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Abstract

Objective:

Two major problems related the unsupervised analysis of gene expression data

are represented by the accuracy and reliability of the discovered clusters, and by

the biological fact that the boundaries between classes of patients or classes of func-

tionally related genes are sometimes not clearly defined. The main goal of this work

consists in the exploration of new strategies and in the development of new clus-

tering methods to improve the accuracy and robustness of clustering results, taking

into account the uncertainty underlying the assignment of examples to clusters in

the context of gene expression data analysis.

Methodology:

We propose a fuzzy ensemble clustering approach both to improve the accuracy of

clustering results and to take into account the inherent fuzziness of biological and

bio-medical gene expression data. We applied random projections that obey the

Johnson-Lindenstrauss lemma to obtain several instances of lower dimensional gene

expression data from the original high-dimensional ones, approximately preserving

the information and the metric structure of the original data. Then we adopt a

double fuzzy approach to obtain a consensus ensemble clustering, by first applying

a fuzzy k-means algorithm to the different instances of the projected low-dimensional

data and then by using a fuzzy t-norm to combine the multiple clusterings. Several

variants of the fuzzy ensemble clustering algorithms are proposed, according to

different techniques to combine the base clusterings and to obtain the final consensus
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clustering.

Results and conclusion:

We applied our proposed fuzzy ensemble methods to the gene expression analysis

of leukemia, lymphoma, adenocarcinoma and melanoma patients, and we compared

the results with other state of the art ensemble methods. Results show that in

some cases, taking into account the natural fuzziness of the data, we can improve

the discovery of classes of patients defined at bio-molecular level. The reduction

of the dimension of the data, achieved through random projections techniques, is

well-suited to the characteristics of high-dimensional gene expression data, thus

resulting in improved performance with respect to single fuzzy k-means and with

respect to ensemble methods based on resampling techniques. Moreover, we show

that the analysis of the accuracy and diversity of the base fuzzy clusterings can be

useful to explain the advantages and the limitations of the proposed fuzzy ensemble

approach.

Key words: Gene expression data clustering, ensemble clustering, fuzzy clustering,

random subspace, random projections, DNA microarrays.

1 Introduction

In recent years unsupervised clustering methods have been successfully ap-

plied to DNA microarray data analysis, considering in particular two main

problems: the discovery of new subclasses of diseases or functionally corre-

lated examples [1,2] and the detection of subsets of co-expressed genes as a

proxy of co-regulated genes [3]. At the same time machine learning research

showed that unsupervised ensemble approaches can improve the accuracy and

the reliability of clustering results [4–7].

In bioinformatics several ensemble clustering approaches have been proposed

for the analysis of gene expression data [8–13]. In [8] a robust ensemble method,

based on the agreement between different clustering methods in assigning

genes to the same clusters, has been proposed. Dudoit and Fridlyand [9]

designed an unsupervised version of the classical supervised bagged ensem-

ble [14], showing that this approach improves existing clustering methods in

the analysis of DNA microarray data. A similar approach, based on resam-
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pling methods has been proposed in [10], where techniques to validate and

visualize high-dimensional gene expression data are also provided. In [11] the

clustering results of individual clustering algorithm applied to the analysis of

gene expression data are converted into a distance matrix, a weighted graph

is constructed according to the combined matrix, and a graph partitioning

approach is used to cluster the graph to generate the final clusters. Consensus

clustering obtained from clustering multiple times with Variational Bayes mix-

tures of Gaussians have been successfully applied to the unsupervised analysis

of functional classes of genes in yeast [12], while a graph-based ensemble clus-

tering algorithm has been recently proposed to discover the underlying classes

of the examples in gene expression data [13].

In particular, recently proposed methods based on random projections [15]

have been successfully applied to ensemble clustering of gene expression data [16]

and to assess the validity of clusters discovered in bio-molecular data [17,18].

A major problem with these approaches is represented by the biological fact

that classes of patients or classes of functionally related genes are sometimes

not clearly defined. For instance, it is well-known that a single gene product

may participate to different biological processes and as a consequence it may

be at the same time expressed with different subsets of co-expressed genes.

To take into account these items we propose a fuzzy approach, in order to con-

sider the inherent fuzziness of clusters discovered in gene expression data [19].

The main idea of this work is to combine the accuracy and the effectiveness

of the ensemble clustering techniques based on random projections [15], with

the expressive capacity of the fuzzy sets, to obtain clustering algorithms both

reliable and able to express the uncertainty of the data.

In the next sections we briefly introduce random projections, then we present

our proposed fuzzy ensemble clustering methods. In Sect. 5 the proposed

method is applied to the analysis of DNA microarray data, and the results

are discussed comparing the fuzzy ensemble clustering methods with other

ensemble approaches, considering also the relationships between accuracy and

diversity of the base clusterings, w.r.t. the overall accuracy of the ensembles.

The conclusions and some remarks about future developments end the paper.
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2 Random projections.

Let D be a d× n real matrix, where each column represents a d-dimensional

example, and let p be a vector storing the expression levels of d genes (that is, a

generic column of D). For instance p could represent the expression profile of a

given patient, or the expression levels of a gene across d different experimental

conditions.

Considering the usually high dimension of an expression profile of a given

patient, and the relatively low cardinality of the patients, a key issue is rep-

resented by the reduction of the data dimension to contrast the well-known

”curse of dimensionality” problem. [20].

Our approach proposes to reduce the dimension of the original data using

random projections µ : Rd → Rd′ from high d-dimensional spaces to lower

d′-dimensional subspaces.

In this context, a key problem consists in finding a d′ such that for every

pair of data p, q ∈ Rd, the distances between the projections µ(p) and µ(q)

are approximately preserved with high probability. A natural measure of the

approximation is the distortion distµ:

distµ(p, q) =
||µ(p)− µ(q)||2
||p− q||2 (1)

If distµ(p, q) = 1, the distances are preserved; if 1 − ε ≤ distµ(p, q) ≤ 1 + ε,

we say that an ε-distortion level is introduced.

It has been shown that using random projections that obey Johnson-Lindenstrauss

(JL) lemma [21] we may perturb the data introducing only bounded distor-

tions, approximately preserving the metric structure of the original data The

dimension of the projected subspace depends only on the cardinality of the

original data and the desired ε-distortion, and not from the dimension d of

the original space (see [17] for more details).

The projections with bounded distortions can be obtained through a quite

simple stochastic approach [22,23]: data are projected to lower dimensional
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subspaces by random d′ × d matrices R = 1/
√

d′(rij), where rij are random

variables such that:

E[rij] = 0, V ar[rij] = 1

Examples of random projections are the following:

(1) Plus-Minus-One (PMO) or Bernoulli random projections: represented by

d′×d matrices R = 1/
√

d′(rij), where rij are uniformly chosen in {−1, 1},
such that Prob(rij = 1) = Prob(rij = −1) = 1/2 (that is the rij are

Bernoulli random variables).

(2) Achlioptas random projections [22]: represented by d′ × d matrices P =

1/
√

d′(rij), where rij are chosen in {−√3, 0,
√

3}, such that Prob(rij =

0) = 2/3, Prob(rij =
√

3) = Prob(rij = −√3) = 1/6.

(3) Normal random projections [23,5]: this JL lemma compliant randomized

map is represented by a d′ × d matrix R = 1/
√

d′(rij), where rij are

distributed according to a gaussian with 0 mean and unit variance.

(4) Random Subspace (RS) [24,25]: represented by d′ × d matrices R =√
d/d′(rij), where rij are uniformly chosen with entries in {0, 1}, and

with exactly one 1 per row and at most one 1 per column. Unfortunately,

RS does not satisfy the JL lemma.

Using the above randomized maps (with the exception of RS projections), the

JL lemma guarantees that, with high probability, the ”compressed” examples

of the data set represented by the matrix DR = RD have approximately the

same distance (up to an ε-distortion level) of the corresponding examples in

the original space, represented by the columns of the matrix D, as long as

d′ ≥ c log n/ε2.

3 Fuzzy ensemble clustering based on random projections

The ensemble algorithm applies random projection techniques to perturb the

data, using a fuzzy clustering algorithm to generate multiple base clusterings.

More precisely, data are perturbed through random projections to lower di-

mensional subspaces and multiple clusterings are performed on the projected
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data; note that it is likely to obtain different clusterings, since the clustering

algorithm is applied to different ”views” of the data. Then the clusterings are

combined, and a consensus ensemble clustering is computed. This approach

is similar to the one proposed in [15]: the main difference consists in using a

fuzzy k-means algorithm as base clustering and in applying a fuzzy approach

to the combination and the consensus steps of the ensemble algorithm.

The main steps of the fuzzy ensemble clustering algorithm can be summarized

as follows:

(1) Random projections. Multiple instances (views) of compressed data are

obtained using random projections.

(2) Generation of multiple fuzzy clusterings. The fuzzy k-means algorithm is

applied to the instances of data obtained from the previous step. The

output of the algorithm is a membership matrix, where each element

represents the membership of an example to a particular cluster.

(3) Aggregation. The fuzzy clusterings are combined, using a similarity ma-

trix [9]. The generation of each element of the matrix is obtained through

fuzzy t-norms.

(4) Consensus clustering. The ensemble clustering is built up by applying the

fuzzy k-means algorithm to the rows of the similarity matrix obtained in

the previous step.

In the Random projections step, for each example of the original data set with

d features, only a fixed number of of features d′ (d′ < d) are randomly chosen

to represent the same example. The value of d′ is evaluated according to the JL

Lemma (Sect. 2). The procedure is repeated different times to obtain different

representations of the original data set. The fuzzy-k-means algorithm is then

applied to each instance of the data, thus obtaining a set of fuzzy membership

matrices U , whose elements uij represent the membership of example j to the

cluster i.

The Aggregation step is performed by using a square symmetric similarity

matrix M , where each element represents the ”level of agreement” between

6



each pair of examples:

Mi,j =
k∑

s=1

τ(Us,i,Us,j); (2)

where k is the number of clusters; i, j indices of the n examples, 1 ≤ i, j ≤ n;

U is a fuzzy membership matrix (where the rows refer to clusters and the

columns to examples), and finally τ is a suitable fuzzy t-norm (e.g. an algebraic

product). Note that Mi,j can be interpreted as the ”common membership” of

two examples i and j to the same cluster.

The similarity matrices M obtained through c repeated applications of the

fuzzy k-means clustering algorithm are aggregated simply by averaging: in

this way we achieve the cumulative similarity matrix MC :

MC
i,j =

1

c

c∑

t=1

M
(t)
i,j ; (3)

The Consensus clustering step is performed by applying the fuzzy-k-means

clustering to the rows of MC , thus obtaining the consensus membership matrix

UC . Indeed note that ith row of MC represents the ”common membership” to

the same cluster of the ith example with respect to all the other examples,

averaged across multiple clusterings. In this sense the rows can be interpreted

as a new ”feature space” for the analyzed examples.

The consensus clusters can be also obtained by choosing one of two classical

”crispization” techniques:

Hard-clustering:

χH
ri =





1 ⇔ arg maxs UC
si = r

0 otherwise.

(4)

α-cut:

χα
ri =





1 ⇔ UC
ri ≥ α

0 otherwise.

(5)

where χri is the characteristic function for the cluster r: that is χri = 1 if the

ith example belongs to the rth cluster, χri = 0 otherwise; 1 ≤ s ≤ k; 1 ≤ i ≤ n,
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0 ≤ α ≤ 1, and UC is the consensus fuzzy membership matrix obtained by

applying the fuzzy k-means algorithm to MC .

The pseudo-code of the algorithm is reported below:

Fuzzy ensemble clustering algorithm :

Input:

- a data set X = {x1, x2, . . . , xn}, stored in a d× n D matrix.

- an integer k (number of clusters)

- an integer c (number of clusterings)

- the fuzzy k-means clustering algorithm Cf

- a procedure the realizes the randomized map µ

- an integer d′ (dimension of the projected subspace)

- a function τ that defines the t-norm

begin algorithm

(1) For each i, j ∈ {1, . . . , n} do Mij = 0

(2) Repeat for t = 1 to c

(3) Rt = Generate projection matrix (d′, µ)

(4) Dt = Rt ·D
(5) U (t) = Cf (Dt, k, m)

(6) For each i, j ∈ {1, . . . , n}
M

(t)
ij =

∑k
s=1 τ(U (t)

si ,U (t)
sj )

end repeat

(7)MC =
∑c

t=1
M(t)

c

(8) < A1, A2, . . . , Ak >= Cf (M
C , k,m)

end algorithm.

Output:

- the final clustering C =< A1, A2, . . . , Ak >

- the cumulative similarity matrix MC .

Note that the dimension d′ of the projected subspace is an input parameter of

the algorithm, but it may be computed according to the JL lemma (Sect. 2), to

approximately preserve the distances between the examples. Inside the mean

loop (steps 2-6) the procedure Generate projection matrix produces a d′×d
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Rt matrix according to a given random map µ [15], that it is used to randomly

project the original data matrix D into a d′×n Dt projected data matrix (step

4). In step (5) the fuzzy k-means algorithm Cf with a given fuzziness m is

applied to Dt and a k-clustering represented by its U (t) membership matrix is

achieved. Hence the corresponding similarity matrix M (t) is computed, using

a given t-norm (step 6). In (7) the ”cumulative” similarity matrix MC is

obtained by averaging across the similarity matrices computed in the main

loop. Finally, the consensus clustering is obtained by applying the fuzzy k-

means algorithm to the rows of the similarity matrix MC (step 8).

We can observe that in both the steps (5) and (8) the clusterings obtained are

fuzzy clusterings (represented by membership matrices). In some applications

we need to obtain a partition of the data, or more in general we need to obtain

crisp results. Using our algorithm both the results can be obtained applying

respectively the hard-clustering and the alpha-cut techniques to the output of

the consensus clustering on the step (8) (eq. 4 and 5). In the rest of the paper

we call the first algorithm fuzzy-max, and the second one fuzzy-alpha.

Note that we may obtain crisp clusters just from the fuzzy base clusterings,

by applying the above defuzzification techniques just at a ”base clustering

level”. For instance, we can process the membership matrix U (t) of the fuzzy

ensemble algorithm to achieve crisp clusters by adding one of the following

lines after step (5) of the ensemble algorithm:

(5 hard) χ(t) = Crisphard(U (t))

(5 alpha) χ(t) = Crispα(U (t))

By using step (5 hard) we obtain a ”hard-clustering” crispization (eq. 4),

and by using step (5 alpha) we obtain an α-cut crispization (eq. 5). In both

cases the result is a ”characteristic matrix” χ whose binary elements χsi ∈
{0, 1} denote whether element i belongs to cluster s. The next step (6) of the

fuzzy ensemble algorithm needs to be modified by replacing the fuzzy t-norm

operator with the product of the characteristic vectors of the examples i and

j:

(6 crisp) M
(t)
ij =

∑k
s=1 χ

(t)
si ∗ χ

(t)
sj

One may observe that by using the alpha-cut as “defuzzification” method
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each example of the data set can belong to more than one cluster, and hence

a different normalization method (step 7) has to be used. In this case we need

to replace in (7) the number of clusterings c with v = k ∗ c:

We refer to the algorithm obtained by applying the hard-clustering in both

the (5) and (8) steps with max-max, while we name max-alpha the algorithm

that applies the hard-clustering at step (5) and the α-cut at step (8).

4 Experimental environment

We test our proposed fuzzy ensemble algorithms with four DNA microarray

data sets, comparing the results with other related cluster ensemble methods.

4.1 Gene expression data

We considered four DNA microarray data sets available on the web. The first

one (DLBCL-FL data set) is composed by tumor specimens from 58 Diffuse

Large B-Cell Lymphoma (DLBCL) and 19 Follicular Lymphoma (FL) pa-

tients [26] in a gene expression space with 6285 genes. The second one, the

Primary-Metastasis (PM) data set, contains expression values in Affymetrix’s

scaled average difference units (14925 genes) for 64 primary adenocarcinomas

and 12 metastatic adenocarcinomas (lung, breast, prostate, colon, ovary, and

uterus) from unmatched patients prior to any treatment [27]. In both cases we

followed the same preprocessing and normalization steps described in [26] and

[27]. The third one, Leukemia, contains gene expression levels of 7129 genes in

Affymetrix’s scaled average difference units relative to 47 patients with Acute

Lymphoblastic Leukemia (ALL) and 25 cases of Acute Myeloid Leukemia

(AML) [28]. The fourth one, melanoma, is composed by 31 melanoma samples

and 7 control samples with 6971 genes [29]. Also for these data sets we applied

the same pre-processing procedures described respectively in [28] and [29].
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4.2 Methods

We tested the performance of the fuzzy ensemble algorithms fuzzy-max, fuzzy-

alpha, max-max and max-alpha using the previously described data sets. We

compared the results with Randclust, the corresponding ”crisp” version of our

proposed ensemble methods [15] and with Bagclust1, based on an unsupervised

version of bagging [9], and with the ”single” fuzzy k-means clustering algo-

rithm. The Randclust ensemble method is similar to the algorithm presented in

this paper, but it uses the hierarchical clustering algorithm to produce the base

clusterings, and a crisp approach to combine the resulting clusters. Bagclust1

generates multiple instances of perturbed data through bootstrap techniques,

and then it applies to each instance the base clustering algorithm (we used in

our experiments k-means); the final clustering is obtained by majority voting.

Each ensemble is composed by 50 base clusterings and each ensemble method

has been repeated 30 times. Regarding to ensemble methods based on random

projections, we chose projections with bounded 1 ± 0.2 distortion, according

to the JL lemma, while for Bagclust1 we randomly drew with replacement a

number of examples equal to the number of the available data.

4.3 Assessment of the error

Since clustering does not univocally associate a label to the examples, but only

provides a set of clusters, we evaluated the error by choosing for each clustering

the permutation of the classes that best matches the ”a priori” known ”true”

classes. More precisely, considering the following clustering function:

f(x) : Rd → Y , with Y ⊆ {1, . . . , k} (6)

where x is the sample to classify, d its dimension, k the number of the classes;

the error function we applied is the following:

L0/1(Y, t) =





0 if (|Y | = 1 ∧ t ∈ Y ) ∨ Y = {λ}

1 otherwise.

(7)
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Fig. 1. Boxplot of the results (fuzziness 1.1). (a) Leukemia data set, (b) DLBCL-FL

data set, (c) Melanoma data set and (d) Primary-Metastasis data set. (1)..(7) in

abscissa refer to the results obtained respectively with (1) Randclust, (2) Bag-

clust1, (3) Single fuzzy k-means, (4) max-max, (5) fuzzy-max, (6) max-alpha and

(7) fuzzy-alpha ensemble algorithms.

with t the “real” label of the sample x, Y ∈ Y the predicted set of class

labels, and {λ} the empty set. Note that when Y = {λ} the loss is 0, but

the example is registered as unassigned. Other loss functions or measures

of the performance of clustering algorithms may be applied, but we chose

this modification of the 0/1 loss function to take into account the multi-label

output of fuzzy k-means algorithms.
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Fig. 2. Boxplot of the results (fuzziness 2.0). (a) Leukemia data set, (b) DLBCL-FL

data set, (c) Melanoma data set and (d) Primary-Metastasis data set. (1)..(7) in

abscissa refer to the results obtained respectively with (1) Randclust, (2) Bag-

clust1, (3) Single fuzzy k-means, (4) max-max, (5) fuzzy-max, (6) max-alpha and

(7) fuzzy-alpha ensemble algorithms.

5 Results and discussion

5.1 Assessment of the accuracy of the clusterings

The boxplots in Fig. 1 and 2 represent the distribution of the error across

multiple repetitions of the fuzzy ensemble algorithms compared with the “sin-

gle” fuzzy k-means, the Randclust and the Bagclust1 ensemble methods for

all the data sets used in the experiments. In particular in Fig. 1 are shown

the results obtained with fuzziness equal to 1.1, while in Fig. 2 the results

have been obtained with a fuzziness level equal to 2.0. With max-alpha and

fuzzy-alpha ensemble algorithms the results shown in Fig. 1 and 2 correspond

to a choice of alpha value equal to 0.5.
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Fig. 3. Results of the fuzzy ensemble max-alpha. The solid line refers to the error

rate and the dotted line corresponds to the unclassified rate. (a) Leukemia data set,

(b) DLBCL-FL data set, (c) Melanoma data set and (d) Primary-Metastasis data

set.

We can observe that, while with the Primary-Metastasis (Fig. 1, 2 (d)) and

Leukemia (Fig. 1, 2 (a)) data sets larger levels of fuzziness reduce the perfor-

mances of the fuzzy ensemble algorithms, in the DLBCL-FL (Fig. 1, 2 (b))and

Melanoma (Fig. 1, 2 (c)) data sets the increment of the fuzziness level leads

to an improvement of the overall performance.

The fuzzy ensemble approach improves the performance of the single fuzzy

k-means applied to the entire set of gene expression levels: for all the data sets

the fuzzy ensemble methods obtain equal or better results with respect to the

single fuzzy k-means algorithm (Fig. 1 and 2).

The performances obtained with BagClust1 (marked with number (2) in the

boxplot figures) are in general lower w.r.t to the fuzzy ensemble methods (ex-

cept with the Leukemia data set, when a fuzziness equal to 2.0 is applied). In
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the context of high dimensional gene expression data, when we have a large

number of features (gene expression levels) and a low number of examples

(patients) an approach that reduces the dimension instead of the cardinality

of the data is likely to produce better results. Indeed, exploiting the inherent

redundancy of information and the approximate preservation of the metric

space that characterizes random projections obeying the JL lemma, our ap-

proach largely outperforms resampling based methods (Fig. 1 and 2). This

hypothesis is confirmed also by the fact that also the other ensemble method

based on random projections (Randclust, marked with number (1) in the box-

plots of Fig. 1 and 2) achieved always better or equal results with respect to

BagClust1.

Considering the data sets Melanoma and Primary-Metastasis (Fig. 1, 2 (c)

and (d)) fuzzy ensemble clustering methods achieve better results with re-

spect to Randclust. Nevertheless, considering the Leukemia gene expression

data, there is no significant difference between the proposed methods and

Randclust (Fig. 1 (a)), while with the DLBCL data Randclust largely out-

performs the fuzzy ensemble clustering methods (Fig. 1, 2 (b)). These results

largely depend on the different characteristics of the base clusterings used in

the two methods. Indeed, with the DLBCL data set, the hierarchical cluster-

ing algorithm (Ward’s method [30]) largely outperforms the fuzzy k-means

algorithm: using a single hierarchical clustering algorithm applied to the high

dimensional gene expression space (6285 genes) we obtain an error slightly

below 0.11, while with the single fuzzy k-means algorithm we largely double

the error to about 0.25. In this case the choice of the base clustering algorithm

is determinant to achieve ”good” results.

Max-alpha and fuzzy-alpha ensemble results depend on the choice of the α

value. Fig. 3 reports the error and unclassified rate as a function of α for the

max-alpha algorithm. We can observe that error and unclassified rate follow,

as expected, opposite trends: we may obtain good accuracy results at the

expenses of high unclassified rates.

The tables 1 and 2 summarize the results obtained respectively with the

Leukemia, DLBCL-FL, Melanoma, and Primary-Metastasis data sets. From
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Table 1

Primary-Metastasis and DLBCL-FL gene expression data: compared results be-

tween fuzzy ensemble clustering methods and other ensembles and ”single” cluster-

ing algorithms.
Primary Metastasis DLBCL-FL

Algorithms Mean Median Std. Algorithms Mean Median Std.

error error dev. error error dev.

Fuzzy-Max 0.2925 0.2763 0.0451 Fuzzy-Max 0.2247 0.2208 0.0141

Fuzzy-Alpha 0.3083 0.2763 0.0613 Fuzzy-Alpha 0.2273 0.2208 0.0131

Max-Max 0.3364 0.3684 0.07816 Max-Max 0.2498 0.2468 0.0228

Max-Alpha 0.3724 0.3684 0.0092 Max-Alpha 0.2633 0.2468 0.0585

Rand-Clust 0.3294 0.3289 0.0024 Rand-Clust 0.1039 0.1039 0

Bagclust1 0.3605 0.3552 0.0066 Bagclust1 0.2957 0.3052 0.0442

Fuzzy ”single” 0.3684 0.3684 0 Fuzzy ”single” 0.2472 0.2468 0.0024

a general standpoint the proposed fuzzy ensemble methods achieve results

competitive with other clustering ensemble methods, by exploiting the redun-

dancy and the high dimension of gene expression data. The results depend on

the proper choice of the fuzziness, and on the characteristics of the data sets.

Moreover note that the choice of the data is not favourable to our proposed

methods, because in all cases we assessed the performance of the clustering

algorithms by assuming crisp partitions of the data, according to a bio-medical

diagnosis of patients that does not admit fuzzy memberships to different sub-

Table 2

Melanoma and Leukemia gene expression data: compared results between fuzzy en-

semble clustering methods and other ensembles and ”single” clustering algorithms.
Melanoma Leukemia

Algorithms Mean Median Std. Algorithms Mean Median Std.

error error dev. error error dev.

Fuzzy-Max 0.2925 0.2903 0.0082 Fuzzy-Max 0.262 0.2639 0.006

Fuzzy-Alpha 0.2914 0.2903 0.0059 Fuzzy-Alpha 0.262 0.2639 0.006

Max-Max 0.3097 0.3226 0.0394 Max-Max 0.2639 0.25 0.025

Max-Alpha 0.3073 0.3226 0.0347 Max-Alpha 0.2606 0.2639 0.0668

Rand-Clust 0.4516 0.4516 0 Rand-Clust 0.2657 0.2639 0.0162

Bagclust1 0.4527 0.4516 0.0059 Bagclust1 0.2852 0.2778 0.0289

Fuzzy ”single” 0.3226 0.3226 0 Fuzzy ”single” 0.25 0.25 0
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classes of diseases.

5.2 Relationships between accuracy and diversity of the base learners

To understand the behaviour of ensemble methods and the reasons why an

ensemble approach is more effective than others, we can study the trade-off

between accuracy and diversity of the base clusterings. Indeed in the literature

several authors tried to analyze the results of ensemble methods taking into

account accuracy and diversity of the base learners [31,32,5].

In particular, we analyze the relationships between accuracy and diversity

of the base clusterings, considering both fuzzy ensembles and Randclust. In

particular we analyzed the max-* ensembles, where ”star” stands for any fuzzy

or crisp consensus clustering (Sect. 3): indeed in this context we are interested

only in the characteristics of the base clusterings.

To evaluate the relationships between accuracy and diversity of the base learn-

ers we adopt two measures based on the Normalized Mutual Information

(NMI), proposed in [31] and [5].

We briefly introduce below the definitions of Mutual Information (MI) and

NMI and the measures of accuracy and diversity based in NMI used in our

experiments. Let be X and Y two random variables; the MI is defined as:

MI(X, Y ) = H(X)−H(X/Y ) = H(X)−H(X,Y ) + H(Y ) (8)

where H(X), H(Y ) represents respectively the entropy of X and Y , H(X/Y )

is the entropy of X conditioned to Y and H(X,Y ) is the joint entropy of X

and Y . The NMI between X and Y can be obtained from MI and H in the

following way:

NMI(X, Y ) =
MI(X,Y )√
H(X)H(Y )

(9)

It is easy to see that 0 ≤ NMI(X, Y ) ≤ 1.

According to [31] accuracy and diversity can be evaluated using the NMI.

Given a clustering ensemble C = {C1, . . . , Cn}, composed by n base clusterings
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Ci, the similarity s(Ci, Cj) between two base clustering Ci and Cj can be

computed in the following way:

s(Ci, Cj) = NMI(Ci, Cj) (10)

Note that if s(Ci, Cj) ' 1 the two clusterings are very similar (and hence

their diversity is very low), on the contrary if s(Ci, Cj) ' 0 they are strongly

diverse.

The average accuracy a(Ci, Cj) of the same pair Ci and Cj of base clusterings

can be computed considering the average NMI of each base clustering with

respect to the ”true” clustering C:

a(Ci, Cj) =
NMI(Ci, C) + NMI(Cj, C)

2
(11)

In our experiments we computed the similarity and accuracy for each pair of

base clusterings, and we represented their distribution through scatter plots

of n∗(n−1)
2

points.

Fig. 4 (a) represents the relationships between accuracy and diversity w.r.t.

the DLBCL-FL data set; the better results of the Randclust ensembles are due

to the higher accuracy and higher diversity of its hierarchical base clusterings.

Indeed the accuracy (estimated according to eq. 11) is between 0.35 and 0.50,

while the accuracy of the base fuzzy k-means clusterings is always below 0.35;

moreover also the diversity is quite higher for the Randclust ensemble. These

results explain the better performance of Randclust on this data set (Table 1).

The opposite situation can be observed in Fig. 4 (b) (Melanoma data set): here

the base clusterings of the fuzzy ensemble approach are both more accurate

(their average NMI ranges approximately between 0.25 and 0.30, while in

Randclust the accuracy is below 0.20), and more diverse (their NMI in the

y axis are between 0.55 and 0.80, while in Randclust are above 0.80: recall

that a low value of NMI between base clusterings reveals a high diversity

and viceversa). In this case the fuzzy ensembles largely outperform Randclust

(Table 2). With the Leukemia data set the results between Randclust and

our proposed fuzzy ensemble methods are comparable (Table 2). Indeed the

slightly better accuracy of the base clusterings of max-* fuzzy ensembles are
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Fig. 4. Relationships between accuracy and similarity of the base clusterings. Ab-

scissa represents accuracy and ordinate similarity. Triangles refer to base clusterings

of max-* ensembles, circles to base clusterings of Randclust ensembles. (a) DLB-

CL-FL (b) Melanoma (c) Leukemia data sets.

counter-balanced by the higher diversity of the base hierarchical clusterings of

Randclust, thus resulting in a comparable accuracy of the ensembles (Fig. 4

(c)).
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6 Conclusions

In this paper we proposed several variants of fuzzy unsupervised ensemble

methods to analyze gene expression data. The proposed methods on one hand

exploit the accuracy and the effectiveness of the ensemble clustering techniques

based on random projections, and on the other hand the expressive capacity

of the fuzzy sets, to obtain clustering algorithms both reliable and able to ex-

press the uncertainty of the data. In our experiments we applied our proposed

method to the analysis of gene expression data, but in principle this approach

can be applied to the analysis of any bio-molecular data characterized by high

dimensionality (e.g. mass-spectrometry data).

The experimental results show that our proposed fuzzy ensemble approach is

competitive with other ensemble methods and it may be successfully applied

to the analysis of gene expression data, even when we consider data sets with

a single ”crisp” label for each example.

As a future application of these methods, we are planning experiments to

discover functional classes of genes to exploit the structure of unlabeled data

when the boundaries of the clusters are uncertain and to analyze data char-

acterized by multi-labels and with partial membership to different clusters.

Indeed genes may belong to different biological processes or different path-

ways and as a consequence they may belong to different sets of co-expressed

genes.

Several open problems need to be considered for future research work. For

instance, we may consider the choice of the t-norm to be used in the fuzzy

aggregation of multiple clusters. In our experiments we applied the algebraic

product, but we need to experiment with other t-norms [33]. Moreover we

may experiment with other random projections that obey the JL lemma, such

as normal or Achlioptas random projections [34,17]. Another possible devel-

opment of this work consists in studying if we can embed recently proposed

stability-based methods based on random projections [35,18] into ensemble

clustering methods to guide the construction of the consensus clustering.

20



References

[1] L. Dyrskjøt, T. Thykjaer, M. Kruhøffer, J. Jensen, N. Marcussen, S. Hamilton-

Dutoit, H. Wolf, T. Ørntoft, Identifying distinct classes of bladder carcinoma

using microarrays, Nature Genetics 33 (jan.) (2003) 90–96.

[2] M. Onken, L. Worley, J. Ehlers, J. Harbour, Gene expression profiling in uveal

melanoma reveals two molecular classes and predicts metastatic death, Cancer

Research 64 (2004) 7205–7209.

[3] J. Dopazo, Functional interpretation of microarray experiments, OMICS 3 (10).

[4] A. Strehl, J. Ghosh, Cluster Ensembles - A Knowledge Reuse Framework for

Combining Multiple Partitions, Journal of Machine Learning Research 3 (2002)

583–618.

[5] X. Fern, C. Brodley, Random projections for high dimensional data clustering: A

cluster ensemble approach, in: T. Fawcett, N. Mishra (Eds.), Machine Learning,

Proceedings of the Twentieth International Conference (ICML 2003), AAAI

Press, Washington D.C., USA, 2003.

[6] A. Topchy, A. Jain, W. Puch, Clustering Ensembles: Models of Consensus

and Weak Partitions, IEEE Transactions on Pattern Analysis and Machine

Intelligence 27 (12) (2005) 1866–1881.

[7] L. Kuncheva, D. Vetrov, Evaluation of stability of k-means cluster ensembles

with respect to random initialization, IEEE Transactions on Pattern Analysis

and Machine Intelligence 28 (11) (2006) 1798–1808.

[8] S. Swift, A. Tucker, V. Vinciotti, N. Martin, C. Orengo, X. Liu, P. Kellam,

Consensus clustering and functional interpretation of gene-expression data,

Genome Biology 5:R94.

[9] S. Dudoit, J. Fridlyand, Bagging to improve the accuracy of a clustering

procedure, Bioinformatics 19 (9) (2003) 1090–1099.

[10] S. Monti, P. Tamayo, J. Mesirov, T. Golub, Consensus Clustering: A

Resampling-based Method for Class Discovery and Visualization of Gene

Expression Microarray Data, Machine Learning 52 (2003) 91–118.

21



[11] X. Hu, I. Yoo, Cluster ensemble and its applications in gene expression analysis,

in: Proc. 2nd Asia-Pacific Bioinformatics Conference, Dunedin, New-Zealand,

2004, pp. 297–302.

[12] T. Grotkjaer, O. Winther, B. Regenberg, J. Nielsen, L. Hansen, Robust multi-

scale clustering of large DNA microarray data sets with the consensus algorithm,

Bioinformatics 22 (1) (2006) 58–67.

[13] Z. Yu, H. Wong, H. Wang, Graph based consensus clustering for class discovery

from gene expression data, BioinformaticsAdvance Access published online on

September 14, 2007.

[14] L. Breiman, Bagging predictors, Machine Learning 24 (2) (1996) 123–140.

[15] A. Bertoni, G. Valentini, Ensembles based on random projections to improve

the accuracy of clustering algorithms, in: Neural Nets, WIRN 2005, Vol. 3931

of Lecture Notes in Computer Science, Springer, 2006, pp. 31–37.

[16] A. Bertoni, G. Valentini, Randomized embedding cluster ensembles for gene

expression data analysis, in: SETIT 2007 - IEEE International Conf. on

Sciences of Electronic, Technologies of Information and Telecommunications,

Hammamet, Tunisia, 2007.

[17] A. Bertoni, G. Valentini, Randomized maps for assessing the reliability of

patients clusters in DNA microarray data analyses, Artificial Intelligence in

Medicine 37 (2) (2006) 85–109.

[18] A. Bertoni, G. Valentini, Model order selection for bio-molecular data clustering,

BMC Bioinformatics 8 (Suppl.3).

[19] P. Gasch, M. Eisen, Exploring the conditional regulation of yeast gene

expression through fuzzy k-means clustering, Genome Biology 3 (11).

[20] R. Bellman, Adaptive Control Processes: a Guided Tour, Princeton University

Press, New Jersey, 1961.

[21] W. Johnson, J. Lindenstrauss, Extensions of Lipshitz mapping into Hilbert

space, in: Conference in modern analysis and probability, Vol. 26 of

Contemporary Mathematics, Amer. Math. Soc., 1984, pp. 189–206.

[22] D. Achlioptas, Database-friendly random projections., in: P. Buneman (Ed.),

Proc. ACM Symp. on the Principles of Database Systems, Contemporary

Mathematics, ACM Press, New York, NY, USA, 2001, pp. 274–281.

22



[23] E. Bingham, H. Mannila, Random projection in dimensionality reduction:

Applications to image and text data, in: Proc. of KDD 01, ACM, San Francisco,

CA, USA, 2001.

[24] M. Smolkin, D. Gosh, Cluster stability scores for microarray data in cancer

studies, BMC Bioinformatics 36 (4).

[25] T. Ho, The random subspace method for constructing decision forests, IEEE

Transactions on Pattern Analysis and Machine Intelligence 20 (8) (1998) 832–

844.

[26] M. Shipp, K. Ross, P. Tamayo, A. Weng, J. Kutok, R. Aguiar, M. Gaasenbeek,

M. Angelo, M. Reich, G. Pinkus, T. Ray, M. Koval, K. Last, A. Norton,

T. Lister, J. Mesirov, D. Neuberg, E. Lander, J. Aster, T. Golub, Diffuse large B-

cell lymphoma outcome prediction by gene-expression profiling and supervised

machine learning., Nature Medicine 8 (1) (2002) 68–74.

[27] S. Ramaswamy, K. Ross, E. Lander, T. Golub, A molecular signature of

metastasis in primary solid tumors, Nature Genetics 33 (2003) 49–54.

[28] T. Golub, et al., Molecular Classification of Cancer: Class Discovery and Class

Prediction by Gene Expression Monitoring, Science 286 (1999) 531–537.

[29] M. Bittner, P. Meltzer, Y. Chen, Y. Jiang, E. Seftor, M. Hendrix,

M. Radmacher, R. Simon, Z. Yakhini, A. Ben-Dor, N. Sampas, E. Dougherty,

E. Wang, F. Marincola, C. Gooden, J. Lueders, A. Glatfelter, P. Pollock,

J. Carpten, E. Gillanders, D. Leja, K. Dietrich, C. Beaudry, M. Berens,

D. Alberts, V. Sondak, Molecular classification of malignant melanoma by gene

expression profiling, Nature 406 (2000) 536–540.

[30] J. Ward, Hierarchical grouping to optimize an objective function, J. Am. Stat.

Assoc. 58 (1963) 236–244.

[31] T. Dietterich, An experimental comparison of three methods for constructing

ensembles of decision trees: Bagging, boosting and randomization, Machine

Learning 40 (2) (2000) 139–158.

[32] S. Hadjitodorov, L. Kuncheva, L. Todorova, Moderate Diversity for Better

Cluster Ensembles, Information Fusion 7 (3) (2006) 264–275.

[33] E. P. Klement, R. Mesiar, E. Pap, Triangular Norms, Kluwer Academic, 2000.

23



[34] D. Achlioptas, Database-friendly random projections: Johnson-lindenstrauss

with binary coins, Journal of Comp. & Sys. Sci. 66 (4) (2003) 671–687.

[35] G. Valentini, Clusterv: a tool for assessing the reliability of clusters discovered

in DNA microarray data, Bioinformatics 22 (3) (2006) 369–370.

24


