only
one large cluster is obtained (partition S12). The sequence of merging steps
is represented in a tree structure, called a dendrogram. The height of the
horizontal segments representing merging steps is the dissimilarity value of
the two clusters being merged. The dendrogram is then cut at the desired level
to get the final clustering solution.

II. HIERARCHICAL CLUSTERING

Let us assume that X = {x1,x2, . . . ,xj, . . . ,xN}, with
xj = (x1

j , x
2
j , . . . , x

D
j ) is a dataset of N elements that belong

to the multi-dimensional space RD. The xj can be seen as
the set of features of a given pattern, or, equivalently, as the
position of a point inside RD.

Suppose also that a dissimilarity function, d : X×X → R,
is defined over this space such that for every x,y ∈ X :

d(x,y) ≥ 0, and d(x,y) = d(y,x). (1)

If reflexivity (d(x,y) = 0 iff x = y) and triangle inequality
(d(x,y) ≤ d(x, z) + d(z,y) ∀x,y, z ∈ X) also hold, then
d is a metric. d(.) defines the degree of similarity between
pairs of input elements, and different functions, with different
properties, have been proposed to implement it (for a review,
see [2], [10]). For instance, l1 metric (city-block distance)
limits the impact of outliers, while l∞ metric attributes to
outliers a very high weight.

Our goal is to partition X into M sets, called clusters,
S = {C1, C2, . . . , Ck, . . . , CM}, such that each of them is
composed of elements that are closer to each other and farther
from elements in any other cluster according to the chosen
dissimilarity measure.

Agglomerative HC partitions the data as follows. At start,
each element is assigned to a different cluster (partition S1).
At each step, two clusters are merged, and a new data
partition is generated. The procedure is repeated iteratively
until a partition containing a single cluster is obtained (SN ).
The result is a hierarchy of nested clustering solutions (i.e.,
partitions of the data), T = {S1, S2, . . . , SN}, where Sm is the
clustering solution obtained after m steps and it is constituted
of N − m + 1 clusters. The hierarchy of partitions can be
represented in a tree-like structure, called dendrogram (Fig.
1). The final clusters are obtained by cutting the dendrogram
at the proper level according to the given criterion, like, for
instance, the number of desired clusters or the average intra-
cluster variance. The cut can be performed climbing up the
dendrogram, starting from the leaves, and stopping just before
the figure of merit exceeds the defined threshold. Different
HC algorithms have been proposed, each employing a dif-
ferent dissimilarity measure between clusters; among these,
single linkage, complete linkage, (weighted) group average

linkage, centroid linkage, and Ward’s method are the most
popular ones [2]. For instance, single linkage defines the
dissimilarity between two clusters Ci and Cj as the minimum
dissimilarity between pairs of elements x ∈ Ci,y ∈ Cj ;
that is, D(Ci, Cj) = minx∈Ci,y∈Cj d(x,y). Notice that we
have two notions of dissimilarity measure: one defined over
single input elements (d(.)), and one defined over clusters
(D(.)). The values of D are stored in a matrix H , called
dissimilarity matrix; at each step, the pair of clusters with
the minimum dissimilarity value is merged into a new cluster,
and the dissimilarity value between this new cluster and any
other existent cluster is computed. The dissimilarity value for
the merged clusters is referred to as merging coefficient for
that time step. The update of H can be conveniently carried
out by employing the Lance-Williams formula [17]:

D(Ck, {Ci, Cj}) = αiD(Ck, Ci) + αjD(Ck, Cj)+ (2)
+ βD(Ci, Cj) + γ |D(Ck, Ci)−D(Ck, Cj)|

where Ci and Cj are the two clusters joined to form the
new cluster, and Ck is any other cluster (k ̸= i, j). Different
values of αi, αj , β, and γ are associated with different HC
methods. For instance, with αi = αj = 1/2, γ = −1/2,
and β = 0, single linkage HC is obtained. In this paper,
we will focus on Ward’s dissimilarity measure [18] but we
demonstrate in the Supplemental Material that it can be applied
to other dissimilarity measures. The effect of using Ward’s
method, along with the use of the squared Euclidean distance
as a measure of dissimilarity between elements, is to obtain
compact (i.e., having low within-cluster variance), spherical
clusters, which is especially desirable when clustering cerebral
activation peaks (see Section IV). In Ward’s method, the
dissimilarity between two clusters is defined as the increase in
the total error sum of squares due to the merging of those two
clusters. Thus, at each step, the measure being minimized is

∆ESSi,j = ESSi,j − ESSi − ESSj (3)

with ESSk =
∑

x∈Ck
(x− µk)

2 where µk is the centroid of
cluster Ck. Thus, in Ward’s method the dissimilarity between
two clusters is a measure of their (collective) variance. As a
result, each solution Sm in the final hierarchy is an approxi-
mation to the m-partition of the input data having minimum
total intra-cluster variance, ESS:

ESS =

|C|∑
k=1

ESSk (4)

with |C| the number of clusters. To implement Ward’s
method through the Lance-Williams formula, the following
coefficients are used:

αi = (nk + ni)/(nk + ni + nj)
αj = (nk + nj)/(nk + ni + nj)
β = −nk/(nk + ni + nj)
γ = 0

(5)

where nx is the cardinality of cluster Cx. It can be proved
that, if d(x,y) = ∥x− y∥2, then the above formula yields
D(Ci, Cj) = 2∆ESSi,j .
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Fig. 2. Four data points lie at the corners of a square: pairs on each side
have the same (Euclidean) distance, which leads to four minimal-dissimilarity
(MD) pairs. If we run a HC algorithm on this dataset and cut the resulting
dendrogram to get a 2-clusters solution, two different solutions are obtained
(shown in yellow and purple, respectively), according to which pair of points
is selected first.

A. The non-uniqueness of the solution in HC

HC can return different solutions depending on the order in
which the input data are presented (see Fig. 2). This is due to
the presence of ties in the dissimilarity matrix at a given step,
that is the minimum dissimilarity value, v, is shared by more
than one cluster pair.

Definition II.1. Let v = minCi,Cj D(Ci, Cj), where Ci and
Cj are clusters available at the current processing step, t. We
call minimal-dissimilarity pair (MD pair) each pair of clusters
p = (Ci, Cj) such that p ∈ Pt = argminCi,Cj D(Ci, Cj);
that is, D(p) = v for each minimal distance pair p.

At each step t (i.e., every time the dissimilarity matrix
is updated), we might have more than one MD pair; that
is, |Pt| > 1. The order in which the input data points
are presented to the algorithm determines the order whereby
cluster pairs are found inside matrix H; current algorithms
just select the first MD pair encountered when browsing H .
Therefore, a different permutation of the input data points
can lead to the selection of a different MD pair, and this, in
turn, can produce a different dendrogram. It also turns out
that different dendrograms and associated solutions can be
associated with different interpretations for the same set of
data: therefore, the existence of ties in the dissimilarity matrix
can potentially lead to unstable, and unreliable, conclusions
about the structure underlying a dataset. Ties can occur quite
frequently, especially at the initial merging stages, when
dealing with discrete data (although they cannot be completely
ruled out even for real-valued applications). Current hierarchi-
cal clustering algorithms, lacking any control on the existence
of multiple solutions, choose arbitrarily a feasible dendrogram,
according to one of the possible permutations of the input data.
This may lead to different clustering solutions and to possible
misinterpretations of clustering results.

III. ALGORITHM DESCRIPTION

The solution proposed here is based on identifying what we
have called the significantly different alternative dendrograms,
that result from the selection of different MD pairs. This
requires making a first distinction between critical and non-
critical MD pairs; whereas differences in clustering introduced
by non-critical pairs can safely be disregarded, critical pairs
require more attention. Secondly, to reduce complexity, a
further distinction on critical pairs is introduced, aimed at

(a)

(b) (c)

Fig. 3. The purple and the yellow pairs in panel (a) are non-critical pairs,
that is MD pairs that have no cluster in common: whichever pair of points is
merged first, the final dendrogram is the same. On the other hand, the three
elements in panels (b) and (c) produce two critical pairs (blue-green and
green-red) from which two different dendrograms are obtained, depending on
which pair is selected first.

identifying equivalence classes within them: in this way, only
one representative per class can be fully developed.

The notion of non-critical pairs follows from the observa-
tion that, in some cases, the choice between different MD
pairs, although leading to different merging sequences, do not
result in different dendrograms (see Fig. 3a).

Definition III.1. A MD pair p = (Ci, Cj) is a non-critical
pair if ∀p′ = (Ci′ , Cj′), p′ ̸= p being a MD pair, i ̸= {i′, j′}
and j ̸= {i′, j′} hold.

Non-critical pairs are therefore those pairs that do not share
any element with other MD pairs. The choice of merging
one non-critical pair in place of another does not affect the
shape of the resulting dendrogram because these choices are
not mutually exclusive: the choice of a non-critical pair leaves
other non-critical pairs available for subsequent merging.

This can be also seen by analyzing H . Let us suppose that
H contains np entries that have the same MD value, v, and that
these entries are distributed such that for each row and column
at most one entry is equal to v (it can be shown that this is
another way to state Def. III.1). Whenever one MD pair, say
(Ci, Cj), is merged, dissimilarity values for clusters Ci and Cj

are discarded, which corresponds to deleting the i-th row and
the jth column1. None of the other MD pairs would be touched
by such operation. Therefore, at the subsequent clustering
step, one of the remaining MD pairs, with D(.) = v, would
be selected for merging, and so on, until all the non-critical
pairs with D(.) = v have been merged. Since all these pairs
have merging coefficient equal to v, the same dendrogram is
obtained regardless of the specific merging sequence. In other
words, the choice among non-critical pairs cannot open new
scenarios where a new MD pair appears, which would make
the order whereby non-critical pairs are selected relevant. This
is guaranteed by the following fact:

Theorem III.2. Let v be the minimum value in the dissimilar-
ity matrix and therefore the merging coefficient in the current
clustering step; let Ci and Cj be the clusters being merged.
In a HC algorithm employing Ward’s method, each new
dissimilarity value v′ for the newly created cluster {Ci, Cj}
is such that v′ ≥ v. If (Ci, Cj) is a non-critical pair, then
v′ > v.

1We implicitly assume here that H is stored as a triangular matrix.
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Proof: According to the Lance-Williams updating equa-
tion for Ward’s method (see (2) and (5)), for a generic cluster
Ck (k ̸= i, j) the dissimilarity value v′ of Ck from the new
cluster {Ci, Cj} is computed as

v′ =
1

ni + nj + nk
(z(nk + ni) + w(nk + nj)− v(nk)) =

=
1

ni + nj + nk
(nk(z + w − v) + niz + njw)

where z = D(Ck, Ci), w = D(Ck, Cj). Since v is the
minimum value in the dissimilarity matrix, and (Ci, Cj) is a
non-critical pair, z > v and w > v hold; that is, (Ck, Ci) and
(Ck, Cj) cannot be MD pairs; otherwise, (Ci, Cj) would not
be non-critical by definition. Therefore we can write z = v+ε,
w = v + η (ϵ > 0, η > 0), and

v′ =
1

ni + nj + nk
(nk(v + ε+ η) + ni(v + ε) + nj(v + η)) =

=
(ni + nj + nk)v

ni + nj + nk
+

nkε+ nkη + niε+ njη

ni + nj + nk

from which v′ > v follows2.
At each merging step all the MD pairs are identified

and distinguished into non-critical and critical ones. As the
merging sequence of non-critical pairs is not relevant, they
are simply merged in a random order, producing a single
dendrogram. On the other hand, a separate dendrogram can
be developed for each alternative choice of a critical pair. In
this way, the number of dendrograms that must be generated is
reduced with respect to an exhaustive exploration of the space
of all alternative dendrograms; however, in many practical
situations, such reduction is not large enough (cf. Sect. IV).
For this reason, we introduce an equivalence relation on the
dendrograms (Figs. 4a–b) so that the dendrogram space can
be shrunk and only one representative for equivalence class
can be fully developed. We explicitly remark that equivalent
dendrograms are not identical dendrograms.

Definition III.3. Let p = (Ci, Cj) and p′ = (Cj , Ck) be
two critical pairs for the current step, and C, C ′ the clusters
resulting from their choice. We say that p and p′ are equivalent
pairs if

Ck = argmin
Cx

D(C,Cx) and C = argmin
Cx

D(Ck, Cx) (6a)

Ci = argmin
Cx

D(C ′, Cx) and C ′ = argmin
Cx

D(Ci, Cx) (6b)

D(C,Ck) = D(C ′, Ci). (6c)

Theorem III.4. When Ward’s method is used, (6c) directly
follows from the definition of critical pair (Def. III.1).

Proof: Since p = (Ci, Cj) and p′ = (Cj , Ck) are critical
pairs, then D(Ci, Cj) = D(Cj , Ck) = v, where v is the
minimum value in the current dissimilarity matrix. Then, by

2We notice that the case v′ = v can only occur when both D(Ck, Ci)
and D(Ck, Cj) are equal to v = D(Ci, Cj), that is when the three clusters
are equidistant from each other (with dissimilarity v), but in such case they
would not qualify as non-critical pairs.

applying the Lance-Williams formula for Ward’s method ((2)
and (5)), we get:

D({Ci, Cj}, Ck) =

=
(ni + nk)D(Ci, Ck) + (nj + nk)v − nkv

ni + nj + nk
=

=
(ni + nk)D(Ci, Ck) + njv

ni + nj + nk

and

D({Cj , Ck}, Ci) =

=
(nj + ni)v + (nk + ni)D(Ci, Ck)− niv

ni + nj + nk
=

=
(ni + nk)D(Ci, Ck) + njv

ni + nj + nk

from which property 6c follows.
We can restate Def. III.3 as follows. Considering the three

clusters Ci, Cj , and Ck, we can refer to Ck as the excluded
element when pair p is chosen, and to Ci as the excluded
element when pair p′ is selected. Conditions 6a and 6b state
that p and p′ are equivalent if p and its excluded element
are closer to each other than to any other cluster, and the
same holds for p′. This means that, whichever pair we select
for generating a new cluster, the next merging step involving
that cluster will group it with its excluded element. That is,
although the shapes of the dendrograms corresponding to p and
p′ temporarily diverge, they do converge to the same clustering
solution (Figs. 4a–b); if p and p′ are non-equivalent the shape
of their corresponding dendrograms cannot be guaranteed to
converge (Figs. 4c–d).

Def. III.3 establishes an equivalence relation over dendro-
grams. In particular, (6c) guarantees that equivalent dendro-
grams – those associated with equivalent pairs – have the
same sequence of merging coefficients. This allows us to
fully develop only one representative dendrogram from each
equivalence class. This drastically reduces the number of
dendrograms to be fully built, making the problem compu-
tationally affordable.

Once all non-equivalent dendrograms (that is, the signifi-
cantly different ones) have been generated, the corresponding
solutions can be obtained cutting each dendrogram according
to the user-designated strategy. Among these solutions, the
best one according to the defined quality criterion is identified.
In the applications presented here, the between-cluster error
sum of squares has been adopted. The maximization of this
measure favors a better separation among clusters:

bESS =

|C|∑
k=1

nk(µk − µX)2 (7)

where |C| is the number of clusters in the solution, nk and µk

are the number of elements and the mean of cluster Ck, and
µX is the grand mean of the dataset X3. Let us remark that

3Notice that bESS = ESSdataset − ESS, where ESS is the total
within-cluster error-sum-of-squares introduced in (4), and with ESSdataset

we refer to the error-sum-of-squares over the whole dataset, considered as a
unique cluster.
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Fig. 4. Panels (a) and (b) show two equivalent pairs: blue-green and green-red. The element closest to the first pair is the red one, and the one closest to the
second pair is the blue one. This guarantees that these three elements will be grouped in the same cluster: although the two dendrograms are different, they
are equivalent. Notice that in intermediate steps the clusters obtained are different, but the sequence of merging coefficients (v, w) is the same independently
of which pair is first merged. The blue-green and the green-yellow pairs shown in panels (c) and (d) are non-equivalent pairs. If the blue-green pair is merged
first, the yellow element will then be merged with the red one as this is closer to it than the newly created cluster. The 2-clusters solution {blue ∪ green}
and {yellow ∪ red} is obtained. If we first merge the green-yellow pair, instead, we would obtain a different 2-clusters solution: {blue ∪ green ∪ yellow} and
{red}. Notice that the merging coefficients are different in the two cases: v, v, v′ and v w, z respectively.

other user-defined measures could be employed to evaluate the
different clustering solutions.

The end result of our method is a clustering solution that is
unique, up to equivalences. It is also optimal, with respect to
the desired measure of quality, among the alternative solutions
that the HC algorithm would return with different orderings of
the input data. The operation flow of the proposed algorithm
is summarized in Fig. 5. The key element is the state of the
clustering process, that is saved each time a new dendrogram
has to be developed; specifically, the state contains the current
step t, the dissimilarity matrix, the non-equivalent pairs still
to be examined, the parent dendrogram from which a new
one will be developed, the current merging coefficient, and
additional information about current clusters (their number,
cardinalities, and indexes).

IV. RESULTS

The algorithm presented here has been extensively applied
in two different domains in which ties often occur: analysis
of neuroimaging data and of protein-protein interactions4.

HC has been recently introduced in the field of functional
neuroimaging as a tool for a meta-analysis of large sets of
brain activation sites that are reported in a broad collection of
studies investigating different aspects of a specific cognitive
function [19]. In this context, the result of HC is used to
identify groups of anatomically close activation peaks that
may represent functionally meaningful brain regions inside
specific networks of cortical and subcortical areas involved
in the cognitive function of interest. In particular, we have
investigated the possible cortical network involved in single
word reading through a meta-analysis with HC of a set of
1176 activation peaks collected over 35 different studies. 128
significantly different dendrograms were found. These were
cut at the level where the average standard deviation over the
clusters in any of the three directions raised above σ = 7.5;
this value was set in agreement with [19], to comply to the
standard resolution of functional images, of about 15 mm.
Cutting produced four different solutions, the optimal one
being composed of 57 clusters. The statistical analysis of the
solution allowed us to identify the putative functional role of
each cluster, and thus of its corresponding brain area (see [20]
for details). Here we want to remark that the optimal clustering

4See Supplemental Material for more details on these experiments.
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t<N?

Compute dissimilarity matrix;
Find minimal-dissimilarity pairs;
Distinguish non-critical (NCP) and critical (CP) pairs

Select p in NCP;
Merge p;
t = t + 1;

Select p in NEP; Merge p;
t = t + 1;
Save current state on stack Z; 

Find non-equivalent 
pairs in CP, NEP

Cut all generated dendrograms to get corresponding solutions;

Compute quality measure Q for each solution S;

Is NCP 

empty?

Yes

NoYes

Store completed
dendrogram;
state = pop(Z);
load state; 

Is stack 

Z empty?
No

Yes

No

Output S s.t. Q(S) is optimal

Fig. 5. Flow chart of the proposed algorithm. We employ a stack structure
in which the current state of the process is saved when a new dendrogram
is generated. When a dendrogram is completed, the state on top of the stack
is loaded, and from this the next non-equivalent pair identified at step t is
extracted. From this pair a new dendrogram is developed. Notice that NEP
contains one representative pair for each equivalence class, identified for a
given element shared by the critical pairs at the current step. Pairs that are
equivalent to those stored in NEP are just discarded.

found by our algorithm allows distinguishing between a more
lateral region (in the Angular gyrus) showing a preference
for word stimuli and an occipital one that is less sensitive
to lexicality, whereas in other (non-optimal) solutions this
distinction would be lost (Fig. 6a–b).

The potential risk of misinterpreting data, when multiple
clustering solutions are present, can be further demonstrated
with respect to bioinformatics data. HC is one of the most
used techniques for their analysis, with applications ranging
from biomolecular evolution to multiple sequence alignment,
functional genomics and DNA microarray data analysis [21].
In several bioinformatics clustering problems data are two-
valued (e.g. they represent whether a given property is present
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(a) (b)

S 1 S 2 S 3 S 4

S 1 - 0 5 23

S 2 0 - 5 23

S 3 20 20 - 20

S 4 39 39 20 -

(c)

Fig. 6. On the left, two alternative clustering solutions for our neuroimaging
dataset are shown: (a) the optimal solution (bESS = 2.4023 × 106); (b)
one of the alternative solutions (bESS = 2.3977 × 106). Each cluster
is represented by a blob centered on its mean coordinate with semiaxes
equal to the cluster standard deviation. The color of a blob codes for its
cardinality. Only one section of the cerebral volume is shown. The white
box highlights the difference in the two clustering solutions. On the right the
comparison of the number of GO BP terms differentially overrepresented at
0.001 significance level between the different clustering solutions Si.

or not for a given gene or protein) and are characterized by
high dimensionality and sparsity. It is therefore likely to obtain
dissimilarity matrices with ties, but the consequent problem of
non-uniqueness of the solution is largely neglected.

As an example, we report here the clusters of functionally
related proteins obtained analyzing protein-protein interaction
(PPI) data of a random subset (of size 500) of the 5367 proteins
downloaded from the BioGRID database [15]. 96 significantly
different dendrograms were identified and cut with a threshold
σ = 5 on the norm of the vector representing the average
cluster standard deviation over each dimension. This left us
with 4 unique solutions: S1 and S2, including 9 clusters; S3

and S4, of 10 clusters. To understand whether the different
solutions lead to different biological conclusions w.r.t. protein-
protein interactions, we performed a functional enrichment
analysis of the different clusterings [22] to assess whether
known functional categories are significantly overrepresented
in the discovered clusters. We have chosen the Gene Ontology
(GO) terms of the Biological Processes (BP) ontology [23]
as functional categories: each GO term represents a class
of gene/proteins with common functional characteristics (e.g.
catabolic process or regulation of translation). For each clus-
tering solution Si we merged the GO terms that we found sig-
nificantly overrepresented in each cluster. Lastly we compared
the set of GO terms that biologically characterize each Si. We
found that 233, 233, 248 and 249 GO terms were significantly
overrepresented in the unique solutions. These turn out to be
quite similar, but with some relevant differences. Although no
difference exists between S1 and S2, we did find significant
differences between all the other solutions: for instance, S1

and S4 differ for 23 terms overrepresented in S1 but not in S4

and 39 GO BP terms in the opposite direction (Fig. 6c) – that
is, about 1/4 of the GO terms identified are different between
S1 and S4 (the “optimal” solution). In particular, analyzing the
GO terms overrepresented in S4 but not in S1, we observe that
the additional functional classes present in S4 are characterized
by biological processes involved in the structural organization
of cellular components and by its related anabolic/catabolic
processes (see Supplemental Material, Table 1). This makes
the two solutions very different also from the semantic point

of view as they lead to different biological characterization of
clustering results.

V. DISCUSSION

As shown in Section IV, the non-uniqueness of the solution
is a critical problem, since it can make results inconsistent,
leading to different interpretations of the same data depending
on the order in which the data are presented. To avoid this, all
the possible dendrograms that result from different MD pairs
could be considered, but this is not a feasible approach. In
fact, in the worst case, we obtain p = N/2 non-critical pairs
at the first clustering step, from which (N/2)! dendrograms
are generated, leading to a complexity of O(N !).

Our method allows to greatly reduce the number of gen-
erated dendrograms, without sacrificing completeness. This
is achieved by a careful analysis of the ties that arise in
the clustering process. More precisely, we showed that it is
possible to identify the equivalence classes over dendrograms,
according to Def. III.3, and to generate a single dendrogram
per class. One can envision the strategy described here as a
shrinkage from a combinatorial space consisting of all possible
dendrograms that can stem from ties, to a reduced space
where only the most salient dendrograms (those that we called
significantly different) are retained.

The reduction in the number of dendrograms is relevant:
only 128 dendrograms were generated for the neuroimaging
data of Section IV (96 for the PPI data). On the contrary,
when considering all MD pairs, or even the critical pairs only
(equivalent and non-equivalent ones), the clustering procedure
had to be stopped when 100,000 dendrograms were generated,
because of memory saturation, confirming the combinatorial
explosion due to ties.

This reduction has been obtained by limiting the number of
dendrograms that must be fully developed, although for each
new dendrogram all the data that identify the clustering state
have to be saved. The dominant cost is represented by the
dissimilarity matrix, which is O(N2), at least at the first clus-
tering steps. Overall, the algorithm has therefore a complexity
of O(qN2), where q is the number of non-equivalent pairs
encountered along the clustering process (and of the generated
dendrograms); we explicitly remark that usually q << p. This
figure is much smaller than O(N !), obtained when developing
all the dendrograms stemming from MD pairs. After all
clustering solutions have been generated, an additional step
is required to identify the unique solutions: in fact, some
solutions, although deriving from different dendrograms, may
be constituted of the same clusters.

We remark here that equivalent dendrograms are not iden-
tical dendrograms: by choosing one representative for each
equivalence class, we do compress information. Let us con-
sider, for instance, Figs. 4a–b, that show two equivalent den-
drograms. If a 2-cluster solution is required, different solutions
would be obtained from those dendrograms. Although in
both cases the two clusters will be merged into the same
cluster in the subsequent clustering steps, these two equivalent
clusterings do exist in the intermediate steps. Notice that this is
true even for identical dendrograms: the dendrogram shown in
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Fig. 3a could have been obtained by either merging the yellow
elements first, or the purple ones. According to which pair was
selected first a different 3-cluster solution is obtained. In these
cases, equivalent pairs should be tracked at each clustering
step. More precisely, by introducing an additional “backtrack-
ing” step that traces back pairs of equivalent dendrograms, we
could explore all the equivalent (but not identical) clusterings
associated with a given dendrogram cut (see Supplemental
Materials for more details).

Also notice that, at each step, we identify all the MD
pairs, but only one pair of clusters is merged. A speed-up
could be attained if we merged non-critical pairs in one step.
This can be seen as collapsing multiple clustering steps into
one. This, in fact, is akin to the strategy taken by [16],
where all MD pairs for one level, both critical and non-
critical ones, are simultaneously merged in “superclusters”,
and the result is depicted in one multidendrogram. By doing
so, however, some solutions are arbitrarily discarded. Let
us consider, for instance, Fig. 4c and 4d, and assume that,
whereas {blue, green} and {green, yellow} are MD pairs with
d(.) = v, the pair {yellow, red} has d(.) = v+ε, with ε << v.
In [16], the 2-cluster solution depicted in Fig. 4c, which might
turn out the “optimal” one, would never be obtained, as the
{blue, green, yellow} supercluster would be forced.

The algorithm has been described here with Ward’s dis-
similarity measure but it can be applied to other measures
as well (see Supplemental Material), as long as they are
not prone to inversion [13]. This occurs when the sequence
of merging coefficients is non-monotonic and, in this case,
the fact that Eqs. 6a and 6b hold at the current step does
not guarantee equivalence, as a subsequent merging operation
could produce a cluster Cz that is closer to {Ci, Cj} than
Ck. The monotonicity requirement rules out centroid and
median linkage clustering, whereas simple, complete, group
and weighted group average linkages can be successfully
employed with the presented method.

The proposed approach could also be extended to the case
of real-valued data sets. Although in this case it is unlikely
that exact ties occur, it is possible that the data are affected by
noise; more elaboration on this is given in the Supplemental
Material.

In conclusion, we notice that although the final solution
returned by our method may be called an optimized solution
since it is the best one according to the criterion set, among
those that have been generated, it cannot be assumed optimal
in a global sense. This directly follows from the greedy nature
of the HC agglomerative process and represents a distinct well-
known problem, which is out of the scope of the present work.

VI. CONCLUSION

We have discussed how ties in the data can cause HC to
yield very different solutions for different permutations of
the same input data. We have shown that by defining an
adequate equivalence relation over the dendrograms stemming
from the data, all the significantly different clusterings can be
generated with polynomial complexity. This allows obtaining
a unique solution independently of the data presentation order,

which guarantees a unique interpretation of the data. The
identification of the final unique solution is driven here by
the maximum of Eq. 7, but it could also be made by a
domain expert based on his experience. As illustrated by the
experimental results, this approach could be a valuable choice
for several neuroimaging and bioinformatics problems, but it
could be suitable also to other application domains in which
discrete data values are present that may easily lead to ties in
the data.
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