
COSNet: a Cost Sensitive Neural Network for
Semi-supervised Learning in Graphs

Alberto Bertoni, Marco Frasca, and Giorgio Valentini

DSI, Dipartimento di Scienze dell’ Informazione,
Università degli Studi di Milano,

Via Comelico 39, 20135 Milano, Italia.
{bertoni,frasca,valentini}@dsi.unimi.it

Abstract. The semi-supervised problem of learning node labels in graphs
consists, given a partial graph labeling, in inferring the unknown labels
of the unlabeled vertices. Several machine learning algorithms have been
proposed for solving this problem, including Hopfield networks and label
propagation methods; however, some issues have been only partially con-
sidered, e.g. the preservation of the prior knowledge and the unbalance
between positive and negative labels. To address these items, we propose
a Hopfield-based cost sensitive neural network algorithm (COSNet). The
method factorizes the solution of the problem in two parts: 1) the sub-
network composed by the labelled vertices is considered, and the net-
work parameters are estimated through a supervised algorithm; 2) the
estimated parameters are extended to the subnetwork composed of the
unlabeled vertices, and the attractor reached by the dynamics of this
subnetwork allows to predict the labeling of the unlabeled vertices. The
proposed method embeds in the neural algorithm the ”a priori” knowl-
edge coded in the labelled part of the graph, and separates node labels
and neuron states, allowing to differentially weight positive and nega-
tive node labels. Moreover, COSNet introduces an efficient cost-sensitive
strategy which allows to learn the near-optimal parameters of the net-
work in order to take into account the unbalance between positive and
negative node labels. Finally, the dynamics of the network is restricted to
its unlabeled part, preserving the minimization of the overall objective
function and significantly reducing the time complexity of the learning
algorithm. COSNet has been applied to the genome-wide prediction of
gene function in a model organism. The results, compared with those ob-
tained by other semi-supervised label propagation algorithms and super-
vised machine learning methods, show the effectiveness of the proposed
approach.

1 Introduction

The growing interest of the scientific community in methods and algorithms for
learning network-structured data is motivated by emerging applications in sev-
eral domains, ranging from social to economic and biological sciences [1, 2]. In

this context a fundamental problem is represented by the supervised or semi-
supervised node classification, i.e. predicting node labels by exploiting the re-
lationships between labeled and unlabeled nodes of the network. Instances are
connected via a set of links, and a learner relies on the assumption that linked
entities tend to be assigned to the same class label. For example, in protein-
protein interaction networks genetic or physical interactions coded in the links
of the network bear witness to common biological processes or molecular func-
tion activities between linked proteins [3]; in social networks, people that are
friends often share similar characteristics or commons interests [4]; in document
classification, texts that are linked through common citations often share similar
topics [5].

Several approaches have been proposed in literature to classify networked
data. They usually represent data through an undirected graph G = (V,W),
where nodes v ∈ V correspond to instances to be classified, and W defines
the weights of the edges according to the ”strength” or the evidence of the
relationships between pairs of nodes.

The first and simplest algorithms proposed were based on “guilt-by-association”
methods, by which unlabeled nodes are set according to the majority or the
weighted majority of the labels in their neighborhoods [6, 7]. By extending this
approach, nodes can ”propagate” their labels to their neighbors iteratively by re-
peating this ”label propagation” process until convergence [8, 9]. In this context
Markov Random Walks can be applied to tune the amount of propagation we
allow in the graph, by setting the length of the walk across the graph [10, 11].
Other related methods are based on smoothness considerations that yields to
graph regularization [12, 13], or exploit the properties of the graph Laplacian
associated to the weight matrix of the network [14]. Algorithms based on the
evaluation of the functional flow in graphs [3, 15], on Markov [16] and Gaussian
Random Fields [17, 18] have been applied to the prediction of gene functions
in biological networks. Hopfield networks [19] shares common elements with la-
bel propagation algorithms. Indeed labels are iteratively propagated across the
neighbors of each node and a quadratic cost function related to the consistency
of the labeling of the nodes w.r.t. the network topology is minimized by the
network dynamics. From this standpoint Hopfield networks and most of the
proposed graph-based algorithms for the prediction of node labels can be cast
into a recently proposed common framework where a quadratic cost objective
function is minimized [20]. Nevertheless, there are some issues that have been
only partially considered in classifying networked data. Many of the graph-based
approaches do not preserve prior information coded in nodes labeling, and are
unable to effectively predict node labels when data are unbalanced, e.g. when
negative nodes significantly outnumber positives. This issue is particularly rele-
vant when label propagation algorithms are applied to predict the functions of
genes, since positive annotations are usually much less than negative ones [18].
Despite some cost-sensitive variants of Gaussian Random fields have been pro-
posed, they are based on simple class rescaling so that their respective weights
over unlabeled examples match the prior class distribution estimated from la-

beled examples [8, 18]. Finally, many approaches based on neural networks do
not distinguish between the node labels and the values of the neuron states [21],
thus resulting in a lower predictive capability of the network.

To address these issues, we propose a cost-sensitive neural algorithm (COS-
Net), based on Hopfield networks, whose main characteristics are the following:

1. Available a priori information is embedded in the neural network and pre-
served by the network dynamics.

2. Labels and neuron states are conceptually separated. In this way a class of
Hopfield networks is introduced, having as parameters the values of neuron
states and the neuron thresholds.

3. The parameters of the network are learned from the data through an efficient
supervised algorithm, in order to take into account the unbalance between
positive and negative node labels.

4. The dynamics of the network is restricted to its unlabeled part, preserving
the minimization of the overall objective function and significantly reducing
the time complexity of the learning algorithm.

In sect. 2 the classification of nodes in networked data is formalized as a semi-
supervised learning problem. Hopfield networks and the main issues related to
this type of recurrent neural network are discussed in Sect. 3 and 4. The problem
of the restriction of network dynamics to a subset of nodes is analyzed in Sect 5,
while the proposed neural network algorithm, COSNet (COst Sensitive neural
Network), is discussed in Sect. 6. In the same section we show that COSNet
covers the main Hopfield networks learning issues, and in particular a statistical
analysis highlights that the network parameters selected by COSNet lead to
significantly lower values of the the energy function w.r.t. the non cost-sensitive
version of the Hopfield network. In Section 7, to test the proposed algorithm on
a classical unbalanced semi-supervised classification problem, we applied COS-
Net to the genome-wide prediction of gene functions in a model organism, by
considering about 200 different functional classes of the FunCat taxonomy [22],
and five different types of biomolecular data. The conclusions end the paper.

2 Semi-supervised Learning in Graphs

Consider a weighted graph G = (V,W), where V = {1, . . . , n} is the vertex set
and W = (wij) is the symmetric weight matrix: the weight wij ∈ R denotes a
similarity index of node i with respect to node j. The vertices in V are labeled
with {+,−}, leading to the subsets P andN of positive and negative vertices, but
the labeling is known only for a subset S ⊂ V , while is unknown for U = V \ S.
Let be S+ = S ∩ P and S− = S ∩ N : we can refer to S+, S− and W as the
”prior information”.

The semi-supervised classification problem consists in finding a bipartition
(U+, U−) of nodes in U relying on the prior information. Nodes in U+ are then
considered candidates for the class P ∩ U .

A reasonable measure of the ”correctness” in approximating P∩U by U+ and
N ∩ U by U−, especially when unbalanced data are considered, is the Fscore,
defined as follows: by calling false positives the vertices FP = U+ ∩ N , false
negatives FN = U− ∩ P and true positives TP = U+ ∩ P , the Fscore is the

harmonic mean between precision and recall, where precision = |TP |
|TP |+|FP | ,

recall = |TP |
|TP |+|FN | . Note that 0 6 Fscore 6 1 and Fscore = 1 iff U+ = P ∩ U .

3 Hopfield Networks

By slightly generalizing the classical definition of discrete Hopfield networks
(DHNs) [19], a Hopfield network H with neurons V = {1, 2, . . . , n} can be de-
scribed by a triple H = < W, γ, α >, where:

- W is a n× n symmetric matrix in which wij ∈ R is the connection strength
between neurons i and j, with wii = 0 for each i

- γ = (γ1, γ2, . . . , γn) ∈ Rn is a vector of activation thresholds
- α is a real number in [0, π

2] that determines the two different values {sinα,
− cosα} for neuron states.

At each discrete time t each neuron i has a value xi(t) ∈ {sinα,− cosα}
according to the following dynamics:

1. At time 0 an initial value xi(0) = ai is given for each neuron i
2. At time t+ 1 each neuron is updated asynchronously in a random order by

the following activation rule

xi(t+ 1) =


sinα if

i−1∑
j=1

wijxj(t+ 1) +
n∑

k=i+1

wikxk(t)− γi > 0

− cosα if
i−1∑
j=1

wijxj(t+ 1) +
n∑

k=i+1

wikxk(t)− γi ≤ 0

(1)

The state of the network at time t is the vector x(t) = (x1(t), x2(t), . . . , xn(t)).
The main feature of a Hopfield network is the existence of a quadratic state func-
tion, i.e. the energy function:

E(x) = −1

2
xTWx+ xT γ (2)

This is a non increasing function w.r.t. the evolution of the network according
to the activation rules (1), i.e.

E(x(0)) ≥ E(x(1)) ≥ . . . ≥ E(x(t)) ≥ . . .

It is easy to show that every dynamics of the network converges to an equilib-
rium state x̂ = (x̂1, x̂2, . . . , x̂n), where, by updating each neuron i, the value x̂i

doesn’t change for any i ∈ {1, 2, . . . , n}. In this sense a DHN is a local minimizer
of the energy function, and x̂ is also called ”attractor” of the dynamics.

4 Learning Issues in Hopfield Networks

Hopfield networks have been used in many different applications, including content-
addressable memory [23, 24, 25], discrete nonlinear optimization [26], binary clas-
sification [21]. In particular in [21] is described a binary classifier for gene func-
tion prediction, named GAIN, that exploits DHNs as semi-supervised learners.
According to the semi-supervised set-up described in Section 2, GAIN considers
a set V of genes divided into (U , S), together with an index wij of similarity
between genes i and j, with 0 ≤ wij ≤ 1. Finally, S is divided into the genes with
positive labels S+ and negative labels S−. The aim is to predict a bipartition
(U+, U−) of genes U .

To solve the problem, a DHN with connection strength wij , thresholds 0 and
neuron states {1,−1} is considered; let observe that, up to the multiplicative

constant
√
2
2 , in our setting the neuron states correspond to α = π

4 . The network
is initialized with the state x = (u, s) by assigning 1 to neurons in S+, -1 to
neurons in S− and a random value to those in U (subvector u). The equilibrium
state x̂ = (û, ŝ) reached by the asynchronous dynamics is used to infer the
bipartition (U+, U−) of U by setting U+ = {i ∈ U | ûi = 1} and U− = {i ∈ U |
ûi = −1}.

This approach leads to three main drawbacks:

1. Preservation of the prior knowledge. During the network dynamics each neu-
ron is updated, and the available prior information coded in the bipartition
(S+, S−) of S may not be preserved. This happens when the reached state
x̂ = (û, ŝ) is such that ŝ 6= s.

2. Limit attractors problem. By assigning the value 1 to positive labels, -1 to
those negative and by setting to 0 the threshold of each neuron, when |S+| �
|S−| the network is likely to converge to a trivial state: in fact, the network
dynamics in this case leads to the trivial attractor (−1,−1, . . . ,−1). It is
notable that this behaviour has been frequently registered in several real-
world problems, e.g. the gene function prediction problem [27, 22].

3. Incoherence of the prior knowledge coding. Since the inference criterion is
based on the minimization of the overall objective function, we expect that
the initial state s of labeled neurons is a subvector of a state (s, û) ”close”
to a minimum of the energy function. Unfortunately, in many cases this is
not true.

To address these problems, we exploit a simple property which holds for
sub-networks of a DHN, and that we discuss in the next section.

5 Sub-network Property

Let be H = < W, γ, α > a network with neurons V = {1, 2, . . . , n}, having
the following bipartitions: (U, S) bipartition of V , where up to a permutation,
U = {1, 2, . . . , h} and S = {h + 1, h + 2, . . . , n}; (S+, S−) bipartition of S;
(U+, U−) bipartition of U .

According to (U, S), each network state x can be decomposed in x = (u, s),
where u and s are respectively the states of neurons in U and in S. The energy
function of H can be written by separating the contributions due to U and S:

E(u, s) = −1

2

(
uTWuuu+ sTWsss+ uTWuss+ sTWT

usu
)
+ uT γu + sT γs, (3)

where W =

(
Wuu Wus

WT
us Wss

)
and γ = (γu, γs).

By setting to a given state s̃ the neurons in S, we consider the dynamics
obtained by updating only neurons in U , without changing the state of neurons
in S. Since

E(u, s̃) = −1

2
uTWuuu+ uT (γu −Wuss̃)−

1

2
s̃TWsss̃+ s̃T γs,

the dynamics of neurons in U is described by the subnetworkHU |s̃ =< Wuu, γ
u−

Wuss̃, α >. It holds the following:

Fact 5.1 (Sub-network property). If s̃ is part of a energy global minimum
of H, and ũ is a energy global minimum of HU |s̃, then (ũ, s̃) is a energy global
minimum of H.

In our setting, we associate the state x(S+, S−) with the given bipartition
(S+, S−) of S:

xi(S
+, S−) =

{
sinα if i ∈ S+

− cosα if i ∈ S−

for each i ∈ S. By the sub-network property, if x(S+, S−) is part of a energy
global minimum of H, we can predict the hidden part relative to neurons U by
minimizing the energy of HU |x(S+,S−).

6 COSNet

In this section we propose COSNet (COst-Sensitive neural Network), a semi-
supervised learning algorithm whose main feature is the introduction of a super-
vised learning strategy which exploits the sub-network property to automatically
estimate the parameters α and γ of the networkH =< W, γ, α >. The main steps
of COSNet can be summarized as follows:

INPUT : symmetric connection matrix W : V × V −→ [0, 1], bipartition (U, S)
of V and bipartition (S+, S−) of S.

OUTPUT : bipartition (U+, U−) of U .

Step 1. Generate an initial temporary bipartition (U+, U−) of U such that
|U+|
|U | ' |S+|

|S| .

Step 2. Find the optimal parameters (α̂, γ̂) of the Hopfield sub-networkHS|x(U+,U−),
such that the state x(S+, S−) is ”as close as possible” to an equilibrium state.

Step 3. Extend the parameters (α̂, γ̂) to the whole network and run the sub-
network HU |x(S+,S−) until an equilibrium state û is reached. The final solu-
tion (U+, U−) is:

U+ = {i ∈ U | ûi = sin α̂}
U− = {i ∈ U | ûi = − cos α̂}.

Below we explain in more details each step of the algorithm.

6.1 Generating a Temporary Solution

To build the sub-network HS|x(U+,U−), we need to provide an initial bipartition
of U . The adopted procedure is the following:

- generate a random numberm according to the binomial distributionB(|U |, |S+|
|S|)

- assign to U+ m elements uniformly chosen in U
- assign to U− the set U \ U+.

This bipartition criterion comes from the probabilistic model described below.
Suppose that V contains some positive and negative examples, a priori un-

known, and that all bipartitions (U , S) of V are equiprobable, with |U | = h.
If S contains |S+| positive examples, while U is not observed, then by setting
P (x) = Prob {|U+| = x | S contains |S+| positives}, it is easy to see that the
following equality holds:

|S+|
|S|

· h = argmax
x

P (x).

In the next section we exploit this labeling of U to estimate the parameters α
and γ of the network.

6.2 Finding the Optimal Parameters

By exploiting the temporary bipartition (U+, U−) of U found in the previous
step, we consider the sub-networkHS|x(U+,U−) = < Wss, γ

s−WT
usx(U

+, U−), α >,
where γs

i = γ ∈ R for each i ∈ {h+1, h+2, . . . , n}. The aim is to find the values
of the parameters α and γ such that the state x(S+, S−) is ”as close as possible”
to an equilibrium state.

For each node k in S let define ∆(k) ≡ (∆+(k),∆−(k)), where

∆+(k) =
∑

j∈S+∪ U+

wkj

∆−(k) =
∑

j∈S−∪ U−

wkj .

In this way, each element k ∈ S corresponds to a point ∆(k) in the plane. In
particular, let consider the sets I+ = {∆(k), k ∈ S+} and I− = {∆(k), k ∈ S−}.
It holds the following:

Fact 6.1: I+ is linearly separable from I− if and only if there is a couple
(α, γ) such that x(S+, S−) is an equilibrium state for the networkHS|x(U+,U−).

This fact suggests a method to optimize the parameters α and γ. Let be fα,γ a
straight line in the plane that separates the points I+α,γ = {∆(k) | fα,γ(∆(k)) ≥
0} from points I−α,γ = {∆(k) | fα,γ(∆(k)) < 0}:

fα,γ(y, z) = cosα · y − sinα · z − γ = 0 (4)

Note that we assume that the positive half-plane is ”above” the line fα,γ .
To optimize the parameters (α, γ) we adopt the F-score maximization crite-

rion, since it can be shown that Fscore(α, γ) = 1 iff x(S+, S−) is an equilibrium
state of HS|x(U+,U−). We obtain

(α̂, γ̂) = argmax
α,γ

Fscore(α, γ). (5)

In order to reduce the computational complexity of this optimization, we
propose a two-step approximation algorithm that at first computes the optimum
line (in terms of the Fscore criterion) among the ones crossing the origin of the
axes, and then computes the optimal intercept:

1. Compute α̂. The algorithm computes the slopes of the lines crossing the origin
and each point ∆(k) ∈ I+ ∪ I−. Then it searches the line which maximizes
the Fscore criterion by sorting the computed lines according to their slopes in
an increasing order. Since all the points lie in the first quadrant, this assures
that the angle α̂ relative to the optimum line is in the interval [0, π

2].
2. Compute γ̂. Compute the intercepts of the lines whose slope is tan α̂ and

crossing each point belonging to I+ ∪ I−. The optimum line is identified by
scanning the computed lines according to their intercept in an increasing
order. Let q̂ be the intercept of the optimum line, then we set γ̂ = −q̂ cos α̂.

Both step 1 and step 2 can be computed in O(n log n) computational time (due
to the sorting), where n is the number of points.

6.3 Network Dynamics

The optimum parameters (α̂, γ̂) computed in the previous step are then extended
to the sub-network HU |x(S+,S−) = < Wuu, γ̂

u−WT
sux(S

+, S−), α̂ >, where γ̂u
i =

γ̂ for each i ∈ {1, 2, . . . , h}. Then, by running the sub-network HU |x(S+,S−), we
learn the unknown labels of neurons U , preserving the prior information coded
in the labels of neurons in S.

The initial state of the network is set to ui = 0 for each i ∈ {1, 2, . . . , h}.
When the position of the positive half-plane in the maximization problem (5) is
”above” the line, the update rule for node i at time t+ 1 is

ui(t+ 1) =


sin α̂ if

i−1∑
j=1

wijuj(t+ 1) +
h∑

k=i+1

wikuk(t)− θi < 0

− cos α̂ if
i−1∑
j=1

wijuj(t+ 1) +
h∑

k=i+1

wikuk(t)− θi > 0

(6)

where θi = γ̂−
∑
j∈S

wijxj(S
+, S−). When the position of the positive half-plane is

”below” the line, the disequalities (6) need to be reversed: the first one becomes
”sin α̂ if . . . > 0”, and the second ”− cos α̂ if . . . < 0”.

The stable state û reached by this dynamics is used to classify unlabeled
data. If the known state x(S+, S−), with the parameters found according to the
procedure described in Section 6.2, is a part of a global minimum of the energy of
H, and û is an energy global minimum of HU |x(S+,S−), the sub-network property
(Section 5) guarantees that (û, x(S+, S−)) is a energy global minimum of H.

6.4 COSNet Covers Hopfield Networks Learning Issues

In this section we analyze the effectiveness of the proposed algorithm w.r.t the
learning issues described in Section 4.
1. Preservation of the prior knowledge. The restriction of the dynamics to
the unlabeled data assures the preservation of the prior knowledge coded in the
connection matrix and in the bipartition of the labeled data. Note that a similar
approach has been proposed in [8], even if in that case the known labels are
simply restored at each iteration of the algorithm, without an actual restriction
of the dynamics.

In addition, the restriction of the dynamics to the unlabeled neurons reduces
the time complexity, since often unlabeled data are much less than the labeled
ones. This is an important advantage when huge and complex graphs, e.g. bio-
logical networks, are analyzed.
2. Limit attractors problem. This problem may occur when training data
are characterized by a large unbalance between positive and negative examples,
e.g. when |S+| � |S−|, which is frequent in many real-world problems [18].
In this case the points ∆(k) ≡ (∆+(k),∆−(k)) (Section 6.2) are such that
∆−(k) � ∆+(k). Accordingly, a separation angle π

4 ≤ α̂ ≤ π
2 is computed

by the supervised algorithm described in Section 6.2. In our setting, such an
angle determines a value of the positive states greater than the negative ones,
yielding the network dynamics to converge towards non trivial attractors.
3. Incoherence of the prior knowledge coding. We would like to show
that the parameters (α, γ) automatically selected by COSNet can yield to a
”more coherent” state w.r.t. the prior knowledge, in the sense that this state
corresponds to a lower energy of the underlying network.

To this end, by considering the data sets used in the experimental validation
tests (Section 7), in which a labeling x ∈ {1,−1}|V | of V is known, we randomly
choose a subset U of V . After hiding the corresponding labels, by applying
COSNet we approximate the optimal parameters (α̂, γ̂). Accordingly, we define
the state x(α̂) by setting xk(α̂) = sin α̂ if xk = 1 and xk(α̂) = − cos α̂ if xk = −1,
for each k ∈ {1 . . . |V |}. We show that the state x(α̂) is ”more coherent” with
the prior knowledge than x, by studying whether x(α̂) is ”closer” than x to a
global minimum of the energy function E(x).

As measure of ”closeness” of a given state z to a global minimum of E(x),
we consider the probability Pz that E(x) < E(z), where x = (x1, x2, . . . , x|V |)

is a random state generated according to the binomial distribution B(|V |, ρz),
where ρz is the rate of positive components in z.

To estimate Pz, we independently generate t random states x(1), x(2), ..., x(t)

and we set Y =
∑t

i=1 β(E(z) − E(x(i)), where β(x) = 1 if x ≥ 0, 0 otherwise.
The variable Y

t is an estimator of pz, and in our setting Y << t. For determining
the confidence interval of Pz at a 1−δ confidence level, we need to consider three
cases:

1. Y = 0. We can directly compute the confidence interval [0, 1− δ
1
t].

2. 1 ≤ Y ≤ 5. Y is approximately distributed according to the Poisson dis-
tribution with expected value λ = Y . Accordingly, the confidence interval is[

1
2nχ

2
2Y,1− δ

2

, 1
2nχ

2
2(Y+1), δ2

]
, where χ2

k is a chi squared random variable with

k degrees of freedom.

3. Y > 5. The random variable Y is approximately distributed according

to a normal distribution with expected value Y and variance Y (1−Y)
t . We

adopt the Agresti-Coull interval estimator [28], which is more stable for
values of Y closer to the outliers [29]. The resulting confidence interval is
Y+2
t+4 ± 1

t+4

√
(Y + 2)(t− Y − 2)z1− δ

2
, where z1−α is the 1 − α percentile of

the standard normal distribution.

By setting δ = 0.05 and t = 1000, we estimated the confidence interval for
both Px(α̂) and Px for the data sets used in the experimental phase and for all
the FunCat classes considered in Section 7. In Table 1 we report the comparison
of the confidence intervals of Px(α̂) and Px in the PPI-VM data set and for some
of the considered FunCat classes. Similar results are obtained also with the other
data sets.

We distinguish two main cases: a) both the confidence intervals coincide with
the minimum interval [0, 0.0030], case coherent with the prior information; b)
both lower and upper bounds of Px(α̂) are less than the corresponding bounds
of Px. It is worth noting that, in almost all cases, the probability Px(α̂) has an
upper bound smaller than the lower bound of Px. This is particularly evident
for classes ”01.03.16.01”, ”02.13” and ”11.02.01”; in the latter the lower bound
of Px is 0.7761, while the corresponding upper bound of Px(α̂) is w 0.

These results, reproduced with similar trends in other data sets (data not
shown), point out the effectiveness of our method in approaching the problem
of the incoherence of the prior knowledge coding.

Table 1: Confidence interval estimation for the probabilities Px(α̂) and Px at a confi-
dence level 0.95 (data set PPI-VM).

Data set PPI-VM
Class Confidence interval Class Confidence interval

Px(α̂) Px Px(α̂) Px

min max min max min max min max
”01” 0 0.0030 0 0.0030 ”02” 0 0.0030 0 0.0030

”01.01” 0 0.0030 0 0.0030 ”02.01” 0 0.0030 0.0638 0.0975
”01.01.03” 0.0001 0.0056 0.0433 0.0722 ”02.07” 0 0.0030 0.0011 0.0102
”01.01.06” 0.0001 0.0056 0.0442 0.0733 ”02.10” 0 0.0030 0.0522 0.0833

”01.01.06.05” 0.0210 0.0427 0.0702 0.1051 ”02.11” 0.0002 0.0072 0.0939 0.1332
”01.01.09” 0 0.0030 0.0045 0.0174 ”02.13” 0.0312 0.0565 0.3622 0.4226
”01.02” 0.0001 0.0056 0.0067 0.0212 ”02.13.03” 0.7139 0.7681 0.7740 0.8236
”01.03” 0 0.0030 0.0620 0.0953 ”02.19” 0.0001 0.0056 0.0006 0.0088

”01.03.01” 0.1452 0.1915 0.2232 0.2768 ”02.45” 0.1022 0.1428 0.1815 0.2312
”01.03.01.03” 0 0.0030 0.0145 0.0333 ”11” 0 0.0030 0 0.0030
”01.03.04” 0.5020 0.5637 0.6280 0.6867 ”11.02” 0 0.0030 0 0.0030
”01.03.16” 0.0025 0.0135 0.1189 0.1619 ”11.02.01” 0 0.0030 0.7761 0.8255

”01.03.16.01” 0 0.0030 0.3025 0.3608 ”11.02.02” 0.2184 0.2716 0.8519 0.8931

7 Results and Discussion

We evaluated the performance of the proposed algorithm on the gene function
prediction problem, a real-world multi-class, multi-label classification problem
characterized by hundreds of functional classes. In this context the multi-label
classification can be decomposed in a set of dichotomic classification problems
by which genes can be assigned or not to a specific functional class. Classes are
usually unbalanced, that is positive examples are significantly less than nega-
tives, and different biomolecular data sources, able to capture different features
of genes, can be used to predict their functions.

7.1 Experimental Set-up

We performed genome-wide predictions of gene functions with the yeast model
organism, using the whole FunCat ontology [22], a taxonomy of functional classes
structured according to a tree forest 1. To this end we used five different biomolec-
ular data sources, previously analyzed in [30]. The main characteristics of the
data can be summarized as follows:

- Pfam-1 data are represented as binary vectors: each feature registers the
presence or absence of 4,950 protein domains obtained from the Pfam (Pro-
tein families) data base. This dataset contains 3529 genes.
- Pfam-2 is an enriched representation of Pfam domains by replacing the bi-
nary scoring with log E-values obtained with the HMMER software toolkit [31].

1 We used the funcat-2.1 scheme with the annotation data funcat-2.1 data 20070316,
available from: ftp://ftpmips.gsf.de/yeast/catalogues/funcat/funcat-
2.1 data 20070316.

- Expr data contains gene expression measures of 4523 genes relative to two
experiments described in [32] and [33].
- PPI-BG data set contains protein-protein interaction data downloaded
from the BioGRID database [34]. Data are binary: they represent the pres-
ence or absence of protein-protein interactions for 4531 proteins.
- PPI-VM is another data set of protein-protein interactions that collects
binary protein-protein interaction data for 2338 proteins from yeast two-
hybrid assay, mass-spectrometry of purified complexes, correlated mRNA
expression and genetic interactions [35].

For PPI data we adopt the scoring function used by Chua et al [36], which
assigns to genes i and j the similarity score

Sij =
2|Ni ∩Nj |

|Ni −Nj |+ 2|Ni ∩Nj |+ 1
× 2|Ni ∩Nj |

|Nj −Ni|+ 2|Ni ∩Nj |+ 1

where Nk is the set of the neighbors of gene k (k is included). Informally, this
score is a way to take in account the interaction partners shared by the two
genes: when two genes share a high number of neighboring genes, the score is
close to 1, otherwise it is close to 0. When two genes share similar interactions,
it is likely that they share also similar biological functions.

The remaining data sets associate to each gene a feature vector; in these
cases, the score for each gene pair is set to the Pearson’s correlation coefficient
of the corresponding feature vectors. For Expr data we computed the squared
correlation coefficient to equally consider positive and negative correlated ex-
pression between genes.

To reduce the complexity of the network and the noise introduced by too
small edge weights, as a pre-processing step we eliminated edges below a given
threshold. In this way we removed very weak similarities between genes, but at
the same time we chose low thresholds to avoid the generation of ”singletons”
with no connections with other nodes. In brief, we tuned the threshold for each
dataset so that each vertex has at least one connection: in this way we obtained
a 0.05 threshold for Expr, 0.15 for Pfam-2, 0.0027 for Pfam-1, 0.01 for PPI-VM
and 0.04 for PPI-BG.

Moreover, to avoid training sets with a too small number of positive examples,
according to the protocol followed in [30], for each dataset we selected the classes
with at least 20 positives, thus resulting in about 200 functional classes for each
considered data set.

7.2 Results

We compared COSNet with other semi-supervised label propagation algorithms
and supervised machine learning methods proposed in the literature for the gene
function prediction problem. We considered the classical GAIN algorithm [21],
based on Hopfield networks; LP-Zhu, a semi-supervised learning method based
on label propagation [8]; SVM-l and SVM-g, i.e. respectively linear and gaussian
kernel SVMs with probabilistic output [37]. SVMs had previously been shown

Table 2: Performance comparison between GAIN, COSNet , LP-Zhu, SVM-l, SVM-g.

Dataset Methods Performance
GAIN COSNet LP-Zhu SVM-l SVM-g measures

Pfam-1
0.9615 0.9570 0.9613 0.7528 0.7435 Accuracy
0.0277 0.3892 0.0120 0.2722 0.2355 F-score

Pfam-2
0.9613 0.9020 0.9656 0.7048 0.7515 Accuracy
0.0296 0.3233 0.2117 0.1054 0.0270 F-score

Expr
0.9655 0.4617 0.9655 0.7496 0.7704 Accuracy
0 0.0957 0.0008 0.0531 0.0192 F-score

PPI-BG
0.9666 0.9455 0.9704 0.7679 0.7597 Accuracy
0.0362 0.3486 0.1758 0.1546 0.1178 F-score

PPI-VM
0.9554 0.9363 0.9560 0.7237 0.7222 Accuracy
0.1009 0.3844 0.2106 0.1888 0.2351 F-score

to be among the best algorithms for predicting gene functions in a ”flat” setting
(that is without considering the hierarchical relationships between classes) [38,
39].

To estimate the generalization capabilities of the compared methods we
adopted a stratified 10-fold cross validation procedure, by ensuring that each
fold includes at least one positive example for each classification task. Consid-
ering the severe unbalance between positive and negative classes, beyond the
classical accuracy, we computed the F-score for each functional class and for
each considered data set. Indeed in this context the accuracy is only partially
informative, since a classifier predicting always ”negative” could obtain a very
high accuracy. Table 2 shows the average F-score and accuracy across all the
classes and for each data set.

The results show that COSNet achieves the best performances (in terms of
the F-score) w.r.t. all the other methods. The LP-Zhu method is the second best
method in Pfam-2 and PPI-BG data sets, but obtains very low performances
with Pfam-1 and Expr data. These overall results are confirmed by the Wilcoxon
signed-ranks test [40]: we can register a significant improvement in favour of
COSNet with respect to all the other methods and for each considered data set
at α = 10−15 significance level.

In order to understand the reasons for which our method works better, we
compared also the overall precision and recall of the methods separately for
each data set: we did not consider GAIN, since this methods achieved the worst
results in almost all the data sets. For lack of room, in Figure 1 we show only the
results relative to Pfam-2 and PPI-VM data sets. We can observe that, while
COSNet does not achieve the best precision or recall, it obtains the best F-score
as a result of a good balancing between them. These results are replicated with
the other data sets, even if with Pfam-1 and Expr data COSNet achieves also
the best average precision and recall (data not shown).

We think that these results come from the COSNet cost-sensitive approach
that allows to automatically find the ”near-optimal” parameters of the network
with respect to the distribution of positive and negative nodes (Section 6). It is
worth noting that using only single sources of data COSNet can obtain a rela-
tively high precision, without suffering a too high decay of the recall. This is of

Precision Recall F−score

Pf
am

−2

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

COSNet
SVM−l
SVM−g
LB−Zhu

Precision Recall F−score

PP
I−

VM

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

COSNet
SVM−l
SVM−g
LB−Zhu

Fig. 1: Average precision, recall and F-score for each compared method (excluding
GAIN). Left: Pfam-2; Right: PPI-VM

paramount importance in the gene function prediction problem, where ”in silico”
positive predictions of unknown genes need to be confirmed by expensive ”wet”
biological experimental validation procedures. From this standpoint the experi-
mental results show that our proposed method could be applied to predict the
”unknown” functions of genes, considering also that data fusion techniques could
in principle further improve the reliability and the precision of the results [2, 41].

8 Conclusions

We introduced an effective neural algorithm, COSNet, which exploits Hopfield
networks for semi-supervised learning in graphs. COSNet adopts a cost sensitive
methodology to manage the unbalance between positive and negative labels, and
to preserve and coherently encode the prior information. We applied COSNet
to the genome-wide prediction of gene function in yeast, showing a large im-
provement of the prediction performances w.r.t. the compared state-of-the-art
methods.

By noting that the parameter γ of the neural network may assume different
values for each node, our method could be extended by allowing a different ac-
tivation threshold for each neuron. To avoid overfitting due to the increment of
network parameters, this approach should be paired with proper regularization
techniques. Moreover, by exploiting the supervised learning of network param-
eters, COSNet could be also adapted to combine multiple sources of networked
data: indeed the accuracy of the linear classifier on the labeled portion of the net-
work could be used to ”weight” the associated source of data, in order to obtain
a ”consensus” network, whose edges are the result of a weighted combination of
multiple types of data.

Acknowledgments

The authors gratefully acknowledge partial support by the PASCAL2 Network
of Excellence under EC grant no. 216886. This publication only reflects the
authors’ views.

References

[1] Zheleva, E., Getoor, L., Sarawagi, S.: Higher-order graphical models for classifi-
cation in social and affiliation networks. In: NIPS 2010 Workshop on Networks
Across Disciplines: Theory and Applications, Whistler BC, Canada (2010)

[2] Mostafavi, S., Morris, Q.: Fast integration of heterogeneous data sources for
predicting gene function with limited annotation. Bioinformatics 26(14) (2010)
1759–1765

[3] Vazquez, A. et al.: Global protein function prediction from protein-protein inter-
action networks. Nature Biotechnology 21 (2003) 697–700

[4] Leskovec, J. et al.: Statistical properties of community structure in large social
and information networks. In: Proc. 17th Int. Conf. on WWW (2008) 695–704

[5] Bilgic, M., Mihalkova, L., Getoor, L.: Active learning for networked data. In:
Proc. of the 27th ICML, Haifa, Israel (2010)

[6] Marcotte, E. et al.: A combined algorithm for genome-wide prediction of protein
function. Nature 402 (1999) 83–86

[7] Oliver, S.: Guilt-by-association goes global. Nature 403 (2000) 601–603
[8] Zhu, X., Ghahramani, Z., Lafferty, J.: Semi-supervised learning with gaussian

fields and harmonic functions. In: Proc. of the 20th ICML, Washintgton DC,
USA (2003)

[9] Zhou, D., et al.: Learning with local and global consistency. In: Adv. Neural Inf.
Process. Syst. Volume 16. (2004) 321–328

[10] Szummer, M., Jaakkola, T.: Partially labeled classification with markov random
walks. In: NIPS 2001. Volume 14., Whistler BC, Canada (2001)

[11] Azran, A.: The rendezvous algorithm: Multi- class semi-supervised learning with
Markov random walks. In: Proc. of the 24th ICML. (2007)

[12] Belkin, M., Matveeva, I., Niyogi, P.: Regularization and semi-supervised learning
on large graphs. In: COLT 2004. (2004)

[13] Delalleau, O., Bengio, Y., Le Roux, N.: Efficient non-parametric function induc-
tion in semi-supervised learning. In: Proc. of the Tenth Int. Workshop on Artificial
Intelligence and Statistics. (2005)

[14] Belkin, M., Niyogi, P.: Using manifold structure for partially labeled classification.
In: Adv. Neural Inf. Process. Syst. Volume 15. (2003)

[15] Nabieva, E. et al.: Whole-proteome prediction of protein function via graph-
theoretic analysis of interaction maps. Bioinformatics 21(S1) (2005) 302–310

[16] Deng, M., Chen, T., Sun, F.: An integrated probabilistic model for functional
prediction of proteins. J. Comput. Biol. 11 (2004) 463–475

[17] Tsuda, K., Shin, H., Scholkopf, B.: Fast protein classification with multiple net-
works. Bioinformatics 21(Suppl 2) (2005) ii59–ii65

[18] Mostafavi, S. et al.: GeneMANIA: a real-time multiple association network inte-
gration algorithm for predicting gene function. Genome Biology 9(S4) (2008)

[19] Hopfield, J.: Neural networks and physical systems with emergent collective com-
pautational abilities. Proc. Natl Acad. Sci. USA 79 (1982) 2554–2558

[20] Bengio, Y., Delalleau, O., Le Roux, N.: Label Propagation and Quadratic Crite-
rion. In: Semi-Supervised Learning. MIT Press (2006) 193–216

[21] Karaoz, U., et al.: Whole-genome annotation by using evidence integration in
functional-linkage networks. Proc. Natl Acad. Sci. USA 101 (2004) 2888–2893

[22] Ruepp, A., et al.: The FunCat, a functional annotation scheme for systematic
classification of proteins from whole genomes. Nucleic Acids Research 32(18)
(2004) 5539–5545

[23] Wang, D.: Temporal pattern processing. In: The Handbook of Brain Theory and
Neural Networks. (2003) 1163–1167

[24] Liu, H., Hu, Y.: An application of hopfield neural network in target selection
of mergers and acquisitions. Int. Conf on Business Intelligence and Financial
Engineering (2009) 34–37

[25] Zhang, F., Zhang, H.: Applications of a neural network to watermarking capacity
of digital image. Neurocomputing 67 (2005) 345–349

[26] Tsirukis, A.G., Reklaitis, G.V., Tenorio, M.F.: Nonlinear optimization using gen-
eralized hopfield networks. Neural Comput. 1 (1989) 511–521

[27] Ashburner, M., et al.: Gene ontology: tool for the unification of biology. the gene
ontology consortium. Nature Genetics 25(1) (2000) 25–29

[28] Agresti, A., Coull, B.A.: Approximate is better than exact for interval estimation
of binomial proportions. Statistical Science 52(2) (1998) 119–126

[29] Brown, L.D., Cai, T.T., Dasgupta, A.: Interval estimation for a binomial propor-
tion. Statistical Science 16 (2001) 101–133

[30] Cesa-Bianchi, N., Valentini, G.: Hierarchical cost-sensitive algorithms for genome-
wide gene function prediction. Journal of Machine Learning Research, W&C
Proceedings, Machine Learning in Systems Biology 8 (2010) 14–29

[31] Eddy, S.R.: Profile Hidden Markov models. Bioinformatics 14(9) (1998) 755–763
[32] Spellman, P.T., et al.: Comprehensive identification of cell cycle-regulated genes

of the yeast saccharomyces cerevisiae by microarray hybridization. Molecular
Biology of the Cell 9(12) (1998) 3273–3297

[33] Gasch, P., et al.: Genomic expression programs in the response of yeast cells to
environmental changes. Mol. Biol. Cell 11(12) (2000) 4241–4257

[34] Stark, C. et al.: Biogrid: a general repository for interaction datasets. Nucleic
acids research 34(Database issue) (2006) D535–D539

[35] von Mering, C., et al.: Comparative assessment of large-scale data sets of protein-
protein interactions. Nature 417(6887) (2002) 399–403

[36] Chua, H., Sung, W., Wong, L.: An efficient strategy for extensive integration
of diverse biological data for protein function prediction. Bioinformatics 23(24)
(2007) 3364–3373

[37] Lin, H.T., Lin, C.J., Weng, R.: A note on platt’s probabilistic outputs for support
vector machines. Machine Learning 68(3) (2007) 267–276

[38] Brown, M.P.S., et al.: Knowledge-based analysis of microarray gene expression
data by using support vector machines. Proceedings of the National Academy of
Sciences of the United States of America 97(1) (2000) 267–276

[39] Pavlidis, P. et al.: Learning gene functional classifications from multiple data
types. Journal of Computational Biology 9 (2002) 401–411

[40] Wilcoxon, F.: Individual comparisons by ranking methods. Journal of Computa-
tional Biology 1(6) (1945) 80–83

[41] Re, M., Valentini, G.: Simple ensemble methods are competitive with state-of-
the-art data integration methods for gene function prediction. Journal of Machine
Learning Research, W&C Proceedings, Machine Learning in Systems Biology 8
(2010) 98–111

