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Abstract

The proper integration of multiple sources of data and the unbalance between

annotated and unannotated proteins represent two of the main issues of the Auto-

mated Function Prediction (AFP) problem. Most of supervised and semi-supervised

learning algorithms for AFP proposed in literature do not jointly consider these

items, with a negative impact on both sensitivity and precision performances, due

to the unbalance between annotated and unannotated proteins that characterize

the majority of functional classes and to the specific and complementary infor-

mation content embedded in each available source of data. We propose UNIPred

(Unbalance-aware Network Integration and Prediction of protein functions), an al-

gorithm that properly combines different biomolecular networks and predicts pro-

tein functions using parametric semi-supervised neural models. The algorithm ex-

plicitly takes into account the unbalance between unannotated and annotated pro-

teins both to construct the integrated network and to predict protein annotations

for each functional class. Full-genome and ontology-wide experiments with three

Eukaryotic model organisms show that the proposed method compares favourably

with state-of-the-art learning algorithms for AFP.

Key words: Protein function prediction, unbalance-aware network integration,

Hopfield networks.
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1 Introduction

The noticeable increasing in the quantity and variety of publicly available genomic and

proteomic data and the inherent difficulty and cost of experimental validation have

brought to the fore the automated prediction of protein functions (AFP) as one of the

central problems of the post-genomic era (Radivojac et al., 2013).

AFP is characterized by many issues, including the possibility of assigning multiple

labels to proteins (multi-label classification), the hierarchical organization of functional

classes, e.g. the Gene Ontology - GO (Ashburner et al., 2000), the unbalance char-

acterizing most functional classes (few annotated “positive examples” and much more

unannotated proteins), and the need of methods able to integrate the available heteroge-

neous sources of genomic, proteomic and transcriptomic data to achieve more accurate

predictions (Cesa-Bianchi et al., 2012).

Several attempts have been proposed in the literature for the AFP problem, rang-

ing from sequence-based methods (Martin et al., 2004; Hawkins et al., 2009; Juncker

et al., 2009), to network-based methods (Sharan et al., 2007; Mostafavi et al., 2008;

Bertoni et al., 2011; Re et al., 2012; Frasca, 2015), structured output algorithm based

on kernels (Sokolov and Ben-Hur, 2010; Sokolov et al., 2013) and hierarchical ensemble

methods (Obozinski et al., 2008; Guan et al., 2008; Cesa-Bianchi and Valentini, 2010;

Valentini, 2014). In particular, network-based methods represent the information coming

from different experiments through graphs, in which nodes are genes/proteins and edges

their functional pairwise relationships, and novel annotations are inferred by exploiting

the topology of the resulting biomolecular network (Lippert et al., 2010; Pandey et al.,

2009; Kourmpetis et al., 2010; Mostafavi and Morris, 2010; Zhang and Dai, 2012; Youngs

et al., 2014).

In this context, several computational approaches achieved more accurate predictions

by appropriately combining the available heterogeneous genomic and proteomic data net-

works, e.g. by keeping the edges in the majority of single functional networks (Marcotte
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et al., 1999), or by constructing an unweighted sum of single networks (Pavlidis et al.,

2002), or by weighted sum, determining the weight of each network according to the

function being predicted. The network weights have been computed by using different

approaches, including SVM optimization (Lanckriet et al., 2004; Linghu et al., 2008),

Gaussian random fields (Tsuda et al., 2005), logistic (Yao and Ruzzo, 2006) and lin-

ear (Mostafavi et al., 2008) regression. Moreover, some approaches simultaneously assign

network weights to groups of related functions (Lan et al., 2013; Mostafavi and Morris,

2010; Valentini et al., 2014). Similarly, Chua et al., 2007 integrated functional networks

by keeping each edge in at least one of the single networks and by weighting edges accord-

ing to the function to be predicted. Bayesian networks have also been applied to integrate

heterogeneous networks by exploiting gene context information (Myers and Troyanskaya,

2007).

The results of the recent CAFA challenge showed that the integration of multiple data

sources plays a key role in the automated function prediction of proteins (Radivojac et al.,

2013). In particular, Cozzetto et al. (2013) integrated both a wide variety of biological

information sources and different prediction algorithms, taking into account also the

hierarchy of GO terms. In (Sokolov et al., 2013) a collection of genomic data is integrated

to combine species-specific and cross-species views in the context of structured output

prediction of protein functions, whereas Wang et al. (2013) in order to predict protein

functions combined sequence-based, profile-based and domain co-occurrence-based data,

and Lan et al. (2013) averaged scores obtained from sequence similarity, PPI and gene

expression data according to a multi-source kNN approach.

Nevertheless, most of these approaches partially or totally neglect the labeling unbal-

ance that affects the functional classes. Labeling unbalance may affect function-specific

methods in both integration and prediction phases (Ling and Sheng, 2007). Indeed, the

majority of GO terms and mainly the most specific ones (those close to leaves in the direct

acyclic graph representing the GO) have a considerably low number of annotations and

most proteins are unannotated. In this setting, classical supervised or semi-supervised
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learning algorithms (e.g. SVMs or label propagation methods (Bengio et al., 2006)) usu-

ally suffer performance decays, resulting sometimes in “all-negatives” predictions with

poor sensitivity and precision (Cesa-Bianchi et al., 2012; Frasca et al., 2013a,b).

In this work we propose UNIPred (Unbalance-aware Network Integration and Predic-

tion of protein functions), a novel network-based algorithm able to both combine multiple

sources of data and infer functions for unknown proteins, particularly when the propor-

tion of annotated proteins is significantly reduced. UNIPred can capture the suitability of

each source of data for the prediction of specific functions and can handle the unbalance

of data labelings both in the network integration and prediction steps of the method.

The core of the integration algorithm is the transformation of each protein/node of the

network into a labeled point in a bi-dimensional space, such that: (a) the local “label

unbalance” of the node/protein with respect to the labeling of its neighborhood is em-

bedded in the point position; (b) the “unbalance-aware” weight assigned to networks can

be efficiently learned by linearly separating positive and negative points. The computed

weights allows to construct the “consensus” network, which is then processed by a re-

cently proposed semi-supervised classification algorithm based on parametric Hopfield

networks (Frasca et al., 2013a), designed to explicitly take into account the unbalance

between annotated an unannotated proteins for each specific functional class.

2 Methods

In this section we first formalize the AFP problem in a semi-supervised scenario, then we

introduce our novel unbalance-aware approach for integrating different protein networks.

Finally, we outline its theoretical and experimental motivations.
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2.1 Learning protein functions in a network-based semi-supervised

setting

In a graph scenario, proteins can be represented by a set of nodes V = {1, 2, . . . , n},

and relationships between proteins are encoded through a symmetric n × n real matrix

W , where Wij represents a pre-computed functional similarity between proteins i and

j. For a given functional class c, the subset of labeled nodes S ⊂ V is divided into

positive S+ and negative S− instances according to the corresponding labeling function

Lc : S −→ {+,−}. The AFP problem consists in determining a labeling also for unlabeled

nodes U , with V = S ⊔ U , starting from the known labeling and the connections W .

Here the symbol ⊔ represents the disjoint union.

2.2 Unbalanced network integration and function prediction

Given a set ofm biological networks, we represent each network through a weighted graph

G(d) = 〈V (d),W (d)〉, where d ∈ {1, 2, . . . ,m}, V (d) and W
(d) are the set of proteins and

the connection matrix of d-th network respectively. Fixed a functional class c and the

corresponding labeling function Lc, the labeling unbalance can be represented through

a coefficient ǫ = |S
(d)
+ |/|S

(d)
− |, where S

(d)
+ and S

(d)
− are the sets of positive and negative

nodes of d-th network.

Assumed that labels of class c are significantly unbalanced, i.e. ǫ << 1, the unbalanced

function prediction and network integration problem consists in:

- the integration of biological networks G(d) in a “consensus” network G = 〈V,W 〉;

- the label prediction for unlabeled proteins/nodes v ∈ U using the consensus

network G.

The integration is performed by associating each network G(d) with a weight h
(d)
c related

to its “informativeness” for class c, and then by computing the weighted sum of the

component networks. Here we use the term “informativeness” to reflect how much a
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given data source is effective for the prediction of a given functional class.

2.3 UNIPred

UNIPred is a multi-step network-based method for the unbalance-aware data integration

and prediction of protein functions. UNIPred consists of two steps:

1. A supervised algorithm to construct a single function-specific “consensus” network

from multiple protein networks derived from different genomic, proteomic and tran-

scriptomic data sources

2. An algorithm based on Hopfield networks for predicting protein functions given the

consensus network

The integration step can be further divided in three sub-steps:

1.1. Projection of nodes. For each function and each network separately, the set of

labeled nodes/proteins in the network is associated with a set of labeled points in

R
2

1.2. Linear separation of projected points. A function-specific parametric line is learned

by a supervised algorithm in order to separate positive and negative points. The

optimal line provides an unbalance-aware weight related to the informativeness of

the network

1.3. Network integration. For each functional class, the computed weights are properly

used to combine the input networks in a unique consensus network

Fig. 1 provides a schematic representation of the algorithm.

[Figure 1 about here.]

The projection of nodes at Step 1.1 embeds the information encoded in the network

topology and transfers the label unbalance of the node neighborhood in the geometrical
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position of the corresponding point. The weights computed at Step 1.2 are related to the

unbalance-aware linear separability of the projected points, and at Step 1.3 the consensus

network is constructed as a weighted sum of the input networks by using the computed

weights as coefficients. Finally a cost-sensitive Hopfield network is applied to the resulting

“consensus” network to predict protein functions. In the following sections each step of

the algorithm is described in detail.

2.3.1 Projection of nodes.

For each network G(d), each node k ∈ S(d) = S
(d)
+ ∪ S

(d)
− is associated with a point

∆(d)(k) ≡
(

∆
(d)
+ (k),∆

(d)
− (k)

)

∈ R
2, whose abscissa and ordinate are respectively the

weighted sum of its positive and negative connections:

∆
(d)
+ (k) =

∑

j∈S
(d)
+

W
(d)
kj , ∆

(d)
− (k) =

∑

j∈S
(d)
−

W
(d)
kj

The position of each point in the plane thereby reflects the topology of the connections

towards neighboring positive and negative nodes. For a given class c, the label of point

∆(d)(k) is the label Lc(k) of node k. The bipartition (S
(d)
+ , S

(d)
− ) of labeled nodes S(d)

induces in a natural way a bipartition (I
(d)
+ , I

(d)
− ) of the projected points I(d) = {∆(d)(k) |

k ∈ S(d)} in positive and negative points:

I
(d)
+ = {∆(d)(k) | k ∈ S

(d)
+ }, I

(d)
− = {∆(d)(k) | k ∈ S

(d)
− }. (1)

After the node projection, the label unbalance problem can be handled by appropriately

exploiting the information coded in point positions.

2.3.2 Linear separation of projected points.

Consider now a parametric straight line in the plane of equation fα,γ(x, y) = cosα · y −

sinα · x+ γ = 0. It separates the projected points into points I
(d)
α,γ,+ “below” and points
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I
(d)
α,γ,− “above” the line fα,γ(x, y) = 0 (Fig. 2):

I
(d)
α,γ,+ = {∆(d)(k) | fα,γ(∆

(d)(k)) ≤ 0}

I
(d)
α,γ,− = {∆(d)(k) | fα,γ(∆

(d)(k)) > 0}

[Figure 2 about here.]

We classify as positive the points below the line because, according to Eq. (1), points

close to the abscissa axis, and more in general below the bisector of the first quadrant

angle, have a prevalence of positive neighbors. Each pair values (α, γ) for the parameters

(α, γ) determines a different straight line fα,γ to separate positive from negative examples.

We denote with TP the number of positive points correctly classified by the line, with

FP the number of negative points wrongly classified and with FN the number of positive

points classified as negative. To explicitly consider the data unbalance that characterizes

the AFP problem, the classification performance is assessed through the F-score measure,

where F-score = 2TP
2TP+FP+FN

. To maximize the F-score we adopt a 2-step approximated

algorithm:

1. Compute α̂. The algorithm computes the slopes tanα of the straight lines crossing

the origin and each point ∆(d)(k) ∈ I
(d)
+ ∪ I

(d)
− . Then it searches the line which

maximizes the F-score by sorting the computed lines according to their slopes in

an increasing order. Since all the points lie in the first quadrant, this assures that

the angle α̂ relative to the optimum line is in the interval [0, π
2
[ (Fig. 3 (a)).

2. Compute γ̂. The parallel lines having the slope tan α̂ computed at the previous step

and crossing the projected points, are scanned from right to left (Fig. 3 (b)). Let

q̂ be the intercept of the line having the highest F-score: if y = tan α̂ · x + q̂, then

γ̂ = −q̂ cos α̂. The weight associated with the network G(d) with respect to class c

is computed according to the corresponding “optimal” F-score F
(d)
c .

[Figure 3 about here.]
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Although in general projected points are not linearly separable, a linear

classifier on the one hand allows preventing an excessive increase of the model

complexity; on the other hand, it likely avoids or at least reduces possible

overfitting problems, due to the small number of available annotations for the

majority of the functional classes characterizing this context.

The main reasons to adopt this specific approximated linear classifier to

estimate the parameters α̂ and γ̂ are its efficiency and scalability coupled with

a good accuracy. Indeed, both Step 1 and 2 (which are executed just once)

can be computed in O(n log n) computational time (due to the sorting), where

n is the number of points. The algorithm is approximated because it selects a

“meaningful” subset of all possible parametric straight lines fα,γ in both Step

1 and 2, and searches for the best separator among these lines. Although

an exact algorithm for this problem working in time O(n2 log n) does exist

(a simple extension of this algorithm), the proposed approximated classifier

represents an appropriate trade-off between the quality of solution and the

computational complexity, thus allowing an efficient application to complex

genome and ontology-wide prediction tasks. It is worth noting that other

linear algorithms could be in principle applied to estimate the “optimal”

separator straight line, including variants of SVMs and logistic regression

algorithms which optimize the F-score (Musicant et al., 2003; Joachims, 2005;

Jansche, 2005); nevertheless, we discarded these methods for their increased

computational complexity.

2.3.3 Network integration.

We apply UNIPred to each GO term c separately, obtaining the F-score vector Fc =

{F
(1)
c , F

(2)
c , · · · , F

(m)
c }. Using this vector, we consider three strategies for the weighted

integration of networks:

- WAP (Weighted Average Per-class). A consensus network for each term c is con-
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structed using hc = {h
(1)
c , h

(2)
c , · · · , h

(m)
c } as network weights, with h

(d)
c = F

(d)
c

∑
i
F

(i)
c

.

- WA (Weighted Average). A consensus network for each GO ontology (BP, MF, CC)

is constructed by averaging hc across the corresponding ontology terms: h
(d)
D =

1
|D|

∑

c∈D h
(d)
c , where D is one of BP , MF and CC ontology and |D| is the number

of terms in D.

- WAC (Weighted Average per-Category). Since GO terms with similar specificity are

characterized by similar label unbalance, we construct a composite network for each

GO category. Similarly to Pena-Castillo et al. (2008), we consider different ranges

of specificity, that is the number of training proteins annotated to the term: 3−10,

11− 30, 31− 100, 101− 300, for a total of 4 categories for each GO ontology. The

vector weight hc is thereby averaged across each category separately.

Once computed the weights hc with one of the above-mentioned strategies, we computed

the consensus network as weighted sum of the corresponding adjacency matrices:

W =
m
∑

d=1

h(d)
W

(d) (2)

Moreover, in order to have a base line comparison, networks are also integrated by un-

weighted average sum (UA). The WAP strategy leads to the construction of a network

well-suited to each specific functional class, while WA and WAC introduce a sort of

“regularization” by averaging across categories of GO terms or across an entire ontology.

WAP can fit well the data with respect to a specific GO term, but it can also overfit the

data. On the contrary, WA and WAC can overcome this problem, but can undergo the

opposite problem of underfitting.

2.3.4 Functional prediction with the consensus network.

The Step 2 of UNIPred has been performed by applying COSNet, COst-Sensitive neural

Network (Frasca et al., 2013a) to the constructed consensus network.
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COSNet is based on parametric Hopfield networks H =< W , k, ρ >, where k is the

neuron activation threshold and ρ is a real number in [0, π
2
[, that determines the two

different values {sin ρ, − cos ρ} for neuron activation. Informally, to deal with data un-

balance, COSNet conceptually separates node labels and neuron activation values, which

become parameters to be learned. The main steps of COSNet can be summarized as

follows:

INPUT : symmetric connection matrix W : V × V −→ [0, 1], labeling function L :

V −→ {+,−}, sets S+, S− and U of respectively positive, negative and unlabeled

instances.

Step A. Generate an initial temporary bipartition (U+, U−) of U such that |U+|
|U |

≃ |S+|
|S|

,

where S = S+ ⊔ S−.

Step B. Find the optimal parameters (ρ̂, k̂) of the sub-network of labeled nodes, such

that the state represented by known labels is “as close as possible” to an equilibrium

state of the Hopfield network.

Step C. Extend the parameters (ρ̂, k̂) to the whole network and run the sub-network

restricted to unlabeled nodes until an equilibrium state û is reached and a final

bipartition (U+, U−) of U is obtained.

OUTPUT : bipartition (U+, U−) of U .

Step A provides a temporary solution in order to exploit the connections among labeled

and unlabeled nodes during the learning phase.

Step B learns from the labeled data the optimal parameters ρ and k of the parametrized

Hopfield network: labeled nodes are projected to a bidimensional space and the line

fρ,k(x, y) = cos ρ · y − sin ρ · x + k = 0 that “better” separates positive and negative

points is learned to determine an estimate (ρ̂, k̂) of the optimal parameters. In (Frasca
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et al., 2013a) the authors showed that the dynamics of a Hopfield network with param-

eters (ρ̂, k̂) learned from labeled nodes v ∈ S preserves convergence and optimization

properties of the whole Hopfield network including both labeled and unlabeled nodes.

In Step C the dynamics of the network restricted to unlabeled nodes U is simulated by

adopting neuron activation values {sin ρ̂, − cos ρ̂} and activation thresholds k̂. Assuming

that, up to a permutation, U = {1, 2, · · · , h} and S = {h + 1, h + 2, · · · , n}, the initial

state is set to ui(0) = 0 for each neuron i ∈ U . The network evolves according to the

following asynchronous update rule:

ui(t) =















sin ρ̂ if
i−1
∑

j=1

Wijuj(t) +
h
∑

k=i+1

Wikuk(t− 1)− θi > 0

− cos ρ̂ if
i−1
∑

j=1

Wijuj(t) +
h
∑

k=i+1

Wikuk(t− 1)− θi ≤ 0

where ui(t) is the value of neuron i ∈ U at time t, θi = k̂ −
∑n

j=h+1 WijLc(j) is the

activation threshold of node i, which also includes the influence on this node of the

labeled neurons S, which are not updated during the network dynamics (see Frasca et al.

(2013a) for details).

At each time t, the state of the network is u(t) = (u1(t), u2(t), . . . , uh(t)), and the

following Lyapunov state function (energy function) is associated with the network:

E(u) = −
1

2

h
∑

i,j=1
j 6=i

Wijuiuj +
h

∑

i=1

uiθi (3)

As mentioned above, the dynamics converges to a fixed point û corresponding to a min-

imum of E. The final solution (U+, U−) is:

U+ = {i ∈ U | ûi = +sin ρ̂}

U− = {i ∈ U | ûi = − cos ρ̂}
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2.4 Algorithm motivation

The intuitive rationale behind UNIPred comes from the projection of the network nodes

into the plane, which provides an alternative representation of the labeling unbalance.

Indeed a point close to the y axis has more negative than positive neighbor nodes, and

the opposite is true for points close to the x axis (Fig. 4). By adopting the F-score as

maximization criterion, the learning algorithm described in Sect. 2.3.2 tends to discard

the lines which incorrectly classify positive points; the learned parameters thereby tend

to counterbalance the strong prevalence of negatives.

[Figure 4 about here.]

In addition to this intuitive rationale, UNIPred is supported by both theoretical and

experimental motivations.

Theoretical motivation. Suppose that we apply UNIPred to assign an unbalance-

aware weight to a given network G = 〈V,W 〉. Consider the parametric Hopfield network

H = < W , k, ρ > constructed by COSNet using network G, and let Lc be the labeling

function associated with class c, and S the set of labeled nodes in G. If fα̂,γ̂ is the

optimum line computed by UNIPred with respect to the labeling function Lc, and Fc the

corresponding optimal F-score value, then the following fact holds:

Theorem 1 . If ρ = α̂ and k = γ̂, then Fc = 1 iff Lc(S) is an equilibrium state of H

restricted to neurons in S.

Proof: See Supplementary Data.

Theorem 1 shows that F-scores computed by UNIPred are related to the “stability” of

the associated COSNet parametric Hopfield network: the higher Fc, the closer Lc(S) to

an equilibrium state of the sub-network restricted to neurons in S. Since the equilibrium

state of the Hopfield network (minimum of the energy function (3)) is related to the

“consistence” with the prior information coded in the network topology, by Theorem 1

we can conclude that the higher UNIPred weights Fc, the more the consistence with the
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prior information coded in the data network. Theorem 1 also shows that does exist a

relationship between the first two steps of the integration procedure of UNIPred and Step

B of COSNet. The following section experimentally verifies this observation.

Experimental motivation. For each GO term c separately, we compared the F-scores

F
(d)
c , computed in the UNIPred integration steps (specifically Step 1.1 and 1.2) on each

input network G(d), with the F-scores PF
(d)
c achieved by COSNet algorithm applied to

predict the same network G(d), without integration. The obtained vectors across GO

terms are respectively denoted with F
(d) and PF

(d). More precisely, we considered 17

mouse networks described in Section 3.1.1 (thus d ∈ {1, 2, · · · , 17}), and thousands of

GO terms belonging to all the GO ontologies BP, MF and CC. Our aim is to verify

whether higher PF
(d)
c corresponds to higher F

(d)
c , that is whether the weight assigned

by UNIPred is larger when COSNet performs better and viceversa. Accordingly, we

computed for each network G(d) the Pearson correlation between F
(d) and PF

(d). The

results show that a non negative correlation holds for all the considered networks (Fig. 5).

Supplementary Data include correlations computed separately for each GO ontology (Fig.

S3), confirming that the non negative correlations hold for each ontology.

[Figure 5 about here.]

This means that the F-scores F
(1)
c , F

(2)
c , · · · provide in advance an advice about the most

predictive networks for COSNet thus justifying their usage in the network integration

steps of UNIPred.

Moreover, the correlation is higher for some networks (e.g. networks 8, 9, 12-15) and

lower for the others. This may be due to the different size of networks, since networks

having a lower number of proteins, e.g. network 10 (Pheno) and 11 (Omim), are char-

acterized for the majority of considered GO terms by a very low number of annotations

for test proteins (1 positive example for most of the terms). This leads to difficult pre-

diction tasks and consequently to low predictive performances of COSNet (PF
(d)
c ≃ 0,

for each GO term c). In order to verify this observation, we also report in Fig. 5 (b) the
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correlation relative only to the GO terms with more than 30 annotations. As expected,

the correlation considerably improves for most of the considered networks.

3 Results and discussion

We applied UNIPred to the prediction of GO annotations in M. musculus, comparing

our method with state-of-the-art learning algorithms that participated to the Mouse-

Func challenge (Pena-Castillo et al., 2008). To assess the effectiveness of the proposed

approach with respect to the novel experimental annotations accumulated in more re-

cent years, we reported also the results relative to more recent GO annotations of

mouse proteins. Then we performed a genome-wide analysis of protein functions in

D. melanogaster and S. cerevisiae comparing our proposed methods with the classical

guilt-by-association algorithm (GBA) (Mayer and Hieter, 2000), with the state-of-the-art

GeneMANIA-SW Mostafavi and Morris (2010), derived from one of top methods in the

MouseFunc challenge (Mostafavi et al., 2008), and with MS-kNN, one of the top-ranked

methods in the recent CAFA challenge (Lan et al., 2013). Since the three proposed in-

tegration strategies (Section 2.3.3) achieve very similar overall results, we report in the

following sections only the results of the WA strategy. Additional information about

data and results are available in the Supplementary Data. Finally, at the end of this

section, we analyse the “informativeness” of each single data source when

predicting protein functions, and in particular we investigate whether it is

possible to rank data sources according to their informativeness and whether

this rank depends on the protein function to be predicted.

3.1 Experimental setting

3.1.1 Mouse

To compare our results with those achieved by participants to the MouseFunc challenge,

we adopted the same data and annotations (GO annotations 17 February 2006; version
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1.612) used for the challenge. In the MouseFunc setting, 21603 mouse proteins and 2815

GO terms with a number of annotations ranging from 3 to 300 have been considered,

excluding GO annotations based solely on the “inferred from electronic annotation” (IEA)

evidence code. A randomly selected set of 1718 proteins is held-out and their annotations

have to be predicted using the annotations of the remaining proteins. We integrated 17

mouse networks in a consensus network with 21603 nodes, and adopted GO terms with

at least one annotation in test set, obtaining 1174 BP, 442 MF and 231 CC terms (see

Supplementary Data for details).

3.1.2 Yeast and Fly.

We applied UNIPred to integrate 16 S. cerevisiae and 10 D. melanogaster networks down-

loaded from the GeneMANIA website (www.genemania.org) and 3 GO networks (release

23-3-13 for yeast and 15-5-13 for fly), covering a set of 5775 yeast and 9361 fly pro-

teins. The networks have been selected to cover different types of data, ranging from

co-expression, to genetic interactions, protein ontologies and physical interactions (see

Supplementary Data Table S4 and S5 for more details). Since GeneMANIA networks

already provide for each pair of proteins a real score representing a measure of their

functional similarity, no preprocessing has been applied.

Finally, we considered the GO terms with 3−300 positive annotated proteins, obtain-

ing 3469 terms (2021 BP, 805 MF and 593 CC) for yeast and 4350 terms (2781 BP, 1023

MF and 546 CC) for fly. We assessed the generalization performances through 10-fold

cross-validation techniques.

3.1.3 Metrics.

The evaluation of the performance for AFP problems raised heated discussions in the

scientific community (Gillis and Pavlidis, 2013). We adopted a “function’s point of view”

evaluation (i.e. the performance are measured on each GO term), to avoid the problems

related to the “protein-centric” evaluation adopted in the recent CAFA challenge (Radi-
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vojac et al., 2013). More precisely, we measured the Area Under the Curve (AUC), the

precision at 20% recall (P20R) and the F-score, to properly take into account the un-

balance that characterizes GO terms. We used the classic definition of F-score, i.e. the

harmonic mean between precision and recall.

Finally, we point out that in the context of AFP, where GO terms are usually un-

balanced, the F-score and precision at a given recall are more significant than AUC to

evaluate the accuracy of prediction methods, since AUC does not properly take into

account the labeling unbalance.

3.2 MouseFunc benchmark results

We compared UNIPred with the best 8 methods which participated in the MouseFunc

challenge (Table S2 describes the compared methods) and with COSNet applied to the

UA consensus network. UNIPred achieves the best results in terms of average F-score and

P20R, except for P20R on MF terms, since the Funkenstein algorithm (Method G – Tian

et al. (2008)) performs slightly better (Table 1). Furthermore, UNIPred improves the

performance of COSNet-UA in all the performed experiments, showing the effectiveness

of UNIPred in boosting COSNet predictive capability.

UNIPred improvements are almost always significant with respect to the compared

methods (Wilcoxon signed rank test, α = 0.01). Detailed results about the statistical

comparison between methods are available in Table S7 in the Supplementary Data.

[Table 1 about here.]

COSNet is a classifier, and to obtain results in terms of P20R and AUC we constructed a

ranker by simply considering for each node the internal energy at equilibrium as ranking

score (Frasca and Pavesi, 2013):

s(i) =
∑

j 6=i

(Wijûj − θi) (4)
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where s(i) is the score assigned to node i, û is the equilibrium state of the Hopfield

network (Sect. 2.3.4), θi is the activation threshold for node i.

In terms of AUC, GeneMANIA (Method C – Mostafavi et al. (2008)) is the best

method, but UNIPred achieves results comparable with the best performing methods

(Table S6), and significantly worse only than GeneMANIA and two hierarchical methods

(Method D and G) on BP terms.

In addition to results averaged by GO ontology, Fig. 6 reports the F-score averaged

across GO terms, grouped by cardinality of the annotations (categories). According to

the MouseFunc experimental set-up we considered categories with 3 to 10 (3−10), 11−30,

31 − 100 and 101 − 300 annotations. Interestingly, UNIPred obtains the best results in

each ontology and each category, except for the smallest BP and MF categories. AUC

and P20R results grouped by categories are shown in Fig. S4 in the Supplementary Data.

[Figure 6 about here.]

Summarizing, by exploiting its unbalance-aware characteristics,UNIPred outperforms in

terms of F-score and P20R the other state-of-the-art MouseFunc challenge methods. In

terms of AUC UNIPred is comparable with the best MouseFunc methods and significantly

worse than GeneMANIA and two hierarchical methods (Method D and G) only with the

BP ontology (Table S7 - Supplementary Data).

3.3 MouseFunc results with updated annotations

We repeated the experiments described in the previous section using annotations updated

to the 15/08/2012 GO release. In terms of the F-score and P20R, UNIPred BP predictions

are strongly enhanced (Wilcoxon signed rank test, α = 0.01), while for MF and CC the

results are comparable with those obtained with the previous annotation (February 2006),

showing that on the average several proteins predicted as false positive are actually true

positive, according to the updated annotation (Table 2).

[Table 2 about here.]
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AUC, F-score and P20R results for each of the analyzed 1782 GO terms are available

on-line at http://frasca.di.unimi.it/data/.

3.4 Experiments with yeast and fly

In Table 3 we report the results averaged by GO ontology for both yeast and fly.

[Table 3 about here.]

UNIPred outperforms both GeneMANIA-SW and the top-ranked CAFA method MS-

kNN (Lan et al., 2013), in terms of both P20R and F-score in all the GO ontologies with

both yeast and fly model organisms (except for the BP ontology in yeast). Fig. 7 shows

yeast results averaged by GO category, whereas fly results are reported in Supplementary

Data – Fig. S6.

[Figure 7 about here.]

COSNet with UA integration is the second best method, except for fly results in the MF

11− 30 and 31− 100 categories, where MS-kNN is the second best method. It is worth

noting that the very low F-score results of GeneMANIA-SW (Table 3) are likely due

to the non optimized choice of the threshold (see Section 3 in Supplementary Data for

details): GeneMANIA-SW is basically a ranking method and a well-tuned selection of

the threshold for the computation of the F-score may lead to significantly better results.

Finally, confirming mouse results, UNIPred achieves better performances than the

simple UA integration.

3.5 Analysis of the informativeness of network sources

In this section we discuss the performance of COSNet on each specific mouse

network (see Section 1 of Supplementary Data for a detailed description of

each network), in order to analyse which type of data is more “useful” in

inferring protein functions. Since the 17 networks are composed by differ-

ent subsets of proteins, in our setting we considered the 650 GO terms with
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at least one positive in the test set in all the networks. Firstly, we studied

which sources are more predictive on the average across all the considered GO

terms. To this end, in Figure 8 we report the F-score achieved by COSNet

averaged across the 650 GO terms, for each mouse network separately. These

results show that protein domains/families/sequence patterns (Pfam and In-

terpro, network 8 and 9) are the more informative with respect to the entire

ontology, together with the protein-protein interaction data (PPIbin, net-

work 1), achieving the highest F-score values in most of the considered terms.

Nevertheless, it is worth noting that this does not mean that the remaining

networks are not predictive for any GO term. This fact can be observed in

Figure 9, where we show the heat map representing the per class F-score val-

ues obtained by COSNet with regard to every term and mouse network. The

values are decreasingly ordered with respect to network 1 (protein-protein

interactions). Lighter colors represent higher F-scores.

[Figure 8 about here.]

[Figure 9 about here.]

The figure emphasizes that the informativeness of each network may signifi-

cantly vary with the considered GO term, and interestingly networks which

in average are less predictive, e.g. genetic interactions (networks 5, 6) or

orthologs data (networks 13, 14), have some light bands in correspondence of

dark bands for PPI, Pfam and Interpro data (networks 1, 8 and 9): that is, for

some specific GO terms, just the networks in average less informative allow to

correctly predict some specific protein functions. For example, in Table 4 we

report the F-score obtained by COSNet for each network on some selected

terms. Genetic interactions data (network 6) are the most informative for

the positive regulation of T cell proliferation term (GO:0042102), whereas
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OMIM data (network 11) are the most informative for the damaged DNA

binding term (GO:0003684)a.

[Table 4 about here.]

These results, which confirm previous analyses reported in literature (My-

ers and Troyanskaya, 2007), are to some extent expected, since each single

source provides a distinct “view” of the functional domain of a protein, and

potentially encodes different patterns that may be relevant to detect some

functions, but scarcely relevant or completely irrelevant for other functions.

4 Conclusions

By explicitly considering the labeling unbalance that characterizes the AFP problem and

the specific characteristics of each source of data, our proposed approach is able to prop-

erly combine different biomolecular networks and learn the GO terms associated to each

protein included in the integrated network. GO terms are usually characterized by a rel-

evant unbalance between annotated and unannotated proteins, and UNIPred explicitly

addresses this issue, both in the integration and in the prediction steps of the method. To

our knowledge this is the first network-based method that introduces an unbalance-aware

combination of networks for the AFP problem. Both theoretical and experimental results

show that UNIPred is a well-suited method for AFP. In particular, results with Eukary-

otic organisms show the effectiveness of UNIPred with respect to several state-of-the-

art learning algorithms that participated to the MouseFunc and CAFA AFP challenges,

especially when unbalance-aware metrics are considered. Unbalance aware integration

and prediction items are of paramount importance for network-based AFP, confirming

aNote that these considered terms have very few positives in test set: for instance, F-score = 0
means that the few available positive examples have been predicted as negative; F-score = 0.667 may
correspond to the case in which just one of two available positive items has been correctly classified, or
that the only available positive has been correctly classified and one negative item has been predicted as
positive.
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previous results obtained with inductive methods (Cesa-Bianchi et al., 2012), but the hi-

erarchical correction of the predictions (Mostafavi and Morris, 2009; Cesa-Bianchi et al.,

2012; Cozzetto et al., 2013; Robinson et al., 2015), and the multi-species setting of the

classification problem (Wong et al., 2012; Mesiti et al., 2014) could further improve the

performances of the proposed method, as shown by our recent results obtained

with multi-category Hopfield networks, a variant of COSNet well-suited to

multi-species protein function prediction problems (Frasca et al., 2015).
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Figure 1: UNIPred steps. Step 1.1) Projection of nodes. Step 1.2) Linear separation of
projected points. Step 1.3) Network integration. Step 2) Functional prediction on the
consensus network.
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Figure 2: Positive and negative point in d-th network are separated by a straight line
fα,γ(x, y) = 0.
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Figure 3: Optimization of the slope (a) and the intercept (b) of the parametric line.
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Figure 4: Projection of a node in the network into a point in the plane.
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Figure 5: (a) Pearson’s correlation between vectors F (d) and PF
(d) for each network G(d),

with d = {1, 2, · · · , 17}. (b) Correlation accounting only for terms having at least 30
annotations. See Table S1 in Supplementary Data for the correspondence index-network.
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Figure 7: Yeast F-score (a) and P20R (b) results averaged by ontology and cardinality
of annotations of GO terms.
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Methods F-score P20R

BP MF CC BP MF CC

Method A (Obozinski et al., 2008) 0.113 0.340 0.163 0.204 0.470 0.284

Method B (Lee et al., 2006) 0.113 0.328 0.197 0.204 0.469 0.334

Method C (Mostafavi et al., 2008) 0.175 0.406 0.281 0.314 0.607 0.479

Method D (Barutcuoglu et al., 2006) 0.140 0.346 0.229 0.320 0.591 0.423

Method E (Kim et al., 2008) 0.028 0.170 0.208 0.209 0.492 0.366

Method F (Chen and Xu, 2004) 0.104 0.340 0.198 0.203 0.529 0.343

Method G (Tian et al., 2008) 0.188 0.434 0.231 0.351 0.653 0.467

Method H (Qi et al., 2007) 0.091 0.322 0.143 0.194 0.462 0.297

COSNet-UA 0.196 0.392 0.314 0.329 0.587 0.465

UNIPred 0.205 0.443 0.342 0.356 0.648 0.494

Table 1: Comparison of UNIPred with the 8 best methods of the MouseFunc challenge
and COSNet applied to the UA consensus network. The best results for each ontology
are shown in boldface. Results significantly better than all the other methods (Wilcoxon
signed rank test, α = 0.01) are underlined.
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GO annotation F-score

BP MF CC

2006 GO release 0.202 0.445 0.348
2012 GO release 0.265 0.436 0.339

P20R

BP MF CC

2006 GO release 0.355 0.642 0.502
2012 GO release 0.426 0.629 0.522

Table 2: Accuracy of UNIPred mouse predictions compared between GO 2006 and GO
2012 annotations.
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Methods F-score P20R

BP MF CC BP MF CC

Yeast

GBA 0.247 0.354 0.300 0.478 0.590 0.536

GeneMANIA 0.002 0.008 0.004 0.278 0.263 0.322

MS-kNN 0.288 0.465 0.380 0.503 0.636 0.605

COSNet-UA 0.406 0.521 0.556 0.606 0.710 0.744

UNIPred 0.405 0.530 0.574 0.641 0.750 0.819

Fly

GBA 0.134 0.206 0.204 0.274 0.378 0.382

GeneMANIA 0.001 0.002 0.006 0.280 0.433 0.406

MS-kNN 0.179 0.381 0.260 0.335 0.552 0.471

COSNet - UA 0.251 0.437 0.407 0.374 0.586 0.562

UNIPred 0.253 0.472 0.415 0.388 0.652 0.601

Table 3: Results on yeast and fly organisms in terms of F-score and P20R averaged by GO
ontology. The best results for each ontology are shown in boldface. Results significantly
better than all the other methods (Wilcoxon signed rank test, α = 0.01) are underlined.
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Network GO term
GO:0001759 GO:0003684 GO:0009165 GO:0001633 GO:0042102

1 0.400 0 0 0.667 0.4

2 0 0 0.2 0 0

3 0 0 0.2 0 0

4 0 0 0 0 0

5 0.667 0 0 0 0

6 0 0 0 0 0.5

7 0 0 0 0 0

8 0.444 0 0.2 0.667 0

9 0.5 0.25 0.75 0 0

10 0 0 0 0 0

11 0 1 0 0 0

12 0 0 0 0 0

13 0 0 0.333 0 0

14 0 0 0 0.667 0

15 0 0 0 0.667 0

16 0 0 0 0.667 0

17 0 0 0 0.667 0

Table 4: F-score achieved by COSNet for some selected GO terms.
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