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Università degli Studi di Milano, Italy marco.notaro@studenti.unimi.it
4 Institute for Bioinformatics, Department of Mathematics and Computer Science,

Freie Universität Berlin, Germany

Abstract. Structured taxonomies characterize several real world prob-
lems, ranging from text categorization, to video annotation and pro-
tein function prediction. In this context “flat” learning methods may in-
troduce inconsistent predictions, while structured output-aware learning
methods can improve the accuracy of the predictions by exploiting the
hierarchical relationships between classes. We propose a novel hierarchi-
cal ensemble method able to provide theoretically guaranteed consistent
predictions for any Directed Acyclic Graph (DAG)-structured taxonomy,
and consequently also for any taxonomy structured according to a tree.
Results with a complex real-world DAG-structured taxonomy involving
about one thousand classes and twenty thousand of examples show that
the proposed hierarchical ensemble approach significantly improves flat
methods, especially in terms of precision/recall curves.
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prediction, multi-label classification.

1 Introduction

Structured output classification consists in the prediction of multiple labels that
are hierarchically correlated according to a pre-defined data structure, e.g. a tree
or a directed acyclic graph (DAG). In this context “flat” classification methods,
that predict labels independently of each other, can in principle be applied,
but may introduce significant inconsistencies in the classification, due to the
violation of the true path rule (also known as the annotation propagation rule)
that governs the hierarchical relationships between classes [1, 2]. According to
this rule, a positive prediction for a class and a negative prediction for its parent
classes are not allowed, since this violates the inclusion relationship between



them. Therefore, a positive prediction for a class implies positive predictions
for all of the ancestors of the class, and a negative prediction implies negative
predictions for all of the class’s descendants to avoid violating the true path rule.
Moreover, flat methods do not take into account the hierarchical relationships
between classes, thus loosing important a priori knowledge about the constraints
of the hierarchical labeling.

To properly handle these problems, several structured output-aware learning
methods have been proposed to exploit the a priori known relationships between
labels. A first general approach is based on the kernelization of both the input
and the output space, through the introduction of a joint kernel that computes
the “compatibility” of a given input-output pair [4], or through other related
techniques based on large margin methods for structured and interdependent
output variables [5, 3]. A recent work showed also that structured output meth-
ods can be enhanced by combining them through relatively simple ensemble
techniques [6].

A second general approach is based on ensemble methods able to exploit the
hierarchical relationships between classes [7]. More precisely, hierarchical ensem-
ble methods, in their more general form, adopt a two-step learning strategy. In
the first step each base learner separately or interacting with connected base
learners learns a specific class. In most cases this yields a set of independent
classification problems, where each base learning machine is trained to learn a
specific class, independently of the other base learners. In the second step the
predictions provided by the trained classifiers are combined by considering the
hierarchical relationships between the base classifiers modeled according to the
hierarchy of the classes.

Most of the proposed hierarchical ensemble methods focused on tree-structured
taxonomies [8, 7, 9, 10] and the ones specific for DAGs [1, 11] showed that it is
difficult to improve upon flat predictions.

We propose a novel ensemble learning strategy that exploits the DAG struc-
ture of the taxonomy through a double flow of information between the base
learners associated to each class/node of the hierarchy: after separately learning
each class with a specific classifier, predictions are first combined from bottom
to top to enhance sensitivity, and successively from top to bottom to improve
the precision of the predictions.

We provide theoretical guarantees that the proposed True Path Rule (TPR-
DAG) hierarchical ensembles obey the true path rule in DAGs. Moreover we
experimentally show that our approach can consistently improve flat predictions
in a complex task involving human gene - phenotype associations, where classes
are DAG-structured according to the Human Phenotype Ontology (HPO) [12].

2 True Path Rule (TPR-DAG) hierarchical ensembles
for DAG structured taxonomies

TPR-DAG requires a first phase in which any class is learned by a dedicated
base learner: in principle any base learner can be used to score each example.



After this learning phase, the second phase modifies these “flat” predictions to
provide the TPR ensemble predictions. This second phase is divided into two
steps:

1. Bottom-up step. For each example the DAG is visited from bottom to top to
propagate “positive” predictions across the hierarchy. The aim of this step
is to enhance the sensitivity of the predictions.

2. Top-down step. Starting from the root, and traversing the DAG toward the
bottom, “negative predictions” are propagated toward the children. The aim
of this step is to enhance the precision of the predictions.

This method builds on the previously proposed TPR ensemble method that
can be safely applied only to tree-structured taxonomies [13, 9]. The main dif-
ference with respect to the original tree-version consists in the fact that the
per-level traversal is now performed through two completely distinct steps: a
bottom-up per level visit of the graph followed by a top-down visit, while in
the original tree-version the per-level traversal is performed in an “interleaved”
fashion (that is the bottom-up and top-down traversal are alternated at each
level [9]). Moreover the level of a class is defined in terms of its maximum dis-
tance from the root, since in a DAG we may have multiple paths from each
node to the root. These two items (bottom-up and top-down separation and
levels defined in terms of the maximum distance from the root) assure the true
path rule consistency of the predictions, i.e. the requirement that the score of a
parent or an ancestor node must be larger or equal than that of its children or
descendants.

In the next subsections, after introducing some basic notations and defini-
tions, we describe in detail the bottom-up and top-down steps of the TPR-DAG
algorithm, as well its consistency properties.

2.1 Basic notation and definitions

Let G =< V,E > denote a Directed Acyclic Graph (DAG) with vertices V =
{1, 2, . . . , |V |} and edges e = (i, j) ∈ E, i, j ∈ V , where nodes i ∈ V represent
classes of the taxonomy and a direct edge (i, j) ∈ E the hierarchical relationship
between i and j: i is the parent class and j is the child class. The set of children of
a node i is denoted child(i), the set of its parents par(i), the set of its ancestors
anc(i) and the set of its descendants desc(i).

A “flat continuous” classifier fi : X → [0, 1] associated with each node i ∈ V
provides scores ŷi ∈ [0, 1] that can be interpreted as the likelihood or probability
for a given example x ∈ X of belonging to a given class i. The set of |V | flat
classifiers provides a multi-label score ŷ ∈ [0, 1]|V |:

ŷ =< ŷ1, ŷ2, . . . , ŷ|V | > (1)

We say that a multi-label scoring y is consistent if it obeys the true path rule:

y is consistent ⇐⇒ ∀i ∈ V, j ∈ par(i) ⇒ yj ≥ yi (2)



2.2 Bottom-up step

The basic TPR-DAG adopts a per-level bottom-up traversal of the DAG, starting
from the nodes most distant (in the sense of the maximum distance) from the
root. More precisely, if p(r, i) represents a path from the root node r and a node
i ∈ V , l (p(r, i)) the length of a path p, L = {0, 1, . . . , ξ} the set of observed
levels, with ξ the maximum node level, then ψ : V −→ L is a level function
which assigns each node i ∈ V to its level ψ(i):

ψ(i) = max
p

l (p(r, i)) (3)

At each level the flat predictions ŷi are changed to ỹi taking into account the
“positive” predictions of its children:

ỹi :=
1

1 + |φi|
(ŷi +

∑
j∈φi

ỹj) (4)

where φi are the “positive” children of i. The main goal of the bottom-up step
consists in improving the sensitivity (recall) of the predictions. This is accom-
plished by allowing only the “positive” children (that is the nodes for which a
relatively large score has been achieved) to transmit their scores to their par-
ents. In this context a key issue is the selection of the positive children φi, and
different strategies to select them can be applied:

1. Threshold Free (TPR-TF) strategy. A simple solution consists in choosing
those children that can increment the score of the node i (that is positive
nodes are those that achieve a higher score than that of their parent):

φi := {j ∈ child(i)|ỹj > ŷi} (5)

2. Thresholded (TPR-T) strategy.
In this case we set a threshold to select the positive children. We can a priori
select a given threshold t̄ ∀i ∈ V , or we can select the threshold to maximize
some performance metric estimated on the available data, e.g. the F-score
or the AUC. The corresponding set of positives ∀i ∈ V is:

φi := {j ∈ child(i)|ỹj > t̄} (6)

For instance t̄ can be selected from a set of t ∈ (0, 1) through cross-validation
techniques.

Moreover we can also balance the weight w ∈ [0, 1] between the prediction
of the classifier associated with the node i and that of its “positive” children φi,
through their convex combination. In this way, analogously to the “tree” version
of the weighted TPR ensemble method [14] we can obtain the “weighted” version
TPR-W of the TPR-DAG algorithm:

ỹi := wŷi +
(1− w)

|φi|
∑
j∈φi

ỹj (7)

Independently of the variants of the basic TPR-DAG ensemble method, pre-
dictions are bottom-up propagated, thus moving positive predictions towards
the parents and recursively towards the ancestors of each node.



2.3 Top-down step

The successive top-down step modifies the “bottom-up” scores computed in the
previous bottom-up step (Sect. 2.2) by running in the opposite direction from
the top to the bottom of the DAG. The main goal of this step consists in prop-
agating “negative” predictions towards the children and recursively toward the
descendants of each node, in order to provide consistent and more precise pre-
dictions. It adopts this simple rule by per-level visiting the nodes from top to
bottom:

ȳi :=

 ỹi if i ∈ root(G)
minj∈par(i) ȳj if ỹi > minj∈par(i) ȳj
ỹi otherwise

(8)

The ỹi scores are those computed in the bottom-up step, while ȳi are the final
scores computer by the TPR ensemble.

The top-down step assures the hierarchical consistency of the predictions of
the TPR, as stated by the following theorem:

Theorem 1. Given a DAG G =< V,E >, a level function ψ that assigns to
each node its maximum path length from the root, a set of predictions ỹ =<
ỹ1, ỹ2, . . . , ỹ|V | > generated by the bottom-up step of the TPR algorithm for each
class associated with its corresponding node i ∈ {1, . . . , |V |}, the top-down step
of the TPR algorithm assures that for the set of ensemble predictions ȳ =<
ȳ1, ȳ2, . . . , ȳ|V | > the following property holds:

∀i ∈ V, j ∈ par(i) ⇒ ȳj ≥ ȳi

The proof can be obtained by applying (8) to each node according to a per-level
visit of the DAG, where levels are defined in terms of the maximum path length
from the root (3), and by observing that each node is visited only once by the
top-down step of the algorithm (details are omitted for lack of space).

From Theorem 1 it is easy to prove that the consistency of the predictions
holds for all the ancestors of a given node i ∈ V :

Corollary 1. Given a DAG G =< V,E >, the level function ψ, a set of flat
predictions ŷ =< ŷ1, ŷ2, . . . , ŷ|V | > for each class associated with each node i ∈
{1, . . . , |V |}, the TPR algorithm assures that for the set of ensemble predictions
ȳ =< ȳ1, ȳ2, . . . , ȳ|V | > the following property holds:

∀i ∈ V, j ∈ anc(i) ⇒ ȳj ≥ ȳi

The proof can be easily obtained from Theorem 1 by “reductio ad absurdum”.
The function ψ that computes the maximum distance of each node from the

root (eq. 3) can be implemented through a straightforward variant of the classical
Bellman-Ford algorithm [15]: by recalling that it finds the shortest paths from
a source node to all the other nodes of a weighted digraph, it is sufficient to
invert the sign of each edge weight to obtain the maximum distance (longest



path) from the root. The complexity of the Bellman-Ford algorithm is cubic
with respect the number of vertices, but recalling that the function ψ must
be computed only once for a given hierarchical task, this complexity could be
acceptable for most low and medium-sized DAGs. For big DAGs a variant of
the classical topological sort algorithm for graphs can be applied instead: by
exploiting the topological ordering of the nodes, the maximum distance from
the root can be easily computed with time complexity O(|V | + |E|), that is in
quadratic time for dense graph and in linear time for sparse DAGs with respect
to the number of vertices.

2.4 The overall TPR-DAG algorithm

Fig. 1 shows the high-level pseudo-code of the TPR-DAG algorithm. The first
four rows compute the maximum distance of each node from the root, using
the Bellman-Ford algorithm. Note that the with a certain abuse of notation
E′ := {e′|e ∈ E, e′ = −e} indicates a new set E′ of edges having weights
with opposite sign with respect to the original set of edges E. The block B
(rows 5-12) performs a bottom-up visit of the graph and updates the predictions
ỹi of the TPR ensemble according to eq. 4 and one of the positive selection
strategies described in Section 2.2. Note that this step propagates the “positive”
predictions from bottom to top of the DAG, but does not assure their true
path rule consistency. This is accomplished by the third block (rows 13 − 24)
that simply executes a hierarchical top-down step, according to the procedures
described in Section 2.3.

It is easy to verify that complexity of the TPR algorithm is O(|V |) for both
the B and C blocks when the DAG is sparse, while the complexity of block
A depends on the selected algorithm: by choosing the variant of the Bellman-
Ford algorithm the complexity is O(|V |3), while by applying the variant of the
topological sort algorithm the complexity is O(|V |+|E|). Note that block Amust
be executed only once for all the examples, while blocksB and C must be iterated
for each example whose DAG-structured multi-label should be predicted.

3 Experimental set-up

We applied the proposed hierarchical ensemble methods to the prediction of
Human Phenotype Ontology (HPO) terms associated with Mendelian disease
genes [16]. The HPO aims at providing a standardized categorization of the
abnormalities associated with human diseases and the semantic relationships
between them. More precisely, HPO classes (terms) describe human phenotypic
abnormalities and are structured according to a DAG, where children terms
can be interpreted as subclasses of their parents. The experiments presented in
this manuscript are based on the September 2013 HPO release (10, 099 terms
and 13, 382 between-term relationships). We downloaded from the same HPO
release all the available annotations (gene-term associations), resulting in set of
2759 genes having at least 1 annotation. In our experiments we included a set of



�

�

�

�

Fig. 1. Hierarchical True Path Rule algorithm for DAGs (TPR-
DAG)
Input:
- G =< V,E >
- V = {1, 2, . . . , |V |}, 1 is the root node
- ŷ =< ŷ1, ŷ2, . . . , ŷ|V | >, ŷi ∈ [0, 1]
begin algorithm

01: A. Compute ∀i ∈ V the max distance from root(G):
02: E′ := {e′|e ∈ E, e′ = −e}
03: G′ :=< V,E′ >
04: dist := Bellman.Ford(G′, root(G′))
05: B. Per-level bottom-up visit of G:
06: for each d from max(dist) to 0 do

07: Nd := {i|dist(i) = d}
08: for each i ∈ Nd do

09: Select φi according to a positive selection strategy
10: ỹi :=

1
1+|φi|

(ŷi +
∑

j∈φi
ỹj)

11: end for

12: end for

13: C. Per-level top-down visit of G:
14: ȳ1 := ỹ1
15: for each d from 1 to max(dist) do
16: Nd := {i|dist(i) = d}
17: for each i ∈ Nd do

18: x := minj∈par(i) ȳj
19: if (x < ỹi)
20: ȳi := x
21: else

22: ȳi := ỹi
23: end for

24: end for

end algorithm

Output:
- ȳ =< ȳ1, ȳ2, . . . , ȳ|V | >

20257 human genes, and hence more than 17000 genes had no HPO annotations.
After pruning HPO terms having less than 50 annotations we obtained a final
set of 911 HPO terms and 1, 095 between-term relationships that were used in
our experiments.

A collection of feature vectors containing functional and biomolecular signa-
tures describing the products of 20, 257 human genes was constructed starting
from different publicly available biological databases (Table 1). Then the bi-
nary feature vectors were used to construct n = 8 gene networks (one for each
data source listed in Table 1) by computing the Jaccard similarity between each
possible pair of feature vectors associated to the genes.



Table 1. Data sources used in the experiments

Database Content Web site
InterPro functional family, domains, functional sites www.ebi.ac.uk/interpro

Pfam functional family, domains pfam.xfam.org

PRINTS protein fingerprints, conserved motifs www.bioinf.manchester.ac.uk

PROSITE domains, families, functional sites prosite.expasy.org

SMART modular architectures smart.embl-heidelberg.de

SUPFAM structural and functional annotation supfam.cs.bris.ac.uk

Gene Ontology biological processes, cellular components
and molecular functions

geneontology.org

OMIM genetic diseases www.omim.org

FI net (Wu et al.) integrated network with expert-curated
and non-curated sources of information

HumanNet (Lee et al.) integrated network with multi-species data

We then combined the n gene networks by simply averaging the edge weights
wd

ij of each network d ∈ {1, n} [17]:

w̄ij =
1

n

n∑
d=1

wd
ij (9)

In order to construct a more informative gene network we performed the inte-
gration by adding two more functional gene networks (FI and HumanNet) taken
from the literature [18, 19], thus obtaining a final integration of 10 biomolecular
networks (Table 1).

To process and provide flat scores for the considered 911 HPO terms using
the above networked data we applied two semi-supervised methods: a) the clas-
sical semi-supervised label propagation method (LP) based on Gaussian Fields
and Harmonic Functions [20]; b) the kernelized score functions (RANKS) semi-
supervised network-based learning method recently successfully applied to both
gene disease prioritization [17], and drug repositioning [21]. RANKS implements
both local and global learning strategies by embedding in a “local” score func-
tion a graph kernel that takes into account the “global” topology of the network.
In our experiments we applied RANKS with the average score function and the
1-step random walk kernel [22].

4 Results

We compared the generalization performance of Flat and TPR ensemble methods
by using 5-fold cross-validation techniques, and considering separately the two
different base learners (RANKS and LP, Section 3). We also compared the results
of TPR ensemble methods with three heuristic hierarchical ensemble methods
(i.e. And, Or and Max), originally proposed for the hierarchical prediction of
Gene Ontology terms [1]. It is worth noting that in the same work [1] isotonic
regression-based hierarchical methods achieved better results than the heuristic
ensemble algorithms used in our experiments, but we did non use them due
to their computational complexity, considering the relatively large size of the
taxonomy and of the input data considered here.



Table 2. Average AUC, and precision at 10, 20 and 40% recall (P10R, P20R and
P40R), using kernelized score functions as base learner. Flat stands for flat ensemble
method, TPR-TF for True Path Rule Threshold-Free, Max for Hierarchical Maximum,
And for Hierarchical And and Or for Hierarchical Or ensemble methods. Methods that
are significantly better than all the others according to the Wilcoxon rank sum test
(α = 10−5) are highlighted in bold.

Flat TPR-TF Max And Or

AUC 0.8213 0.8269 0.8241 0.8274 0.8241

P10R 0.2969 0.3427 0.2908 0.2815 0.2994

P20R 0.2043 0.2333 0.2025 0.1903 0.2081

P40R 0.1054 0.1225 0.1071 0.0993 0.1095

4.1 Experimental results using kernelized score functions (RANKS)
as base learner

By looking at the single 911 HPO terms (classes), in terms of AUC the TPR-
TF ensemble achieves better results than Flat for 830 terms and worse results
for 81 HPO terms. Table 2 shows that the average AUC across classes is only
slightly larger for TPR-TF ensembles with respect to Flat, but the difference
is statistically significant according to the Wilcoxon rank sum test. Also with
respect to three heuristic hierarchical ensemble methods (And, Or, Max) TPR-
TF achieve equal or significantly better results. More precisely the difference is
statistically significant with respect toOr andMax, while no significant difference
is registered with the And method.

Better results are obtained by the TPR-TF method in terms of the precision
at fixed recall rates. Indeed the difference is statistically significant with respect
to Flat and the three heuristic hierarchical ensemble methods, both at 10, 20
and 40% recall (Table 2). These results are confirmed also by the precision-recall
curves (Fig. 2): the TPR-TF solid line marked with circles is consistently above
all the other curves, showing that TPR-TF achieves on the average better results
than all the other methods compared.

On the contrary, by comparing the different variants of the proposed TPR
hierarchical ensemble methods, no statistically significant differences between
them were identified (data not shown).

4.2 Experimental results using label propagation (LP) as base
learner

We repeated the same experiments using this time the label propagation (LP)
method to implement the flat base learners. Also with this base learner we
achieved significantly better results with TPR ensemble methods with respect
to the Flat approach, both in terms of the average AUC and average precision at
fixed recall rates. Especially considering precision at fixed recall rates the TPR
ensemble achieved significantly better results than those obtained with Flat and
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Fig. 2. Precision at different levels of recall, averaged across HPO terms (base learner:
kernelized score functions)

the three heuristic hierarchical ensemble methods, according to the Wilcoxon
rank sum test (Table 3).

It is worth noting that the absolute average AUC and precision values ob-
tained with the LP base learner (Table 3) are significantly lower than those
achieved with RANKS (Table 2), showing that TPR results, as well as those
obtained by the other heuristic ensemble methods depend on the choice of the
flat base learner. Nevertheless, TPR ensemble methods with LP base learners
are able to achieve a relative precision improvement with respect to the Flat ap-
proach in the range between 15 and 40%, at least for recall rates between 0.1 and
0.4 (Table 3). Note that this is not the case for the three heuristic hierarchical
ensemble methods (And, Or, Max), confirming previous results obtained in the
context of gene function prediction problems [1].



Table 3. Average AUC, and precision at 10, 20 and 40% recall (P10R, P20R and
P40R), using label propagation as base learner. TPR-T stands for True Path Rule
ensembles with Threshold. Methods that are significantly better than all the others
according to the Wilcoxon rank sum test (α = 10−5) are highlighted in bold.

Flat TPR-T Max And Or

AUC 0.7883 0.7967 0.7869 0.7974 0.7923

P10R 0.0673 0.0936 0.0653 0.0704 0.0730

P20R 0.0568 0.0709 0.0549 0.0564 0.0606

P40R 0.0439 0.0503 0.0426 0.0444 0.0462

5 Conclusions

Several real-world problems ranging from text classification to protein function
prediction are characterized by hierarchical multi-label classification tasks. In
this context flat methods may provide inconsistent predictions and more in gen-
eral are not able to exploit the hierarchical constraints between classes.

We theoretically guarantee that TPR-DAG ensembles provide predictions
that obey the true path rule in DAG-structured taxonomies, and we show in
a large experiment involving the DAG-structured Human Phenotype Ontology
that our proposed hierarchical ensembles consistently outperform flat methods,
independently of the base learner used.

We outline that the proposed hierarchical method is independent of the base
learner used, even if learners providing scores or probabilities of belonging to
a given class are better suited for the TPR-DAG ensembles. From this stand-
point TPR methods can be conceived as a flexible tool that can be applied to
any off-the-shelf flat method to improve its predictions for DAG-structured tax-
onomies. TPR-DAG can be also applied also to tree-structured taxonomies, since
obviously trees are DAGs.

This reseach could be extended by exploring other base learners, including
also supervised learners, and by comparing TPR with other hierarchical meth-
ods, including also structured output kernel methods. To test the effectiveness
of TPR-DAG ensembles in different application domains, the hierarchical clas-
sification of web documents and the protein function prediction problem could
be two significant real-world test-beds for future experiments.
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