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Abstract

In the framework of gene expression data analysis, the selection of biologically rel-
evant sets of genes and the discovery of new subclasses of diseases at bio-molecular
level represent two significant problems. Unfortunately, in both cases the correct
solution is usually unknown and the evaluation of the performance of gene selection
and clustering methods is difficult and in many cases unfeasible. A natural approach
to this complex issue consists in developing an artificial model for the generation
of biologically plausible gene expression data, thus allowing to know in advance the
set of relevant genes and the functional classes involved in the problem.

In this work we propose a mathematical model, based on positive Boolean func-
tions, for the generation of synthetic gene expression data. Despite its simplicity,
this model is sufficiently rich to take account of the specific peculiarities of gene
expression, including the biological variability, viewed as a sort of random source.
As an applicative example, we also provide some data simulations and numerical
experiments for the analysis of the performances of gene selection methods.

Key words: Gene expression modeling, gene selection, gene expression data
clustering, positive Boolean functions, DNA microarrays.

1 Introduction

DNA microarrays provide the gene expression level for thousands of genes
pertaining to a given tissue, thus allowing to understand mechanisms regu-
lating biological processes, such as the onset of a disease or the effects of a
drug [2]. To this end, supervised and unsupervised machine learning and sta-
tistical methods have been largely applied to the analysis of gene expression
data [14, 15, 20, 23].

In some situations the quality of the solution offered by a given technique can
be easily evaluated; this is the case of pattern recognition problems, where
the accuracy of a classifier can be measured through cross-validation or hold-
out estimation. In other problems the performance of a statistic or learning
method cannot be assessed since the correct solution is not available, even in
a subset of cases.

For instance, several statistic and machine learning techniques [10, 11, 18]
have been proposed in the literature to face with the important problem of
gene selection, where the subset of genes involved in a biological process of
interest is to be determined from a collection of microarray experiments. Un-
fortunately, the entire set of genes involved in a specific biological process is
usually unknown or only partially known. Consequently, the evaluation of the
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real effectiveness of gene selection methods is very difficult and in many cases
unfeasible.

Other important problems, such as the discovery of new subclasses of diseases
detected at bio-molecular level may be formalized as unsupervised clustering
problems [1, 19]. However, besides the fact that unsupervised clustering is in
general an ill-posed problem, in this case no a priori solutions are known in
advance, as the ”real” bio-molecular classes are usually unknown.

To provide some kind of performance evaluation, several models have been
proposed to produce synthetic gene expression data for classification, cluster-
ing and gene selection problems [6, 24]. Even if in principle they may be helpful
to test gene selection methods, their main limitation consists in a drastic sim-
plification of the model, which is not sufficiently rich to take into account the
peculiarities of gene expression data.

In this paper we propose a new biologically motivated mathematical model
capable to describe the relationships between the expression levels of the genes
of a virtual tissue and its functional state. In this way it is possible to design
an artificial system for a genome-wide synthesis of gene expression data. In
particular, the randomness due to biological variability and measurement er-
rors is gathered in a specific term, whereas it is shown that the deterministic
part of the model can be implemented by a positive Boolean function acting
on relevant genes.

Furthermore, a convenient manner of writing this kind of functions consists
in employing m-of-n expressions, which are able to capture the main biologi-
cal characteristics of gene expression, while maintaining a sufficient simplicity.
Numerical experiments show how to apply the proposed model to the analy-
sis of the performances of largely used statistical and machine learning gene
selection methods.

The structure of the paper is the following: Sec. 2 analyzes in details the bio-
logical characteristics of gene expression data that must be taken into account
in the development of an artificial model for the generation of virtual microar-
ray experiments. The proposed model based on positive Boolean functions is
described in Sec. 3, whereas in Sec. 4 numerical experiments show how to ap-
ply the proposed model to the perfomance analysis of gene selection methods.
Sec. 5 reports some conclusions.
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2 Biological characteristics of gene expression data

Many important results published in the bio-medical and bioinformatics lit-
erature point out the main structures underlying gene expression data. Their
analysis allows to derive a collection of specific characteristics, which must
be satisfied by an artificial model so as to produce biologically plausible gene
expression levels.

2.1 Profiles and expression signatures

The main goal of gene selection methods consists in finding sets of genes
significantly related to a specific functional state (e.g. diseased vs. healthy).
In the bio-molecular literature sets of biologically relevant and differentially
expressed genes are named expression signatures [1, 7, 16, 17, 26]. This term
has been firstly introduced by Alizadeh et al. [1] to characterize gene expression
patterns found by gene expression profiling. More precisely this term refers to
a group of genes coordinately expressed in a given set of specimens and in a
specific physiological or pathophysiological condition.

The correlation among the mRNA levels of the genes is due to the underlying
regulatory system, by which the same set of transcription factors and binding
sites may be directly or indirectly shared by the genes belonging to the same
expression signature. Hence, a gene expression signature indicates a cluster of
coordinately expressed genes, whose coordination reveals the fact that they
participate to the same biological process (and hence they are controlled by
the same set of regulation factors). Indeed, they are usually named by either
the cell type in which their component genes are expressed, or by the biological
process in which their component genes are known to function.

From this standpoint the overall expression profile of a patient can be in-
terpreted as a collection of gene expression signatures that reveal different
biological features of the analyzed sample [1].

Expression signatures has been mainly discovered and analyzed in gene expres-
sion profiles of diseases. For instance, the expression profiling of B-cell malig-
nancies through hierarchical clustering revealed expression signatures related
to cell-proliferation, lymph-nodes, T-cells, Germinal Center B-cells (GCB) and
others [1].

Independent Component Analysis performed on gene expression data from
ovarian cancer tissues found gene expression signatures representing potential
pathophysiological processes in ovarian tissue samples [16]. Expression profil-
ing of rhabdomyosarcoma (RMS), the most common soft tissue sarcoma in
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children, identified two signatures associated with metastatic RMS, responsi-
ble for most of the fatal outcome of this disease [26], while two way hierarchical
clustering analysis identified several expression signatures expressed in differ-
ent types of bladder carcinoma [7].

Expression signatures have been also identified in species other than humans
and in contexts not related to tumoral differentiation. For instance compar-
ative functional genomics based on shared patterns of regulations across or-
thologous genes identified shared expression signatures of aging in orthologous
genes of D. melanogaster and C. elegans [17].

Since expression profiles and expression signatures seem to be well-established
biological structures that characterize gene expression data, they can be em-
ployed as the corner stones of our artificial model. To this aim, in the next
subsection the main properties of gene expression signatures will be analyzed
and discussed.

2.2 Characteristics of gene expression signatures

Differential expression and co-expression. Differential expression analy-
sis of single genes, even if it may be useful to identify specific genes involved
in biological processes [5], cannot capture the complexity of tightly regulated
processes, crucial for the proper functioning of a cell.
Correlations among gene expression levels have been observed [1, 8], reflecting
the fact that in most biological processes genes are co-regulated. As recently
observed, not all the changes in co-regulation are manifested by up or down
regulation of individual genes, and we need to explicitly consider interactions
among genes to discover patterns in the data [13]. This corresponds to exam-
ine sets of co-regulated genes, i.e. expression signatures, to reveal functional
relationships among genes.

Gene expression signatures as a whole rather than single genes con-
tain predictive information. Many times is the signature taken as a whole
that seems to contain predictive information for a biologically meaningful iden-
tification of tissue samples. For instance, it was found an expression signature
of 8 upregulated and 9 downregulated genes associated with metastasis in dif-
ferent types of adenocarcinoma: none of these genes represents a marker, but
it is the signature as a whole that represents a “collective marker” of tumor
metastasis [21].
In other works [13, 21] it has been shown that in some cases relevant differences
are subtle at the level of individual genes but coordinate in gene expression
groups.

Genes may belong to different gene expression signatures at the
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same time. Many genes may be involved in a number of distinct behav-
iors, depending on the specific conditions of the tissue. From this standpoint
they may belong to different expression signatures [9]. Indeed, each gene may
be influenced by several transcription factors, each of which affects several
genes [16]. Moreover, many underlying conditions in a given sample may con-
cur to define a gene expression signature (e.g. tumorigenesis, angiogenesis,
apoptosis) [12].

Expression signatures may be independent of clinical parameters. An
expression signature of 153 genes can be used to correctly classify hepatocellu-
lar carcinoma (HCC) intra-hepatic metastasis from metastatic-free HCC [25].
This expression signature, that embeds high predictive information, has been
shown to be independent of tumor size, tumor encapsulation and patient age,
but very similar to that of their corresponding metastases.
Several other works showed that a bio-molecular characterization of tumors
can discover different subtypes of malignancies, not detectable with traditional
morphological and histopathological features (see e.g. [1, 10]).

Different gene expression profiles may share signatures and may
differ only for few signatures. It has been shown that gene expression
signatures may be shared and partially expressed in different gene expression
profiles [1, 21, 25].
For instance, it has been shown that Diffuse Large B-Cell Lymphoma (DL-
BCL) subgroups (GCB-like and activated B-like DLBCL) share most of the
expression signatures but differ mainly for two signatures (GCB and acti-
vated B-cell signatures), partially expressed respectively in germinal center
B-cell and activated peripheral blood B cell [1].

Moreover, hierarchical clustering, in the space of a 128 genes signature of
metastatic adenocarcinoma nodules of diverse origin, showed two clusters of
primary tumors that were highly correlated with metastatic ones: this fact,
together with a differential overall survival in primary adenocarcinoma tu-
mors, showed that the considered gene expression signature is present in a
subpopulation of primary tumors [21].

Hence, gene expression profiles of functionally different tissues may share some
expression signatures, differing only for a subset of them. These expression
signatures may be also partially expressed (that is, not all the genes belonging
to the expression signature are over-expressed or under-expressed), reflecting
functional alterations in diseased patients.
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2.3 Modeling issues

In the light of the characteristics of gene expression signatures described in
the previous section, we can identify the following main issues, which must
be taken into account in the construction of a biologically plausible artificial
model for gene expression data:

(1) Expression profiles may be characterized as a set of gene expression signa-
tures, which uniquely determines a functional group of samples. Thus, the
model should allow us to define expression profiles in terms of expression
signatures, ensuring a large flexibility with respect to the number and
the kind of genes composing the synthetic expression signatures.

(2) Expression signatures are interpreted in the literature as a set of co-
expressed genes; these genes may be overexpressed or underexpressed
with respect to a particular condition. Accordingly, in the model, each
expression signature should be defined as a set of overexpressed or un-
derexpressed genes, that is genes with expression levels above or below a
given threshold. The model should define a signature active if its genes
are coordinately over(under)expressed.

(3) Expression signatures may be defined either by the overall available knowl-
edge about bio-molecular processes (e.g. by Gene Ontology categories) or
may be discovered through statistical and machine learning methods.
Hence, the model should permit to define arbitrary signatures, in order
to face with a large range of applications in different biological contexts.

(4) Genes may belong to different signatures at the same time. Consequently,
the model should allow to assign the same gene to different signatures.

(5) The number of genes within an expression signature usually vary from
few units to few hundreds. Accordingly, the model should permit to se-
lect within this range the number of elements for each gene expression
signature.

(6) Apart from technical variation (that in principle should be detected and
canceled by proper design and implementation of bio-technological ex-
periments and suitable pre-processing procedures [3]), gene expression is
biologically variable also within functional classes (conditions) [4]. Thus,
the model should reproduce the variation of gene expression data, which
may be simulated by sampling from a predefined distribution. Our prelim-
inary analysis showed that gene expression values are close to be normally
distributed.

(7) Not always expression signatures show large variations of gene expression
levels: some signatures may present modest but coordinate variations.
Consequently, the model should be sufficiently flexible to allow small
variations of coexpressed genes, and to this end it should include tunable
parameters of the gene distributions.

(8) Not all the genes within a signature may be expressed in all the samples.
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Moreover, gene expression variation among individuals may introduce
variation into expression signatures. Hence, the model should permit to
introduce flexibility in the number of genes that can be underexpressed
or overexpressed, as well as to introduce individual variability within a
functional group.

(9) Different expression profiles may differ only for few signatures, i.e. dif-
ferent functional groups may share the same (or very similar) expression
signatures. This situation must be permitted by the artificial model when
developing expression signatures for different functional states.

(10) Some signatures may be only partially expressed within a particular ex-
pression profile. Accordingly, the model should be sufficiently flexible to
allow different ways of constructing an expression profile. For instance,
it must provide for signatures that may or may not be expressed, as well
as for “mandatory” signatures, whose activation is necessary for a given
functional state.

3 The mathematical model

On the basis of the biological analysis presented in Sec. 2 and, in particular,
starting from the concepts of expression profile, expression signature and gene
modulation, we propose a mathematical model describing the relationship
between the expression levels of genes and functional state of a tissue. Our
model will receive in input a set of values representing the gene expression
levels of a tissue and will return in output the value 1 if the tissue is in the
functional state of interest and 0 otherwise.

Since in a real situation, due to both biological variability and possible mea-
surement errors occurring in DNA-microarray experiments, a deterministic
relationship between gene expression values and the functional state of the
tissue does not exist, the model will be composed by a deterministic part
described through a function f : Rm → {0, 1} and by a random term e corre-
sponding to the probability that a tissue is assigned to the wrong state. If we
denote with y the output of the model and with x the input vector we will
have

y =





f(x) with probability 1− e

1− f(x) with probability e

To define the model function f let us introduce the input set A = {g1, . . . , gm},
given by the collection of the total number m of analyzed genes, and the
real vector x = (x1, . . . , xm) including the expression levels of the m genes
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belonging to A.

Suppose that, for each gene gi belonging to A, a modulation threshold ti
exists so that we can assert that the gene gi is overexpressed if the value xi

of its expression exceeds ti and underexpressed if xi < −ti. More precisely, we
say that a gene is modulated when it is overexpressed or underexpressed with
respect to a given functional state.

Therefore, it is possible to define a mapping β : Rm → {0, 1}m that depends
on the modulation thresholds ti and returns for each gene the value 1 if that
gene is modulated and 0 otherwise.

zi = βi(x) =





1 if gi is modulated (i.e. if xi > ti or xi < −ti)

0 if gi is not modulated
(1)

Suppose the output is uniquely determined by the state (modulated or not) of
the m genes and does not depend on their specific expression values. Then, the
function f can be written as f(x) = ϕ(β(x)), where ϕ is a Boolean function
defined on binary strings in {0, 1}m. Consequently, once the mapping β is
completely described, the deterministic component f of our model is uniquely
determined by the construction of the Boolean function ϕ.

On the input set {0, 1}m, having cardinality 2m, we consider the standard
partial ordering ({0, 1}m,≤), i.e. for any pair u,z ∈ {0, 1}m we have u ≤ z if
and only if ui ∨ zi = zi for every i ∈ {1, . . . , m}, where ∨ denotes the logical
or operator. A Boolean function ϕ : {0, 1}m → {0, 1} will be called positive
if and only if u ≤ z implies ϕ(u) ≤ ϕ(z) for all u, z ∈ {0, 1}m.

Consider the truth table of a positive Boolean function ϕ : {0, 1}m → {0, 1}.
Denote with pi the fraction of input vectors z with output 1 having the i-th
component zi = 1 and with p the fraction of patterns z ∈ {0, 1}m with output
1 out of the total 2m.

pi =

∑
z∈{0,1}m,zi=1 ϕ(z)

2m−1
, p =

∑
z∈{0,1}m ϕ(z)

2m
(2)

By using the definition of positive Boolean function it can be easily seen that
pi ≥ p. Thus, we can denote with Rϕ the set of the indexes of the input
components for which the strict inequality holds, i.e.

Rϕ = {i ∈ {1, . . . , m} : pi > p, }

and with k = |Rϕ| its cardinality (number of elements).
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Table 1
a) Truth table of the positive Boolean function ϕ1; b) Truth table equivalent to
Tab. 1a.

z ϕ1(z) z ϕ1(z)

z1 z2 z3 z4 z1 z2 z3 z4

0 0 0 0 0 1 0 0 0 0

0 0 0 1 0 1 0 0 1 0

0 0 1 0 0 1 0 1 0 1

0 0 1 1 0 1 0 1 1 1

0 1 0 0 0 1 1 0 0 0

0 1 0 1 0 1 1 0 1 0

0 1 1 0 1 1 1 1 0 1

0 1 1 1 1 1 1 1 1 1

z ϕ1(z)

z1 z2 z3

0 0 0 0

0 0 1 0

0 1 0 0

0 1 1 1

1 0 0 0

1 0 1 1

1 1 0 0

1 1 1 1

a) b)

In a similar way we define

Iϕ = {i ∈ {1, . . . ,m} : pi = p}

Iϕ will obviously have cardinality m − k and will include the indexes of the
components of the input vector not relevant for the output. Hence, the function
ϕ can be equivalently defined by a truth table with only k inputs; this new
description leaves fractions p and pi unchanged.

As an example, consider the truth table in Tab. 1a for the positive Boolean
function ϕ1. From a direct inspection, using the definitions (2), we obtain:

p =
3

8
, p1 =

1

2
, p2 =

1

2
, p3 =

3

4
, p4 =

3

8

Since p1, p2 and p3 are strictly greater than p, whereas p4 = p, the same
function can be described by a truth table with 3 inputs, reported in Tab. 1b.
As we can note, the values of p, p1, p2 and p3 remain unchanged.

It will be shown in this section that the adoption of a positive Boolean function
ϕ for the construction of the model allows to satisfy the biological requirements
outlined in Sec. 2. In particular, if gene gi (corresponding to the i-th input zi)
is defined to be relevant when pi > p, i.e. when i ∈ Rϕ, from a biological point
of view, the set Rϕ determines the expression profile of the functional state
described by ϕ, since the presence in it of indexes of modulated genes increases
the probability that the corresponding tissue is in the considered functional
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state. The elements having indexes in Iϕ, on the contrary, are irrelevant for
the determination of the output value for ϕ and, consequently, are associated
with genes not belonging to the expression profile.

Consider a positive Boolean function and restrict its domain to include only
the relevant k input variables. If D1(f) is the collection of the input vectors
z for which the output value of ϕ is 1

D1(f) = {z ∈ {0, 1}k : ϕ(z) = 1}

and P (z) is the set of the indexes of the components of z with value 1

P (z) = {i ∈ {1, . . . , k} : zi = 1}

we have

ϕ(z1, . . . , zk) =
∨

z∈D1

∧

P (z)

zi (3)

where
∧

P (z) is the logical product (and) among all the components of z with
indexes in P (z), while

∨
D1

is the logical sum (or) on the input vectors in D1.

In this way every positive Boolean function can be expressed through a logical
sum (

∨
) of logical products (

∧
) of their inputs. As an example, consider the

truth table in Tab. 1b: expression (3) for ϕ1 has the form

ϕ1(z1, z2, z3) = (z2 ∧ z3) ∨ (z1 ∧ z3) ∨ (z1 ∧ z2 ∧ z3) = (z2 ∧ z3) ∨ (z1 ∧ z3) (4)

An alternative way of representing a positive Boolean function can be derived
by extending the concept of m-of-n expression defined in [22]. To this aim we
introduce the following

Definition 1 If

G(q) = {zj1 , . . . , zjl
, jr 6= js if r 6= s}

is a set composed by l distinct components of the generic vector z ∈ {0, 1}k

and q is a positive integer with q ≤ l, we say that G(q) is active if at least q
of its components have value 1.

Suppose, for example, that k = 4 and G(2) = {z1, z2, z3}. Then, G(2) is
not active for z = (1, 0, 0, 1), while G(2) is active for z = (1, 1, 0, 0) or z =
(1, 0, 1, 0).

Definition 2 If G1(q1), . . . , Gh(qh) are defined as above, with |Gi(qi)| = li,
qi ≤ li, and p, h are positive integers with p ≤ h, the m-of-n expression of
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a positive Boolean function ϕ : {0, 1}k → {0, 1} is given by the following
representation

ϕ(z1, . . . , zk) =





1 if at least p of the h sets G1(q1), . . . , Gh(qh) are active

0 otherwise

It can be shown that

Theorem 3 A positive Boolean function ϕ : {0, 1}k → {0, 1} can always be
written in the form of an m-of-n expression.

PROOF. Denote with h = |D1| the cardinality of the set D1 and with
z1, . . . , z|D1| its elements. Then, the theorem is proved by setting qi = |P (zi)|,
Gi(qi) = {zj : j ∈ P (zi)}, for every i ∈ {1 . . . , h}, and p = 1. In this way
the m-of-n expression of ϕ is equivalent to the and-or expression in (3).
2

According to the proof of Th. 3, the function ϕ1 of Tab. 1b can be put in the
form of an m-of-n expression by taking the following two sets of components

G1(2) = {z1, z3}, G2(2) = {z2, z3} (5)

each of them gives rise to a logical product in expression (4) since every set
is active when all its components has value 1, i.e. when the corresponding
logical product gives output 1. Then, by taking p = 1, the logical or in (4) is
obtained.

In general, by denoting

Gi(qi) = (zji,1
, . . . , zji,li

)qi

we can represent ϕ as follows

ϕ(z) = [(zj1,1 , . . . , zj1,l1
)q1 , . . . , (zjh,1

, . . . , zjh,lh
)qh

]p (6)

As an example, from (5) we obtain:

ϕ1(z) = [(z1, z3)2, (z2, z3)2]1

However, this representation of ϕ1 as an m-of-n expression is not unique; the
same function can also be obtained by

ϕ1(z) = [(z1, z2)1, (z3)1]2
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Table 2
Truth table equivalent to Tab. 1b.

z G1 G2 ϕ1(z)

z1 z2 z3

0 0 0 not active not active 0

0 0 1 not active active 0

0 1 0 active not active 0

0 1 1 active active 1

1 0 0 active not active 0

1 0 1 active active 1

1 1 0 active not active 0

1 1 1 active active 1

As a matter of fact, the resulting truth table, presented in Tab. 2, is equivalent
to that reported in Tab. 1b.

The following example shows how, when the dimension k of the input domain
is large, m-of-n expressions can provide a more compact description of positive
Boolean functions with respect to (3).

Let ϕ2 : {0, 1}5 → {0, 1} be the positive Boolean function having the truth
table in Tab. 3. By using (3) we obtain:

ϕ2(z1, z2, z3, z4, z5) = (z4 ∧ z5) ∨ (z1 ∧ z2 ∧ z4) ∨ (z1 ∧ z2 ∧ z5) ∨ (z1 ∧ z3 ∧ z4)

∨(z1 ∧ z3 ∧ z5) ∨ (z2 ∧ z3 ∧ z4) ∨ (z2 ∧ z3 ∧ z5)

However, it can be easily seen that the m-of-n expression

ϕ2(z) = [(z1, z2, z3)2, (z4)1, (z5)1]2 (7)

leads to the same positive Boolean function. Because of this property, m-of-n
expressions will be employed to derive a compact representation for positive
Boolean functions.

Finally, by combining the representation of the function ϕ defined in (6) and
the mapping β defined in (1), the model function f(x) = ϕ(β(x)) can be
written in an explicit form. It is sufficient to replace the components of the
vector z belonging to the sets Gi(qi) with the mapping β that determines
their values. For example, if zi assume value 1 when xi > ti, we can replace zi

with xi > ti, otherwise we replace zi with xi < −ti. As an example, suppose
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Table 3
Truth table of ϕ2 : {0, 1}5 → {0, 1}.

z ϕ2 z ϕ2 z ϕ2

z1 z2 z3 z4 z5 z1 z2 z3 z4 z5 z1 z2 z3 z4 z5

0 0 0 0 0 0 0 1 0 1 1 1 1 0 1 1 0 1

0 0 0 0 1 0 0 1 1 0 0 0 1 0 1 1 1 1

0 0 0 1 0 0 0 1 1 0 1 1 1 1 0 0 0 0

0 0 0 1 1 1 0 1 1 1 0 1 1 1 0 0 1 1

0 0 1 0 0 0 0 1 1 1 1 1 1 1 0 1 0 1

0 0 1 0 1 0 1 0 0 0 0 0 1 1 0 1 1 1

0 0 1 1 0 0 1 0 0 0 1 0 1 1 1 0 0 0

0 0 1 1 1 1 1 0 0 1 0 0 1 1 1 0 1 1

0 1 0 0 0 0 1 0 0 1 1 1 1 1 1 1 0 1

0 1 0 0 1 0 1 0 1 0 0 0 1 1 1 1 1 1

0 1 0 1 0 0 1 0 1 0 1 1

that in f2(x) = ϕ2(β(x)), the mapping β has the following form

z1 = β1(x) =





1 if x1 > 2

0 otherwise
z2 = β2(x) =





1 if x2 < −3

0 otherwise

z3 = β3(x) =





1 if x3 > 1

0 otherwise
z4 = β4(x) =





1 if x4 > 3

0 otherwise

z5 = β5(x) =





1 if x5 < −1

0 otherwise

Then, by extending the representation (7), f2 can be written as follows:

f2(x) = [(x1 > 2, x2 < −3, x3 > 1)2, (x4 > 3)1, (x5 < −1)1]2 (8)

In this way, when a vector x is presented to the model, we can immediately
know if f2(x) = 1. In addition, if we interpret each set Gi(qi) as an expression
signature, it is easy to see that the proposed model implements the biological
specifications presented in Sec. 2:

• The expression profile is defined in terms of expression signatures;
• Each expression signature is defined as a set of underexpressed or overex-

pressed genes, that is genes with gene expression levels above or below a
given threshold;

• Genes may belong to different expression signatures at the same time;
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• By choosing a value of q lower than the cardinality of the sets G(q), not all
the genes belonging to the expression signature have to be modulated to
make G(q) active. In a similar way, by taking a value for p less than h, not
all the expression signatures have to be active to induce the output value 1.

4 An application to the evaluation of gene selection methods

The model proposed in the previous section can be employed to evaluate
the performance of gene selection methods in determining the correct set of
relevant genes when analyzing a collection of examples derived from synthetic
microarray experiments, each of which is associated with a virtual tissue. Every
example is given by a pair (x, y), where x is a real-valued input vector whose
components represent the gene expression levels for the corresponding tissue.

The output y can vary into a set of c different values, each one denoting the
class which the associated tissue belongs to. In this way situations where the
analyzed tissue belongs to one of c different possible classes are simulated; this
corresponds to consider c different functional states, one for each output class.
The case c = 2, where the output y can assume the values 1 and −1, will be
examined henceforth; a generalization of the analysis to higher values of c is
straightforward.

The mathematical model developed in the previous section can be adopted
to describe each of the two functional states. Two subsequent phases have
been devised: in the first one the two functions f1 and f2, related to the
two different functional states, are built, whereas in the second one the gene
expression levels of n virtual tissues are generated.

As described in the previous section, randomness inherent the determination
of the functional state can be collected into a real parameter e, so that with
probability 1− e each virtual tissue belonging to the output class 1 (resp. −1)
has gene expression levels forming a vector x verifying f1(x) = 1 (resp. f2(x) =
1). If the classes are mutually exclusive (as it is usually the case), it should
be guaranteed that each tissue belongs to only one functional state, i.e. if x
is the associated input vector only one model provides the output 1.

The collection of virtual tissues generated by the model can be collected into
a matrix X, where each row corresponds to a tissue and each column to a
gene. Then, a final column Y representing the class of each tissue is added.
Feature selection and clustering methods can be applied to Z = [X,Y ] and X
respectively. However, since both the rule determining the membership of a
tissue to a class and the relationship among the virtual genes are completely
known, these methods can be directly tested and their performances can be
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easily evaluated.

As an example, we compare two feature selection methods, the technique
proposed by Golub et al. in [10] (a simple variation of the classic t-test) and
the SVM-RFE procedure [11], on two different collections of examples built
by adopting the model described in the previous section. The evaluation of
the performances of the two methods has been performed by counting how
many relevant genes, actually belonging to the expression profile, are found.

The first dataset X1 is composed by 100 artificial tissues, 60 belonging to the
first class and 40 in the second class, with 6000 virtual genes. The expression
profiles of the two functional states, represented by the functions f1 and f2,
contain 144 genes in total.

The m-of-n expression of f1 has been built by using the mathematical model
described in the previous section with parameters:

• h = 5;
• l1 = 17, l2 = 20, l3 = 10, l4 = 11, l5 = 16;
• q1 = 7, q2 = 8, q3 = 4, q4 = 5, q5 = 7;
• p = 3;

while the values of the parameters for the function f2 are the following:

• h = 6;
• l1 = 14, l2 = 12, l3 = 13, l4 = 11, l5 = 11, l6 = 10;
• q1 = 7, q2 = 6, q3 = 7, q4 = 6, q5 = 6, q6 = 5;
• p = 4;

For both the functional states the parameter e has been fixed to 0.1.

Both the Golub’s method and SVM-RFE have been applied to the complete
dataset Z1 = [X1, Y1], being Y1 the vector containing the labels y of the class
of each tissue x (y = 1 if f1(x) = 1 or y = −1 if f2(x) = 1). Every gene
selection method assigns a rank value to each of the 6000 genes: the higher is
the rank the more relevant is the corresponding gene. The first 144 genes with
greater rank values are then compared with the 144 genes actually belonging
to the two expression profiles.

If we denote with G144 and S144 the set of the 144 most relevant genes selected
by Golub’s method and by SVM-RFE, respectively, we can evaluate the in-
tersections between G144 or S144 and the set M144 of the genes included in the
two expression profiles. The greater is the size of the intersection, the better
is the performance of the gene selection method. A relative measure of this
term is given by the fraction PG (resp. PS) of relevant genes contained in G144

(resp. R144).
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The results show that

PG =
|G144 ∩M144|

|M144| =
132

144
= 0.92

and

PS =
|S144 ∩M144|

|M144| =
24

144
= 0.17

having denoted with |A| the cardinality (number of elements) of the set A.
The comparison between the values of PG and PS shows that in this artificial
dataset the behavior of the Golub’s method is significantly better than that
of SVM-RFE. In particular, the former is able to retrieve most (92%) of the
relevant genes.

The application of the same approach to a second artificial dataset may help
to understand if this result has a more general validity. To this aim a new data
matrix Z2 = [X2, Y2] has been generated, where X2 contains 80 virtual tissues
(50 belonging to the first class and 30 to the second class) and 2500 virtual
genes. The parameters for the construction of the m-of-n expression f1 for the
first functional state are

• h = 5;
• l1 = 13, l2 = 17, l3 = 10, l4 = 17, l5 = 10;
• q1 = 6, q2 = 7, q3 = 4, q4 = 7, q5 = 4;
• p = 5;

while the model f2 for the second functional state is generated starting from
the following parameters

• h = 6;
• l1 = 12, l2 = 15, l3 = 12, l4 = 10, l5 = 12, l6 = 10;
• q1 = 5, q2 = 6, q3 = 5, q4 = 4, q5 = 5, q6 = 4;
• p = 6;

The value of the parameter e has been fixed to 0.05.

Since, in this case, the total number of genes belonging to the two expression
profiles is 133, we consider the sets G133 and S133 obtained by applying the
Golub’s method and SVM-RFE, respectively, to the dataset Z2 and by taking
the 133 genes with highest rank for both methods. In this way, we can again
compute the quantities PG and PS, given by the fraction of relevant genes
included in G133 and S133:

PG =
|G133 ∩M133|

|M133| =
124

133
= 0.93
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while

PS =
|S133 ∩M133|

|M133| =
39

133
= 0.29

M133 is the set of the relevant genes adopted for the construction of the m-of-n
expressions of f1 and f2. As one can note, also in this case the Golub’s method
achieves by far the best performance.

5 Conclusions

An artificial model for the generation of biologically plausible gene expression
data, to be adopted in the evaluation of gene selection and clustering methods,
has been proposed. Starting from the concepts of gene expression signature
and gene expression profile, whose properties can be derived by publications
in the bio-medical and bioinformatics literature, we have obtained a list of
requirements that must be fulfilled by the artificial model to guarantee a
sufficient degree of similarity between virtual and real gene expression data.

A mathematical model, composed by a random term and by a positive Boolean
function ϕ, has been shown to satisfy the required specifications. The adoption
of a particular form, called m-of-n expression, for the function ϕ allows to
significantly simplify the generation process of the model, emphasizing the
mathematical counterparts of gene expression signature and gene expression
profile.

An application of the proposed artificial model in evaluating the performances
of two gene selection techniques, Golub’s method [10] and SVM-RFE [11],
has been also presented. The analysis of two artificial datasets, where the
collection of relevant genes is considerably smaller than the whole set of genes
characterizing the virtual tissue, has permitted to derive that the Golub’s
method performs significantly better than SVM-RFE, being able to retrieve
more than 90% of the relevant genes.

Acknowledgment

This work was partially supported by the Italian MIUR projects “Laboratory
of Interdisciplinary Technologies in Bioinformatics (LITBIO)” and has been
developed in the context of CIMAINA Center of Excellence. We thank the
reviewers for their comments to our paper.

17



References

[1] A. Alizadeh, M.B. Eisen, R.E. Davis, C. Ma, I.S. Lossos, A. Rosenwald,
J.C. Boldrick, H. Sabet, T. Tran, X. Yu, J.I. Powell, L. Yang, G.E. Marti,
T. Moore, J. Hudson, L. Lu, D.B. Lewis, R. Tibshirani, G. Sherlock,
W.C. Chan, T.C. Greiner, D.D. Weisenburger, J.O. Armitage, R. Warnke,
R. Levy, W. Wilson, M.R. Grever, J.C. Byrd, D. Botstein, P.O. Brown,
and L.M. Staudt. Distinct types of diffuse large B-cell lymphoma identi-
fied by gene expression profiling. Nature, 403:503–511, 2000.

[2] P. Baldi and G.W. Hatfield. DNA Microarrays and Gene Expression.
Cambridge University Press, Cambridge, UK, 2002.

[3] J.J. Chen, R. Delongchamp, C. Tsai, H. Hsueh, F. Sisatare, K. Thomp-
son, V. Deasi, and J. Fuscoe. Analysis of variance components in gene
expression data. Bioinformatics, 20(9):1436–1446, 2004.

[4] V. Cheung, L. Conlin, T. Weber, M. Arcaro, K. Jen, M. Morley, and
R. Spielman. Natural variation in human gene expression assessed in
lymphoblastoid cells. Nature Genetics, 33(3):422–425, 2003.

[5] X. Cui and G. Churchill. Statistical tests for differential expression in
cDNA microarray experiments. Genome Biology, 4(4), 2003.

[6] S. Dudoit and J. Fridlyand. Bagging to improve the accuracy of a clus-
tering procedure. Bioinformatics, 19(9):1090–1099, 2003.

[7] L. Dyrskjøt, T. Thykjaer, M. Kruhøffer, J. Jensen, N. Marcussen,
S. Hamilton-Dutoit, H. Wolf, and T. Ørntoft. Identifying distinct classes
of bladder carcinoma using microarrays. Nature Genetics, 33:90–96, 2003.

[8] M.B. Eisen, P.T. Spellman, P.O. Brown, and D. Botstein. Cluster analysis
and display of genome-wide expression patterns. PNAS, 95(25):14863–
14868, 1998.

[9] P. Gasch and M. Eisen. Exploring the conditional regulation of yeast gene
expression through fuzzy k-means clustering. Genome Biology, 3(11),
2002.

[10] T.R. Golub et al. Molecular Classification of Cancer: Class Discovery and
Class Prediction by Gene Expression Monitoring. Science, 286:531–537,
1999.

[11] I. Guyon, J. Weston, S. Barnhill, and V. Vapnik. Gene Selection for
Cancer Classification using Support Vector Machines. Machine Learning,
46:389–422, 2002.

[12] J. Ihmels, S. Bergmann, and N. Barkai. Defining transcription modules
using large-scale gene expression data. Bioinformatics, 20(13):1993–2003,
2004.

[13] D. Kotska and R. Spang. Finding disease specific alterations in the co–
expression of genes. Bioinformatics, 20:i194–i199, 2004.

[14] T. Li, C. Zhang, and M. Ogihara. A comparative study of feature selection
and multiclass classification methods for tissue classification based on
gene expression. Bioinformatics, 20:2429–2437, 2004.

[15] Y. Lu and J. Han. Cancer classification using gene expression data. In-

18



formation Systems, 28:243–268, 2003.
[16] A. Martoglio, J. Miskin, S. Smith, and D. MacKay. A decomposi-

tion model to track gene expression signatures: preview on observer-
independent classification of ovarian cancer. Bioinformatics, 18(12):1617–
1624, 2002.

[17] S.A. McCarroll, C. Murphy, S. Zou, S. Pletcher, C. Chin, Y. Jan,
C. Kenyon, C. Bargmann, and H. Li. Comparing genomic expression
patterns across species identifies shared transcriptional profile in aging.
Nature Genetics, 36(2):197–204, 2004.

[18] M. Muselli. Gene selection through Switched Neural Networks. In
NETTAB-2003, Workshop on Bioinformatics for Microarrays, Bologna,
Italy, 2003.

[19] M.D. Onken, L.A. Worley, J.P. Ehlers, and J.W. Harbour. Gene ex-
pression profiling in uveal melanoma reveals two molecular classes and
predicts metastatic death. Cancer Research, 64:7205–7209, 2004.

[20] J. Quackenbush. Computational analysis of microarray data. Nat Rev
Genet., 2(6):418–427, 2001.

[21] S. Ramaswamy, K. Ross, E. Lander, and T. Golub. A molecular signature
of metastasis in primary solid tumors. Nature Genetics, 33:49–54, 2003.

[22] G. Towell, J. Shavlik. Extracting Refined Rules from Knowledge-Based
Neural Networks. Machine Learning, 131:71–101, 1993.

[23] G. Valentini, M. Muselli, and F. Ruffino. Cancer recognition with bagged
ensembles of Support Vector Machines. Neurocomputing 56C:461–466,
2004.

[24] J. Weston, A. Elisseeff, B. Scholkopf, and M. Tipping. Use of the zero-
norm with linear models and kernels methods. Journal of Machine Learn-
ing Research, 3:1439–1461, 2003.

[25] Q. Ye, L. Qin, M. Forgues, P. He, J. Kim, A. Peng, R. Simon, Y. Li,
A. Robles, Y. Chen, Z. Ma, Z. Wu, S. Ye, Y. Liu, Z. Tang, and X. Wang.
Predicting hepatitis b virus-positive metastatic hepatocellular carcinomas
using gene expression profiling and supervised machine learning. Nature
Medicine, 9(4):416–423, 2003.

[26] Y. Yu, J. Khan, C. Khanna, L. Helman, P. Meltzer, and G. Merlino.
Expression profiling identifies the cytoskeletal organizer ezrin and the
developmental homoprotein Six-1 as key metastatic regulators. Nature
Medicine, 10(2):175–181, 2004.

19


