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Summary. Ensemble clustering is a novel research field that extends to unsuper-
vised learning the approach originally developed for classification and supervised
learning problems. In particular ensemble clustering methods have been developed
to improve the robustness and accuracy of clustering algorithms, as well as the
ability to capture the structure of complex data. In many clustering applications
an example may belong to multiple clusters, and the introduction of fuzzy set the-
ory concepts can improve the level of flexibility needed to model the uncertainty
underlying real data in several application domains. In this paper, we propose an
unsupervised fuzzy ensemble clustering approach that permit to dispose both of the
flexibility of the fuzzy sets and the robustness of the ensemble methods. Our algo-
rithmic scheme can generate different ensemble clustering algorithms that allow to
obtain the final consensus clustering both in crisp and fuzzy formats.

1 Introduction

Ensemble clustering methods have been recently proposed to improve the
accuracy, stability and robustness of clustering algorithms [1, 2, 3, 4]. They
are characterized by many qualities like scalability and parallelism, the ability
to capture complex data structure and the robustness regarding the noise [5].
Ensemble methods can combine both different data and different clusterings
algorithms.

For instance, ensemble algorithms have been used in data-mining to com-
bine heterogeneous data or to combine data in a distributed environment [6].
Other research lines proposed to combine etherogenous clustering algorithms
to generate an overall “consensus” ensemble clustering, in order to exploit
the different characteristics of clustering algorithms [7]. By another general
approach to ensemble clustering, multiple instances of the data are obtained
through “perturbations” of the original data: a clustering algorithm is ap-
plied to the multiple perturbed data and the results are combined to achieve
the overall ensemble clustering. In this contest several techniques have been
proposed, such as noise injection, bagging, random projections [8, 9]. These
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methods try to improve both the accuracy and the diversity of each compo-
nent (base) clustering. In fact several works showed that the diversity among
the solutions of the components of the ensemble is one of the crucial factors
to develop robust and reliable ensemble clustering algorithms [1] [10].

In many “real world” clustering applications it may occurs that an example
may belong to more than one cluster, and in these cases traditional clustering
algorithms are not able to capture the real nature of the data. Consider, for
instance, general clustering problems in bioinformatics, such as the discovery
of functional classes of genes: it is well-known that a single gene may partici-
pate to different biological processes, thus it may belong to multiple functional
classes of genes. Sometimes it is enough to use hard clustering algorithms and
to relax the condition that the final clustering has to be a partition, but more
in general different techniques based on probabilistic approaches have been
developed (i.e. [3]).

In this contribution we propose an ensemble clustering algorithmic scheme
useful to deal with problems where we can capture and manage the possibility
for an element to belong to more than one class with different degrees of
membership. To achieve this objective we use the fuzzy-set theory to express
the uncertainty of the data ownership, and others fuzzy tools to transform
the fuzzy clusterings into crisp clusterings. To perturb the data we apply
random projections with low distortion [9] , a method well-suited to manage
high dimensional data (high number of attributes or “features”), reducing the
computational time and improving at the same time the diversity of the data.
Combining ensemble clustering techniques and fuzzy set theory, on one hand
we can improve the accuracy and the robustness of the consensus ensemble
clustering, and on the other hand we can deal with the uncertainty and the
fuzziness underlying real data.

In the following sections we introduce the random projections and the
fuzzy operators that characterize our proposed unsupervised ensemble meth-
ods. Then we describe the fuzzy ensemble clustering algorithmic scheme and
the algorithms that can be obtained from it. In sect. 5 we present some results
of their application to synthetic and real data sets. The discussion and the
conclusions end the paper.

2 Random projections.

Our proposed method applies random projections with low distortion to per-
turb the data. The objective is to reduce the dimension (number of features)
of the data, in order to “preserve” their structure.

Consider a couple of euclidean spaces, the original high d-dimensional,
and the target d’-dimensional spaces, with d > d’. A random projection 6 is a
randomized function 6 : RY — R<" such that Vp,g € R%:, 0 < € < 0.5, with
high probability the following disequalities hold:
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An example of random projection is the Plus-Minus-one (PMO) [11]
6(p) = R = p, represented by matrices R, with elements R;; = 1/\/(?(Aij),
where A is a d’ x d matrix and A; ; € {—1,1} such that Prob(4;; = 1) =
PT‘Ob(Aiyj = —1) = ]./2

A key problem consists in finding d’ such that, for every pair of data p,q €
R?, the distances between the projections 6(p) and 6(q) are approximately
preserved with high probability.

A natural measure of the approximation is the distortion disty:

disty () = 10— "

If disto(p,q) = 1, the distances are preserved; if 1 — e < distg(p,q) < 1 + €,
we say that an e-distortion level is introduced.

The main result on random projections is due to the Johnson-Lindenstrauss
(JL) lemma [12]:
given N vectors {z1,...,xx} € R%, if d' > CZOE%N,, where ¢ is a suitable con-

stant, then it exists a projection # : R% — R that, with high probability,
“preserves the distances”, for all pairs (x;,x;), 4,5 € {1,...,N};

(1= e)d(wi, zj) < d(0(x:),0(z;)) < (1+ €)d(zi, 7))

If we choose a value of d’ according to the JL lemma, we may perturb
the data introducing only bounded distortions, approximately preserving the
metric structure of the original data (see [13] for more details). Examples of
random projections that obey the JL Lemma can be found in [13, 9].

A key note is that the initial space d has to be not “too small”, otherwise,
using the JL Lemma, the initial space and the reduced space, have to become
of similar dimensions, even if the final dimension d’ not depends by “d”, but
only by the number of sample of the data set (n) and by the distortion chosen.

In fact our main target applications are characterized by high dimensional-
ity, such as DNA microarray data [14] , where usually few elements (samples)
of high dimensionality (number of features/genes) are available. If d >> d,
we can save considerable computational time, working with data set that
approximately preserves the metric characteristics of the initial space. The
perturbation of the data is obtained randomly choosing for every base learner
of the ensemble d’ projected features. However different perturbation methods
can in principle be used.
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3 Fuzzy-set & fuzzy-set methods

3.1 The membership functions

In the classic set theory (called also “crisp set theory”), created by Cantor,
the membership values of an object to a set can be 0 (FALSE) or 1 (TRUE).
The characteristic function of a crisp set can be defined as follow:

Lerisp sets : {(elem, crisp_set)} — {0,1}.

The fuzzy set theory [15] is a generalization of the previous theory; in fact
an object (elem) can belong only partially to a set (fuzzy_set). It is defined
a so called “membership function”: pfyzzy sets : (elem, fuzzy_set) — [0, 1]
In general, the domain of a membership function of a fuzzy set U can be
every set, but usually it is a discrete set (U = {uq,ug, ...up,}) or it is a subset
of R (U=[lower_value..higher_value] or U=(lower_value..higher_value), where
“lower_value” and “higher_value” can be every real number belong to [0,1],
with lower_value < higher_value).

If we consider a fuzzy set A, and a membership function defined on it, we can
rewrite the membership function definition as follow:

pa: Ur—[0,1]

so that the membership value p4(u;) describes the degree of ownership of the
element u; to the set A.

3.2 Fuzzy methods

In several data clustering applications, it is useful to have a method that can
capture with a certain approximation the “real” structure of data to obtain
the “best” clustering. Through the fuzzy ensemble clustering algorithm we
propose, it is possible to manage not only the possibility of overlapping among
the clusters, but also the degree of membership of every example of the data
set to the different clusters. In some application, however the initial problem
does not admit a strictly fuzzy answer, but at the same time it is generally
useful to have a valuation method that can use all the possible information
available (like the degrees of membership). We use two classical methods to
“defuzzify” the results:

1. the “alpha-cut”;
2. the “hard-clustering”.

The “alpha-cut” function can be defined as follow.
Vo € [0, 1] the a-cut [Aln, or simply A,, of A is:

[Ala = {u € Ulpa(u) > af.
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The expression of a threshold value for the membership function allows to
obtain from a fuzzy set a crisp set, called A, which contains every element
of U whose membership to A is larger than «.

The “hard-clustering” is not properly a fuzzy function: it’s a method to obtain
a crisp clustering from the original fuzzy clustering.

The role of both the previous functions in the algorithm scheme will be de-
scribed with more details in Section 4.

3.3 Triangular norms

To generalize the “classical” intersection operator in the fuzzy logic are often
used the so called triangular norms (t-norms) [16].
A t-norm T is a function T": [0, 1] x [0, 1] — [0, 1] that satisfies:

1) the boundaries conditions: 7(0,0) = 7(0,1) = T(1,0) =0

2) the identity condition: T'(a,1) = a V a € (0,1]

3) the commutative property: T'(a,b) = T'(b,a) ¥V (a,b) € [0,1]

4) the monotonic property: T'(a,b) < T(c,d) if a <ceb<dV (a,b,c,d) €
0,1]

e 5) the associative property: T'(a,T(b,c)) = T(T(a,b),c) V (a,b,c) € [0,1]

In the literature have been proposed four basic t-norms:

Ty (x,y) = min(z,y), (minimum) (2)
Tp(z,y) = x x y, (algebraic product) (3)
Tr(z,y) = mazx(x +y — 1,0), (Lukasewicz’s t-norm) (4)

0 if (x,y) € [0,1)%,
min(x,y) otherwise.

Tp(,y) {

The following order relation exist among the previous t-norms:

(drastic product) (5)

Tp < T <Tp < Ty

In our algorithm scheme we used the algebraic product as aggregation operator
(see 4).

4 The algorithmic scheme

4.1 General structure

The general structure of the algorithm is similar to the Randclust algorithm,
proposed in [9]: data are perturbed through random projections to lower di-
mensional subspaces and multiple clusterings are performed on the projected
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data; note that it is likely to obtain different clusterings, since the clustering
algorithm is applied to different ”views” of the data. Then the clusterings are
combined, and a consensus ensemble clustering is computed.

The main difference of our proposed method consists in using a fuzzy k-

means algorithm as base clustering and in applying a fuzzy approach to the
combination and the consensus steps of the ensemble algorithm. In particular
we can apply different crisp and fuzzy approaches both to the aggregation and
consensus steps, obtaining in this way the following algorithmic scheme:

Fuzzy ensemble clustering algorithmic scheme:

1.

Random projections. Generation of multiple instances (views) of com-
pressed data through random projections (but different type of data per-
turbation methods like resampling or noise-injection can also be used).

. Generation of multiple fuzzy clusterings. The fuzzy k-means algorithm is

applied to compressed data obtained from the previous step. The output
of the algorithm is a membership matrix where each element represents
the membership of an example to a particular cluster.

“Crispization” of the base clusterings. This step is executed if a ”crisp”
aggregation is performed: the fuzzy clusterings obtained in the previous
step can be “defuzzified” through one of the following techniques:

a) hard-clustering;

b) a-cut;

. Aggregation. If a fuzzy aggregation is performed, the base clusterings are

combined, using a square similarity matrix [8] M¢ whose elements are
generated through fuzzy t-norms applied to the membership functions of
each pair of examples. If a crisp aggregation is performed, the similarity
matrix is built using the product of the characteristic function between
each pair of examples.

. Clustering in the “embedded” similarity space. The similarity matrix in-

duces a new representation of the data based on the pairwise similarity
between pairs of examples: the fuzzy k-means clustering algorithm is ap-
plied to the rows (or equivalently to the columns) of the similarity matrix.

. Consensus clustering. The consensus clustering could be represented by

the overall consensus membership matrix, resulting in a fuzzy represen-
tation of the consensus clustering. Alternatively, we may apply the same
crispization techniques used at step 3 to transform the fuzzy consensus
clustering to a crisp one.

The two classical “crispization” techniques we used in steps 3 and 6, can

be described as follows:

Hard-clustering:

1 & arg max, Uy; = 7
H __ g s Usg
Xri = {0 otherwise. (6)
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a-cut:

(7)

where x,; is the characteristic function for the cluster r: that is y,; = 1
if the i*" example belongs to the r" cluster, x,; = 0 otherwise; 1 < s <
k;1 <i<n,0<a<1, and U is the fuzzy membership matrix obtained
by applying the fuzzy k-means algorithm. Note that two different types of
membership matrices are considered: at step 3 multiple membership matrices
U are obtained through the application of the fuzzy k-means algorithm to
multiple instances of the projected data; at step 6 another membership matrix
U (where the superscript C stands for ”consensus”) is obtained by applying
the fuzzy k-means algorithm to the rows of the similarity matrix.

We may observe that considering the possibility of applying crisp or fuzzy
methods at steps 3 and 6, we can obtain 9 different algorithms, exploiting
different combinations of aggregation and consensus clustering techniques. For
instance, combining a fuzzy aggregation with a consensus clustering obtained
trough a-cut we obtain from the algorithmic scheme a fuzzy-alpha ensemble
clustering algorithm, while using a hard-clustering crispization technique for
aggregation and a fuzzy consensus we obtain a maz-fuzzy ensemble clustering.

In the next two sections we discuss the algorithms based on the fuzzy
aggregation step (fuzzy-* clustering ensemble algorithms) and the ones based
on the crisp aggregation on the base clusterings (crisp-* clustering ensembles).

a _ 1 & Z/{ri >«
Xri 0 otherwise.

4.2 Fuzzy ensemble clustering with fuzzy aggregation of the base
clusterings

The pseudo-code of the algorithm is reported below:
Fuzzy-* ensemble clustering:
Input:
- a data set X = {x1,22,..., 2y}, stored in a d x n D matrix.
- an integer k (number of clusters)
- an integer ¢ (number of clusterings)
- an integer v (integer used for the normalization of the final clustering)
- the fuzzy k-means clustering algorithm Cj
- a procedure the realizes the randomized map p
- an integer d’ (dimension of the projected subspace)
- a function 7 that defines the t-norm
begin algorithm
(1) For eachi,j € {l,...,n} do M;; =0
(2) Repeat fort=1toc
(3) Ry = Generate,projectionjnatrix (d, )
(4) D -D
(5 )u@) —cf(Dt,k m)
(6) For eachi,j € {1,...,n}
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M) =0 s U

end repeat

()M = Byl

(8) < A17A27 - ,Ak >= Cf(MC,k7m)
end algorithm.
Output:
- the final clustering C' =< Ay, Ao, ..., Ax >
- the cumulative similarity matrix M.

Note that the dimension d’ of the projected subspace is an input parameter
of the algorithm, but it may be computed according to the JL lemma (Sect. 2),
to approximately preserve the distances between the examples. Inside the
mean loop (steps 2-6) the procedure Generate projection matrix produces
a d’' x d R; matrix according to a given randomized map p [9], that it is used
to randomly project the original data matrix D into a d’ X n D, projected
data matrix (step 4). In step (5) the fuzzy k-means algorithm C; with a
given fuzziness m is applied to D, and a k-clustering represented by its ¢/(*)
membership matrix is achieved. Hence the corresponding similarity matrix
M® is computed, using a given t-norm (step 6). Note that U is a fuzzy
membership matrix (where the rows are clusters and the columns examples).
A similar approach has been also proposed in [17].

In (7) the "cumulative” similarity matrix M is obtained by averaging
across the similarity matrices computed in the main loop. Note the normal-
ization factor %: it’s easy to demonstrate that, for the choice of the algebraic
product as t-norm, a suitable choice of v can be the number of clusterings c.
Finally, the consensus clustering is obtained by applying the fuzzy k-means
algorithm to the rows of the similarity matrix M¢ (step 8).

4.3 Fuzzy ensemble clustering with crisp aggregation of the base
clusterings

In agreement with the algorithm scheme, there are two different methods to
“defuzzify” the clusterings:

e hard-clustering;
e «-cut.

Below we provide the pseudo-code for the fuzzy ensemble clustering with
“crispization” through hard-clustering.

Max-* ensemble clustering:

Input:

a data set X = {x1,29,...,2,}, stored in a d x n D matrix.

- an integer k (number of clusters)

- an integer ¢ (number of clusterings)

an integer v (integer used for the normalization of the final clustering)
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the fuzzy k-means clustering algorithm Cy

a procedure the realizes the randomized map p

an integer d’ (dimension of the projected subspace)
a “crispization” algorithm “Crisp”

begin algorithm

1) For eachi,j€{l,...,n} do M;; =0
J
2) Repeat fort=1toc
(2) Rep
(3) Ry = Generate,projectioanatrix (d', )
(4) D -D
(5) U Cf(Dt, k. m)
(5bis) x® = Crisp(U®)
(6) For eachkl Je{l,...,n}
t ¢ ¢
M’L(j) - Zs 1 ng) * ng)
end repeat
(T)Me = Zim MY

(&

(8) <A Ay A >= Cf(MC,k,m)

end algorithm.

Output:

- the final clustering C' =< Ay, As, ..., Ax >
- the cumulative similarity matrix M.

Different observations can be made about the proposed algorithm:

. With respect to the previously proposed fuzzy-* ensemble clustering, it

has been introduced a new step (step 5bis) after the creation of the mem-
bership matrix of the single clusterings, to obtain the transformation of
fuzzy data in crisp ones. After this new step a characteristic matrix y®)
is created for every clustering.

. After this step, the data can be managed like “natural” crisp data. In

fact, in the (6) step, the final similarity matrix is obtained through the
methods showed in [8, 9].

. As a consequence of the “hard-clustering crispization” (step 5bis) the

consensus clustering is a partition, that is each example may belong to
one and only one cluster:

o 1 < argmazs Us; =1
L Mo
Vi, J Xij { 0 otherwise.

Hence, the normalization of the values of the similarity matrix can be
performed using the factor < (step (7)).
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4.4 Fuzzy ensemble clustering with crisp aggregation and a-cut
defuzzification

Another algorithm that can be derived from the algorithmic scheme is based
on the crisp aggregation of base clustering using an a-cut defuzzification
method (eq. 7). In this case the results strongly depend on the choice of
the value of . Indeed for large values of « in several base clusterings we may
have many unassigned examples, while, on the contrary, for small values of «
it is likely some examples may belong to multiple clusters.

The pseudo-code of the ensemble algorithm with crispization through a-
cut is reported below.
Alpha-* ensemble clustering:
Input:
- a data set X = {x1,22,...,2,}, stored in a d X n D matrix.
- an integer k (number of clusters)
- an integer ¢ (number of clusterings)
- a real value « (a-cut value)
- the fuzzy k-means clustering algorithm Cy
- a procedure the realizes the randomized map p
- an integer d’ (dimension of the projected subspace)
- a “crispization” algorithm “Crisp”

begin algorithm
(1) For eachi,j€{l,...,n} do M;; =0
(2) Repeat fort=1toc
(3) Ry = Generate_projection matrix (d’,u)

6) For eachi,j € {l,...,n}

() _ ok (®) )
M;;" = Dosm1 Xsi X Xsj
end repeat

(T)Me = Zig M0

(8) < A17A27 - ,Ak >= Cf(MC, k’,m)
end algorithm.
Output:
- the final clustering C' =< Ay, Ao, ..., Ax >

- the cumulative similarity matrix M.

Comparing this algorithm with the Maz-* ensemble clustering (Sect. 4.3)
we may note that the main changes are in the steps (5bis) and (7). Indeed,
in the step (5bis) the Crisp algorithm has a new parameter: «, the alpha-
cut threshold value. In particular in the y® = Crispa (U (t)) operation, the
assignment of an example to a specific cluster depends on the value of « (a
parameter that is given as input to the algorithm):
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t 1l = Z/{ij > a,
Xij = :
v 0 otherwise.

Note that the normalization method in the step (7) comes from the fol-
lowing observations:

1. In the algorithm proposed it is used only one clustering function that
works with a fixed number (k) of clusters for each clustering;
2. For a fixed o
Xsi =1 <= s >«

Xsi = 0= pg <

with 1 < s <k;
hence

k
0<d xui <k
s=1

Considering that each k-clustering is repeated ¢ times, we can observe that
k * c is the total number of clusters across the multiple clusterings. We may
use base clusterings with different number of clusters for each execution; in
this case the normalization factor v becomes:

U:Zkt (8)

where k; is the number of clusters of the t** clustering.

5 Experimental results

In this section we test our proposed fuzzy ensemble algorithms with both
synthetic and real data. For all the experiments we used high-dimensional
data to test the effectiveness of random projections with this kind of complex
data.

5.1 Experiments with synthetic data
Experimental environment

To test the performance of the proposed algorithms, we used a synthetic data
generator [9]. Every synthetic data set is composed by 3 clusters with 20
samples each. Every example is 5000-dimensional. Each cluster is distributed
according to a spherical gaussian probability distribution with a standard
deviation of 3. The first cluster in centered in the null vector 0. The other
two clusters are centered in 0.5e and —0.5e, where e is a vector with all the
components equal to 1. We tested 4 of the 9 algorithms developed, two with
the hard-clustering method applied to the consensus clustering and two using
the a-cut approach:
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e maz-mazx: hard-clustering applied to both the base clustering and consen-
sus clustering;

e fuzzy-max: the aggregation step is fuzzy, the consensus step crisp through
hard-clustering;

e maz-alpha: crisp aggregation by hard-clustering, and crisp consensus through
«a-cut;

e fuzzy-alpha: fuzzy aggregation and crisp consensus through a-cut.

We repeated 20 times the previous four clustering ensemble algorithms using
data sets randomly projected to a 410-dimensional feature space (correspond-
ing to a distortion € = 0.2, see Sect. 2). As a baseline clustering algorithm we
used the classical fuzzy-k-means, executed on the original data set (without
data compression). Since clustering does not univocally associate a label to
the examples, but only provides a set of clusters, we evaluated the error by
choosing for each clustering the permutation of the classes that best matches
the ”a priori” known ”true” classes. More precisely, considering the following
clustering function:

f(z):RT—=PQ), withY ={1,...,k} 9)

where x is the sample to classify, d its dimension, k the number of the classes,
and P () is the powerset of Y, the error function we applied is the following:

0if (Y| =1AtEY)VY = {A\}

1 otherwise. (10)

Lo/ (Y1) = {
with ¢ the “real” label of the sample z, Y € P(Y) and {A} is the empty set.
Other loss functions or measures of the performance of clustering algorithms
may be applied, but we chose this modification of the 0/1 loss function to
take into account the multi-label output of fuzzy k-means algorithms, and
considering that our target examples belong only to a single cluster.

Results

The error boxplots of Fig. 1 show that our proposed fuzzy ensemble clustering
algorithms perform consistently better than single fuzzy k-means algorithms,
with the exception of the fuzzy-max algorithm, when a relatively high level
of fuzziness is chosen. More precisely, in Fig.1, we can observe how different
degrees of fuzziness of the “component” k-means clusterings can change the
performance of the ensemble, if the “fuzzy” information are preserved from
the “crispization” operation. In fact, if the single k-means and the ensemble
max-max algorithm (which use the hard-clustering operation in both the com-
ponent and consensus level) performances are similar in the both the graphics
(1 (a) and (b)), the result of the fuzzy-max ensemble algorithm (where the
“defuzzification” operation are performed only on the final result) change
drastically. The good performance of the max-max algorithm with both the
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Fig. 1. Boxplot related the max-max and the fuzzy-max algorithms (PMO data
reduction and € = 0.2) compared with the single k-means “crispized” through hard-
clustering respectively with (a) fuzziness=2.0 (b) fuzziness=1.1

degrees of fuzziness could depend on the high level of “crispness” of the data:
indeed each example is assumed to belong exactly to one cluster. A confir-
mation of this hypothesis is given by the improvement of performance of the
fuzzy-max algorithm by lowering the level of fuzziness (2.0 to 1.1) of the base
clusterings. A different consideration can be proposed regarding the fuzzy-
max algorithm, in which the capacity to express “pure” fuzzy results on the
base learners level, can improve its degree of flexibility (possibility to adapt
the algorithm to the nature of the clusterings).

The analysis of the fuzzy-alpha and max-alpha algorithms (Fig. 2, 3) shows
how the reduction of the fuzziness reduces the number of unclassified samples
and the number of errors, especially for a < 0.5); for higher level of « the
error rate goes to 0, but the number of unclassified samples arises quickly.
Note that fuzzy-alpha ensembles achieve an error rate very close to 0 with a
small amount of unclassified examples for a large range of « values (Fig. 2 b).
Fig 3 shows how the max-alpha algorithm obtains inversely related error and

unclassified rates while varying «, with an ”optimal” value close to 0.5.

Table 1 summarizes the results, showing that our proposed fuzzy-maz and
fuzzy-alpha ensemble methods outperform the other compared ensemble algo-
rithms with respect to these high dimensional synthetic data.
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Fig. 2. Fuzzy-Alpha ensemble clustering error and unclassified rate with
fuzziness = 2 (a) and fuzziness = 1.1 (b) with respect to a.
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Fig. 3. Max-Alpha ensemble clustering error and unclassified rate with fuzziness =
2 (a) and fuzziness = 1.1 (b) with respect to a.

5.2 Experiments with real data
Experimental environment

We performed experiments with high dimensional DNA microarray data. In
this context each example corresponds to a patient and the features asso-
ciated with the patients are gene expression levels measured through DNA
microarray [14]. These high-throughput bio-technologies allow the parallel
measurements of the mRNA levels of thousands of genes (and now of en-
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Table 1. Compared results between fuzzy ensemble clustering methods and other
ensemble and ”single” clustering algorithms. The last column represents the rate of
the unclassified examples.

Algorithms Mean error|Std. Dev.|% Uncl.
Fuzzy-Max 0.0058 0.0155 0
Fuzzy-Alpha 0.0058 0.0155 0.0008
Max-Max 0.0758 0.1104 0
Max-Alpha 0.0573 0.0739 0.0166
Rand-Clust 0.0539 0.0354 0
Fuzzy ”single” 0.3916 0.0886 0
Hierarchical ”single” 0.0817 0.0298 0

tire genomes) of the cells or tissues of a given patient, thus providing a sort of
snapshot of the functional status of a given cell or tissues in a certain condi-
tion. In this way we can obtain the molecular portrait of a given phenotype in
a given condition and at a given time. Among the different application of this
technology, here we consider the analysis of gene expression data of patients
to reconstruct known phenotypes using bio-molecular data (DNA microarray
measurements). These data are characterized by a high dimension (high num-
ber of analyzed genes) and relatively low cardinality (number of patients),
thus resulting in a challenging unsupervised problem.

In our experiments we experimented with the Leukemia data set, that
contains gene expression levels of 7129 genes in Affymetrix’s scaled average
difference units relative to 47 patients with Acute Lymphoblastic Leukemia
(ALL) and 25 cases of Acute Myeloid Leukemia (AML) [18]. We analyzed also
the Melanoma data set (described in [19]) that it is composed by 31 melanoma
samples and 7 control samples with 6971 genes. For both these data sets we
applied the same pre-processing procedures described respectively in [18] and
[19].

We tested the performance of the fuzzy ensemble algorithms fuzzy-max,
fuzzy-alpha, maz-mazx and maz-alpha using the previously described data sets.
We compared the results with Randclust, the corresponding ”crisp” version
of our proposed ensemble methods [9] and with Bagclust!, based on an un-
supervised version of bagging [8], and with the ”single” fuzzy k-means clus-
tering algorithm. The Randclust ensemble method is similar to the algorithm
presented in this paper, but it uses the hierarchical clustering algorithm to
produce the base clusterings, and a crisp approach to combine the resulting
clusters. Bagclust! generates multiple instances of perturbed data through
bootstrap techniques, and then it applies to each instance the base cluster-
ing algorithm (we used in our experiments k-means); the final clustering is
obtained by majority voting.

Each ensemble is composed by 50 base clusterings and each ensemble
method has been repeated 30 times. Regarding to ensemble methods based
on random projections, we chose projections with bounded 1 + 0.2 distor-
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tion, according to the JL lemma, while for Bagclust! we randomly drew with
replacement a number of examples equal to the number of the available data.

Results

The boxplots in Fig. 4 represent the distribution of the error across multiple
repetitions of the fuzzy ensemble algorithms compared with the “single” fuzzy
k-means, the Randclust and the Bagclust! ensemble methods for the two data
sets used in the experiments.

With the Leukemia data set the results obtained with the different methods
are quite comparable (Fig. 4 (a)), while with the Melanoma DNA microarray
data (Fig. 4 (b)), the proposed fuzzy ensemble methods largely outperform all
the other compared methods. The results show that ensembles based on ran-
dom projection to lower dimensional spaces, using projections matrices that
obey the JL lemma are well-suited to high dimensional data. Nevertheless note
that in the experiments with the Leukemia data set both our proposed fuzzy
ensemble clustering method and Randclust applied random projections to per-
turb the data, but our proposed fuzzy approach significantly outperforms the
crisp Randclust ensemble method.

In order to understand in which way the base fuzzy clustering may affect
the overall results with respect to the base hierarchical clustering algorithms
used in Randclust, we performed an analysis of the relationships between ac-
curacy and similarity of each pair of base clusterings used in each ensemble,
using measures based on the normalized mutual information (NMI), according
to the approach originally proposed in [20] and [1]. By this approach the accu-
racy of each pair of base clusterings of the ensemble is measured by averaging
the NMI of each base clustering with respect to the a priori known ”true”
clustering, while their diversity by measuring the NMI directly between the
two base clusterings. The results are plotted in Fig. 5. Interestingly enough,
the base clusterings of our proposed fuzzy ensemble approach are both more
accurate (in the figure their NMI ranges approximately between 0.25 and 0.30,
while in Randclust the accuracy is below 0.20), and more diverse (indeed their
NMI in the y axis are between 0.55 and 0.80, while in Randclust are above
0.80: recall that a low value of NMI between base clusterings reveals a high di-
versity and viceversa). It is well-known in the literature that a highly desirable
property of ensembles consists in a high accuracy and diversity of base learn-
ers: there is a trade-off between accuracy and diversity, and the performances
of ensembles in part depend on the relationships between these quantities [4].
Our results show that our proposed ensemble clustering approach improve
both the accuracy and the diversity of base learners.

6 Conclusions

In this paper we proposed an algorithmic scheme that combines a fuzzy ap-
proach with random projections to obtain clustering ensembles well suited
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Fig. 4. Boxplot of the results of gene expression data analysis: (a) Leukemia data
set and (b) Melanoma data set. (1)..(7) in abscissa refer to to the results obtained
respectively with Randclust (1), Bagclustl (2), Single fuzzy k-means (3), max-max
(4), fuzzy-max (5), max-alpha (6) and fuzzy-alpha (7) fuzzy ensemble algorithms.

to the analysis of complex high-dimensional data. The proposed approach on
one hand exploits the accuracy and the effectiveness of the ensemble clustering
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Fig. 5. Melanoma data set: analysis of the relationships between accuracy and
similarity between the base learners of the fuzzy max* ensemble clustering (triangles)
and Randclust ensemble clustering (circles).

techniques based on random projections, and on the other hand the expressive
capacity of the fuzzy sets, to obtain clustering algorithms both reliable and
able to express the uncertainty of the data.

From the algorithmic scheme several ensemble algorithms can be derived,
by combining different fuzzy and defuzzification methods in the aggregation
and consensus steps of the general algorithmic scheme. Our preliminary results
with both synthetic and DNA microarray data are quite encouraging, showing
that the fuzzy approach achieves a good compromise between the accuracy
and diversity between the base learners. Moreover these results have been also
confirmed by other recent experiments with DNA microarray data [21].

Several open problems need to be considered for future research work.
For instance, we may consider the choice of the t-norm to be used in the
fuzzy aggregation of multiple clusters. In our experiments we applied the
algebraic product, but we need to experiment with other t-norm and we need
to analyze their properties to understand what could be the better choice with
respect to the characteristics of the data. Moreover we experimented with the
PMO random projections, but we need also to experiment with other random
projections, such as normal or Achlioptas random projections [11, 13], and
we need also to get more theoretical insights into the reasons why random
projections work on high dimensional spaces. Another interesting development
of this work consists in studying if it possible to embed recently proposed
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stability-based methods based on random projections [22, 23] into ensemble
clustering methods to steer the construction of the consensus clustering.

In the experiments we used ”crisp” data, showing that the proposed
method can be successfully applied to analyze this kind of data. We are plan-
ning new experiments with examples that may belong to multiple clusters (e.g.
unsupervised analysis of functional classes of genes) to show more clearly the
effectiveness of the proposed approach. Moreover we plan experiments to an-
alyze the structure of unlabeled data when the boundaries of the clusters
are highly uncertain, with very partial memberships of the examples to the
clusters.
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