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Abstract— Gene expression based cancer classification using
classifier ensembles is the main focus of this work. A new
ensemble method is proposed that combines predictions of a
small number of k-nearest neighbor (k-NN) classifiers with
majority vote. Diversity of predictions is guaranteed by as-
signing a separate feature subset, randomly sampled from the
original set of features, to each classifier. Accuracy of k-NNs
is ensured by the statistically confirmed dependence between
dataset complexity, determining how difficult is a dataset for
classification, and classification error. Experiments carried out
on three gene expression datasets containing different types
of cancer show that our ensemble method is superior to 1) a
single best classifier in the ensemble, 2) the nearest shrunken
centroids method originally proposed for gene expression data,
and 3) the traditional ensemble construction scheme that does
not take into account dataset complexity.

I. INTRODUCTION

Gene expression is a two-stage process including the
transcription of deoxyribonucleic acid (DNA) into messen-
ger ribonucleic acid (mRNA) which is then translated into
protein by the ribosomes. Recent advances in microarray
technology facilitate measurement of gene expression levels
for thousands of genes at once. It was shown in numer-
ous works [1], [2] that expression levels provide valuable
information for discrimination between normal and cancer
specimens. However, the classification task is not easy since
there are typically thousands of expression levels versus few
dozens of cases. In addition, expression levels are noisy
due to the complex procedures and technologies involved
in the measurements of gene expression levels, thus causing
ambiguity in classification.

As a classifier, a k-nearest neighbor (k-NN) was chosen in
this work because it performed well for cancer classification,
compared to more sophisticated classifiers [3]. Besides, it is
a simple method that has a single parameter (the number of
nearest neighbors) to be pre-defined, given that the distance
metric is Euclidean.

Ensembles of classifiers can lower the uncertainty related
to predictions provided by “single” learning machines [4].
However, not every ensemble can outperform its most ac-
curate member. Faced with this open question, we pro-
pose a novel approach based on an explicit estimation of
data complexity to construct an ensemble of classifiers.
Its novelty comes from extensive simulation followed by
statistical analysis using the copula method [5], [6], [7],
which, to our best knowledge, has not yet been widely
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found in cancer classification studies. The copula method is
useful in exploring association (dependence or concordance)
relations in multivariate data. According to our hypothesis,
there is positive dependence between dataset complexity and
classification error, with low (high) complexity associated
with small (large) error.

After confirming that this concordance relation indeed
exists when complexity is measured by the Wilcoxon rank
sum statistic [8] and classification performance is estimated
by the bolstered resubstitution error [9], we build our en-
semble generating scheme on 1) the selection of a few
least complex subsets of features (genes), where each subset
constitutes a small group of genes randomly sampled from
the original gene set, 2) the association of each subset
with one k-NN, and 3) majority vote combining predictions
of individual k-NNs. Random feature selection results in
diversity of predictions of individual k-NNs and it avoids the
bias that is difficult to escape in the filter/wrapper models
of feature selection. On the other hand, selecting the least
complex feature subsets implies accurate classifiers working
with these subsets. Therefore two requirements (diversity and
accuracy) for the ensembles to be superior to their single best
members are satisfied in our approach.

This work was inspired by [10], [11], where dataset
complexity was estimated for different datasets in order
to compare how it correlates with classification error of
individual classifiers and classifier ensembles. However, no
statistical analysis was done and association between com-
plexity and accuracy largely remained a conjecture. Unlike
[10], [11], in this paper, we assert this association relation
and apply it in order to generate accurate k-NN ensembles,
which constitutes the novelty of our approach.

II. GENE EXPRESSION DATASETS

Three gene expression datasets were employed in our
study.

A. Colon dataset

This microarray (oligonucleotide) dataset [12], introduced
in [1], contains expressions of 2000 genes for 62 cases (22
normal and 40 colon tumor cases). Preprocessing includes
the logarithmic transformation to base 10, followed by nor-
malization to zero mean and unit variance as usually done
with this dataset.

B. Brain dataset

This microarray (oligonucleotide) dataset [13] introduced
in [2] is different from the others in this study because



it contains two classes of brain tumor instead of cancer
and normal classes. The dataset (also known as Dataset
B) contains 34 medulloblastoma cases, 9 of which are
desmoplastic and 25 are classic. Preprocessing consists of
thresholding of gene expressions with a floor of 20 and
ceiling of 16000; filtering with exclusion of genes with
max /min ≤ 3 or max − min < 100, where max and min
refer to the maximum and minimum expressions of a certain
gene across the 34 cases, respectively; base 10 logarithmic
transformation; normalization across genes to zero mean and
unit variance. As a result, 5893 out of 7129 original genes
are retained.

C. SAGE dataset

This dataset [14] was produced by a technology alternative
to microarrays and called SAGE (Serial Analysis of Gene
Expression) [15]. It contains 31 normal and 59 cancer (10
types of cancer) cases with 27679 expressed genes. No
preprocessing was done and all cancer types were assigned
to a single class.

D. Dataset summary

Table I provides a summary for all datasets.

TABLE I
SUMMARY OF GENE EXPRESSION DATASETS

Dataset no. Cancer type(s) # expression levels # cases
1 Colon 2000 62
2 Brain 5893 34
3 Multiple 27679 90

III. DATASET COMPLEXITY

To gain insight into a supervised classification problem
such as gene expression based cancer classification, we adopt
dataset complexity measures. Our work was inspired by [16]
but in contrast to it, we considered only one measure of
data complexity. This allows us to simplify relations between
dataset complexity and classification accuracy, since in [16] it
was difficult to draw decisive conclusions from combinations
of several complexity measures.

The notion of complexity described below assumes two-
class problems and it is classifier-independent. It has been
borrowed from gene selection methods introduced in [17]
and modified. Its goal is to provide a score reflecting how
well two classes of data are separated. Given a set of features,
the data of each class are projected onto the diagonal linear
discriminant axis by using only these features (for details,
see [17]). Projection coordinates then serve as input for the
Wilcoxon rank sum test for equal medians [8] (the null
hypothesis of this test is two medians are equal at the 5%
level). Given a sample divided into two groups according to
class membership, all the observations are ranked as if they
were from a single sample and the rank sum statistic W
is computed as the sum of the ranks in the smaller group.
The value of the rank sum statistic is employed as a score
characterizing separability power of a given set of features.

The higher this score, the larger the overlap in projections
of two classes, i.e. the worse separation between classes. To
compare W coming from different datasets, each W can be
normalized by the sum of all ranks, i.e. if N is the sample
size, then the sum of all ranks will be

∑N
i=1 i.

IV. BOLSTERED RESUBSTITUTION ERROR

This is a low-variance and low-bias classification error
estimation proposed in [9]. Unlike the cross-validation tech-
niques reserving a part of the original data for testing, it
permits to use the whole dataset. Since sample size of
gene expression datasets is very small compared to the
data dimensionality, using all available data is an important
positive factor. However, one should be aware of the effect
of overfitting in this case. Braga-Neto and Dougherty [9]
avoided this pitfall by randomly generating a number of
artificial points (cases) in the neighborhood of each training
point. These artificial cases then act as a test set and
classification error on this set is called bolstered. In this
paper, we utilize the bolstered variant of the conventional
resubstitution error known as bolstered resubstitution error.

Briefly, bolstered resubstitution error is estimated as fol-
lows [9]. Let A0 and A1 be two decision regions correspond-
ing to the classification generated by a given algorithm, N
be the number of training points, and MMC be the number
of random samples per training point, drawn from the D-
variate normal distribution (MMC = 10 as advised in [9]).
The bolstered resubstitution error is then defined as

εbresub ≈
1

NMMC

N∑
i=1

MMC∑
j=1

Ixij∈A1Iyi=0+

MMC∑
j=1

Ixij∈A0Iyi=1

 ,

where {xij}j=1,...,MMC
are samples drawn from

1/((2π)D/2σD
i )e−‖x‖2/(2σ2

i ) by using the Marsaglia
polar normal random number generator, and I is the
indicator function.

In a D-dimensional case, samples are drawn from a
hypersphere centered at a particular training point. Hence, the
radius of this hypersphere, determined by σi, is of importance
since its selection amounts to choosing the degree of bolster-
ing. Typically, σi should vary from point to point in order
to be robust with respect to the data. In [9] σi = d̂(yi)/cp
for i = 1, . . . , N , where d̂(yi) is the mean minimum distance
between points belonging to class of yi (yi can be either 0 or
1)1, and cp is the constant called the correction factor defined
as the inverse of the chi-square cdf (cumulative distribution
function) with parameters 0.5 and D, because interpoint
distances in the Gaussian case are distributed as a chi-square
random variable with D degrees of freedom. Thus, cp is
the function of the data dimensionality. The parameter 0.5

1d̂(yi) is determined by first computing the minimum distance from each
point xi to all other points xj (j 6= i) of the same class as that of xi and
then by averaging thus obtained minimum distances.



is chosen so that points inside a hypersphere will be evenly
sampled.

V. DEPENDENCE BETWEEN DATASET COMPLEXITY AND
CLASSIFICATION ERROR

Our main idea to build ensembles of k-NNs is based
on the hypothesis that the dataset complexity and bolstered
resubstitution error are related. In other words, knowing
the former can predict the latter, i.e. running a classifier
is unnecessary if the sufficient evidence of such a relation
exists.

To verify our hypothesis, 10000 feature subsets were
randomly sampled for each dataset (subset size ranged from
1 to 50) and both complexity and bolstered resubstitution
error for 3-NN were computed. The result of such simulation
is shown in Figs. 1-3 together with marginal histograms for
each variable where the dependence between complexity and
error is clearly detectable. In addition, one characteristic
important for successful ensemble generation is present:
diversity among predictions since one complexity value cor-
responds to several different error values.
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Fig. 1. (Colon) Bivariate distribution of normalised complexity and
bolstered resubstitution error and univariate marginal histograms
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Fig. 2. (Brain) Bivariate distribution of normalised complexity and
bolstered resubstitution error and univariate marginal histograms
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Fig. 3. (SAGE) Bivariate distribution of normalised complexity and
bolstered resubstitution error and univariate marginal histograms

To quantify this dependence, the rank correlation coeffi-
cients Spearman’s ρ and Kendall’s τ were computed (see
Table II) and the test on positive correlation at the signif-
icance level 0.05 was done which confirmed the existence
of such correlation (all p-values were equal to zero). The
rank correlations measure the degree to which large (small)
values of one random variable correspond to large (small)
values of another variable (concordance relations among
variables). They are useful descriptors in our case since high
(low) complexity implies that the data are difficult (easy)
to accurately classify, which, in turn, means high (low)
classification error. Unlike the linear correlation coefficient, ρ
and τ are preserved under any monotonic (strictly increasing)
transformation of the underlying random variables.

TABLE II
SPEARMAN’S ρ AND KENDALL’S τ

Dataset no. τ ρ
1 0.3446 0.4964
2 0.3991 0.5581
3 0.4173 0.5864

VI. COPULA METHOD

To deeply explore dependence relations, we employed
the copula method [5], [6], [7]. Copulas are functions that
describe dependencies among variables and allow to model
correlated multivariate data by combining univariate distri-
butions.

A copula is a multivariate probability distribution, where
each random variable has a uniform marginal distribution on
the interval [0,1]. The dependence between random variables
is completely separated from the marginal distributions in
the sense that random variables can follow any marginal
distributions, and still have the same rank correlation. This
is one of the main appeals of copulas: they allow separation
of dependence and marginal distribution. Though there are
multivariate copulas, we will only talk about bivariate ones
since our dependence relation includes two variables.



Sklar’s theorem, which is the foundation theorem for
copulas, states that for a given joint multivariate distribution
function H(x, y) = P (X ≤ x, Y ≤ y) and the relevant
marginal distributions F (x) = P (X ≤ x) and G(y) =
P (Y ≤ y), there exists a copula function C relating them,
i.e. H(x, y) = C(F (x), G(y)). If F and G are continu-
ous, C is unique. Otherwise, C is uniquely determined on
RanX×RanY , where ‘Ran’ stands for the range. If F and
G are continuous, the following formula is used to construct
copulas from the joint distribution functions: C(u, v) =
H(F−1(u), G−1(v)) [7], where F−1 means a quasi-inverse
of F , G−1 means a quasi-inverse of G, and U and V
are uniform random variables distributed between 0 and 1.
That is, the typical copula-based analysis of multivariate (or
bivariate) data starts with transformation from the (X,Y )
domain to the (U, V ) domain, and all manipulations with
the data are then done in the latter. Such a transformation to
the copula scale (unit square I2) can be achieved through a
kernel estimator of the cumulative distribution function (cdf).
After that the copula function C(u, v) is generated according
to the appropriate definition for a certain copula family.

In general, the choice of a particular copula may be based
on the observed data. Among numerous copula families, we
preferred the Frank copula belonging to the Archimedean
family based on the visual look of plots in Figs. 1-3 and for
dependence in the tail. We are particularly concerned with
lower tail dependence when low complexity is associated
with small classification error as this forms the basis for
ensemble construction in our approach. The Frank copula is
a one-parameter (θ is a parameter, θ ∈]−∞, +∞[\0) copula
defined for uniform variables U and V (both are defined over
the unit interval) as

Cθ(u, v) = −1
θ

ln
(

1 +
(e−θu − 1)(e−θv − 1)

e−θ − 1

)
,

with θ determining the degree of dependence between the
marginals (we set θ to Pearson’s correlation coefficient2

between U and V so that as θ increases, positive dependence
also increases).

Using copulas, dependence structure between random vari-
ables can be characterized by quadrant dependence, tail
monotonicity and stochastic monotonicity [7], described be-
low. Unlike correlation coefficients that measure the overall

2In [18] it was shown that Spearman’s ρ and Kendall’s τ can be expressed
solely in terms of the copula function as follows:

ρ = 12

Z Z

C(u, v)dudv − 3,

τ = 4

Z Z

C(u, v)dC(u, v) − 1,

where integration is over I2.
The integrals in these formulas can be interpreted as the expected value

of the function C(u, v) of uniform [0,1] random variables U and V whose
joint distribution function is C, i.e.

ρ = 12E(UV ) − 3, τ = 4E(C(u, v)) − 1.

As a consequence, ρ for a pair of continuous random variable X and Y
is identical to Pearson’s linear correlation coefficient for random variables
U = F (X) and V = G(Y ) [7].

strength of the association between variables, these charac-
teristics provide valuable information about how the strength
varies across the distribution.

A. Quadrant dependence

Random variables X and Y are positively quadrant de-
pendent (PQD) in terms of C if ∀(u, v) in I2, C(u, v) ≥ uv
[7]. We found that complexity and bolstered resubstitution
error are PQD for all datasets.

It is interesting to ask when one continuous bivariate
distribution H1 is more PQD (more concordant) than another
H2. The answer is readily provided by comparing ρ or τ
[6]: if ρ(H1) ≤ ρ(H2) or τ(H1) ≤ τ(H2), then H2 is
more PQD (more concordant) than H1. From Table II it
can be seen that SAGE is more PQD than other datasets,
i.e. concordance relations between complexity and bolstered
resubstitution error are stronger for this data than those for
other datasets.

B. Tail monotonicity

As we mentioned above, we are interested in tail depen-
dence when low (high) complexity associates small (large)
classification error. Tail monotonicity reflects this type of
association and it is stronger condition for dependence than
PQD.

In terms of a copula and its first-order partial derivatives
tail monotonicity is defined as follows [7]:

• Y is left tail decreasing in X iff for any v in I,
∂C(u, v)/∂u ≤ C(u, v)/u for almost all u.

• X is left tail decreasing in Y iff for any u in I,
∂C(u, v)/∂v ≤ C(u, v)/v for almost all v.

• Y is right tail increasing in X iff for any v in I,
∂C(u, v)/∂u ≤ (v − C(u, v))/(1 − u) for almost all
u.

• X is right tail increasing in Y iff for any u in I,
∂C(u, v)/∂v ≤ (u − C(u, v))/(1 − v) for almost all
v.

For the Frank copula, the first-order partial derivatives are

∂Cθ(u, v)
∂u

=
e−θu(e−θv − 1)

e−θ − 1 + (e−θu − 1)(e−θv − 1)
,

∂Cθ(u, v)
∂v

=
e−θv(e−θu − 1)

e−θ − 1 + (e−θu − 1)(e−θv − 1)
.

Tail monotonicity is also guaranteed if ρ ≥ τ ≥ 0 is met
[7].

We verified that for all datasets bolstered resubstitution
error is left tail decreasing in complexity, complexity is left
tail decreasing in bolstered resubstitution error, bolstered
resubstitution error is right tail increasing in complexity, and
complexity is right tail increasing in bolstered resubstitution
error.



C. Stochastic monotonicity

Stochastic monotonicity is stronger than tail monotonicity.
According to [7],

• Y is stochastically increasing in X iff for any v in I,
C(u, v) is a concave function of u.

• X is stochastically increasing in Y iff for any u in I,
C(u, v) is a concave function of v.

A concave function implies that the second-order deriva-
tives must be less than or equal to zero. For the Frank copula,
these derivatives are

∂2Cθ(u, v)
∂u2

=
θe−θu(e−θv − 1)(e−θv − e−θ)

[e−θ − 1 + (e−θu − 1)(e−θv − 1)]2
,

∂2Cθ(u, v)
∂v2

=
θe−θv(e−θu − 1)(e−θu − e−θ)

[e−θ − 1 + (e−θu − 1)(e−θv − 1)]2
.

Since θ > 0 in our case (positive dependence), it is easy
to verify that ∂2Cθ(u,v)

∂u2 ≤ 0 and ∂2Cθ(u,v)
∂v2 ≤ 0, which, in

turn, implies that Cθ(u, v) is concave. Thus, for all datasets
in our study, bolstered resubstitution error is stochastically
increasing in complexity and complexity is stochastically
increasing in bolstered resubstitution error.

VII. ENSEMBLES OF CLASSIFIERS

An ensemble of classifiers consists of several classifiers
(members) that make predictions independently of each
other. After that, these predictions are combined together
to produce the final prediction. Though ensemble members
can belong to different types of algorithms, because of our
interest in k-NN classifiers we choose only this algorithm.
Moreover, the value of k is fixed to 3 for all ensemble
members3. As a combination technique, the conventional
majority vote was selected in order to demonstrate that
ensembles built with our approach show good performance
even when employing simple non-trainable combiners.

It is well known that an ensemble is able to outperform
its best performing member if ensemble members make
mistakes on different cases so that their predictions are
uncorrelated and diverse as much as possible. On the other
hand, an ensemble must include a sufficient number of
accurate classifiers since if there are only few good votes,
they can be easily drowned out among many bad votes. As
a result, an ensemble can predict wrongly most of the time.

So far many definitions of diversity were proposed [19],
[4], but unfortunately the precise definition is still largely
illusive. Because of this fact, we decided not to follow
any explicit definition of diversity, but to introduce diversity
implicitly instead. Since we fixed the base classifier and
its parameter, one of the solutions is to let each ensemble
member to work with its own feature subset.

Feature subset selection can be done in two ways: either
applying a certain feature selection algorithm or a group of
such algorithms, or randomly sampling features from the

3In our opinion, k = 1 tends to lead to optimistic estimation of bolstered
resubstitution error.

original feature set. As concluded in [20], differences in clas-
sification performance among feature selection algorithms
are less significant than performance differences among the
error estimators used to implement these algorithms. In other
words, the way of how error is computed has a larger
influence on classification accuracy than the choice of a
feature selection algorithm. Since bolstered resubstitution
error is a low-bias, low-variance estimate of classification
error, which is what is needed for high dimensional gene
expression data, we opt for random feature selection. Figs. 1-
3 show that random feature selection leads to diversity since
one complexity value corresponds to several values of error.
Given that it is difficult to carry out biological analysis
of many genes, we restricted the number of genes to be
sampled to 50, i.e. each ensemble member works with 1
to 50 randomly selected (sampled with replacement) genes.

Based on the above-mentioned, two approaches to form
ensembles consisting of L classifiers are explored:

1. Randomly select L feature subsets, one subset per
classifier, as described above. Classify the data with
each classifier and combine votes.

2. Randomly select M > L (e.g., M = 100) feature
subsets and compute the dataset complexity for
each of them. Rank subsets according to their com-
plexity and select L least complex subsets while
ignoring the others. Classify the data with each
classifier and combine votes.

We will call the first approach conventional to distinguish
it from ours, which is the second approach. The typical (and
perhaps the earliest) example of the former is [21]. As one
can see, the main difference between two approaches lies
in the way of choosing feature subsets: in the conventional
approach, subsets are chosen regardless of their classification
power. As a result, one may equally expect both very good
and very bad base learner predictions. In contrast, in our
approach, subsets are chosen based on the measure directly
related to classification performance. As lower complexity
is associated with smaller bolstered resubstitution error as
shown in Section V, selection of the subsets of smaller
complexity implies more accurate classifiers included into
an ensemble. Since each ensemble member works with only
a small subset of all features, such feature space decompo-
sition is akin to dividing a complex problem into simpler
subproblems. Thus, with our approach, both diversity and
accuracy requirements for ensembles are satisfied. Hence, we
can expect better average classification performance with our
approach compared to the conventional approach.

VIII. SIMULATION RESULTS

In ensemble applications to gene expression based cancer
classification, a small and accurate ensemble is of impor-
tance, since too many ensemble members would complicate
biological understanding of relations among genes. Bearing
this in mind, we set the number of 3-NNs (L) in the ensemble
to be equal 3, 5, and 7.

Table III represents the dataset complexity as estimated
by the normalized rank sum statistic W (see Section III)



for different values of L when ensembles were built with
our approach. For each dataset and L, two values are given:
average minimum and average maximum complexity (aver-
aging over 100 trials) of the selected feature subsets included
into an ensemble. It can be observed that complexity for each
dataset is rather stable as L changes. Brain appears to be far
less complex than the other datasets. For the conventional
ensemble approach ‘avr.max’ often went to a very big value,
meaning poor class separation according to the Wilcoxon
rank sum test.

TABLE III
AVERAGE MINIMUM AND MAXIMUM NORMALIZED W FOR FEATURE

SUBSETS SELECTED WITH OUR ENSEMBLE GENERATING APPROACH FOR

VARIOUS VALUES OF L

Dataset no. L = 3 L = 5 L = 7
1 avr.min 0.1587 0.1584 0.1581
1 avr.max 0.1676 0.1723 0.1769
2 avr.min 0.0761 0.0760 0.0761
2 avr.max 0.0781 0.0803 0.0818
3 avr.min 0.1501 0.1494 0.1493
3 avr.max 0.1584 0.1619 0.1655

We also compared both ensemble schemes as well as each
ensemble scheme against a single best classifier (SBC) in the
ensemble. Let eSBC and eENS be bolstered resubstitution
error achieved with a SBC and an ensemble, respectively.
The following statistics widely used in machine learning and
data mining were computed over 100 ensemble generations:

• win-tie-loss count, where ‘win’/‘tie’/‘loss’ means the
number of times when an ensemble was superior
/equal/inferior in terms of bolstered resubstitution error
to a SBC (in other words, the number of times when
eENS < eSBC , eENS = eSBC , eENS > eSBC ,
respectively).

• ‘min. win’ and ‘max. win’(minimum and maximum dif-
ferences eSBC − eENS when an ensemble outperforms
its SBC,

• ‘min. loss’ and ‘max. loss’ (minimum and maximum
differences eENS − eSBC when a SBC outperforms an
ensemble.

Tables IV-VI contain values of these statistics. If there
were no losses, this fact is marked as ‘no’. ‘C’ and ‘O’
stand for the conventional and our approaches to ensemble
construction while numbers from 1 to 3 in the first column
of each table correspond to ‘Dataset no.’ as in Table I.

TABLE IV
COMPARISON OF A SBC AND TWO ENSEMBLES WHEN L = 3

win-tie-loss min.win max.win min.loss max.loss
1 C 84/3/13 0.0032 0.0629 < 10−4 0.0548
1 O 96/2/2 0.0016 0.0532 0.0065 0.0145
2 C 79/2/19 0.0029 0.0824 0.0029 0.0324
2 O 98/0/2 0.0029 0.0794 0.0059 0.0059
3 C 81/1/18 0.0011 0.0700 0.0011 0.0578
3 O 99/0/1 0.0022 0.0856 0.0056 0.0056

As one can see, both ensemble schemes were superior to
a SBC on all datasets for the most part. When analyzing

TABLE V
COMPARISON OF A SBC AND TWO ENSEMBLES WHEN L = 5

win-tie-loss min.win max.win min.loss max.loss
1 C 93/1/6 0.0016 0.0694 0.0032 0.0274
1 O 100/0/0 0.0016 0.0597 no no
2 C 76/2/22 0.0029 0.0853 0.0029 0.0735
2 O 99/1/0 0.0059 0.1000 no no
3 C 84/0/16 0.0033 0.1022 0.0022 0.0800
3 O 99/0/1 0.0122 0.1089 0.0022 0.0022

TABLE VI
COMPARISON OF A SBC AND TWO ENSEMBLES WHEN L = 7

win-tie-loss min.win max.win min.loss max.loss
1 C 99/0/1 0.0032 0.0726 0.0113 0.0113
1 O 99/1/0 0.0016 0.0694 no no
2 C 88/2/10 0.0029 0.0971 0.0088 0.0412
2 O 99/0/1 0.0088 0.1088 0.0029 0.0029
3 C 80/0/20 0.0022 0.1256 0.0044 0.0700
3 O 100/0/0 0.0178 0.1033 no no

the performance of two ensemble schemes, it was observed
that on average, our approach yields better results in the
sense that its win (loss) count is typically higher (lower)
and the absolute losses to a SBC are lower, too. In contrast,
the conventional ensemble generating approach sometimes
shows spectacular results (e.g., the high max.win count), but
it also suffers many defeats from a SBC. That is, its results
are less predictable since there is no control over complexity
of the selected feature subsets and hence, if such ‘complex’
subsets are selected, a SBC can render ensemble efforts to
further lower error fruitless. With the explicit selection of the
least complex subsets, our approach is able to succeed where
the comparative approach failed.

Table VII summarizes the average bolstered resubstitution
error (over 100 runs) and its standard deviation achieved with
two ensemble schemes. From Table VII it is clearly noticable
that both the average error and its standard deviation are
much smaller for our ensemble scheme.

TABLE VII
AVERAGE BOLSTERED RESUBSTITUTION ERROR AND ITS STANDARD

DEVIATION FOR TWO ENSEMBLE SCHEMES

L = 3 L = 5 L = 7
1 C 0.110±0.025 0.091±0.019 0.080±0.013
1 O 0.092±0.014 0.077±0.012 0.071±0.014
2 C 0.129±0.035 0.117±0.032 0.101±0.031
2 O 0.081±0.022 0.062±0.019 0.054±0.017
3 C 0.177±0.034 0.160±0.040 0.152±0.040
3 O 0.130±0.023 0.113±0.022 0.098±0.019

Finally, both ensemble schemes were compared with the
nearest shrunken centroids (NSC) algorithm [22], which was
proposed for cancer classification based on gene expression
levels. Another reason for its selection was that it belongs to
the class of the nearest neighbor algorithms that are utilized
in our ensembles.

Briefly speaking, NSC shrinks class centroids toward
the overall centroid after normalizing by the within-class
standard deviation for each gene. This normalization gives



higher weight to those genes whose expression is stable
within cases (examples) belonging to the same class. More
precisely, given a set of n genes, for each gene i, a t statistic
dik, comparing the centroid x̄ik of class k to the overall
centroid x̄i, is computed:

dik =
x̄ik − x̄i√

1/nk + 1/n (si + s0)

where si is the pooled within-class standard deviation for
gene i and the positive constant s0 assures that genes with
low expression levels do not produce large dik by chance.
NSC shrinks each dik by the amount of shrinkage, ∆,
according to d′ik = sign(dik)(| dik | −∆)+, where + means
positive part (a+ = a if a > 0 and zero otherwise), in order
to compute new shrunken centroids x̄′

ik:

x̄′
ik = x̄i +

√
1/nk + 1/n (si + s0) d′

ik

The classification rule for an example x chooses the class k∗

whose shrunken centroid is the nearest one:

k∗ = arg min
k

n∑
i=1

(xi − x̄′
ik)2

(si + s0)2
− 2 log πk

where πk is an estimate of the prior for class k.
Note that NSC implicitly performs gene selection, because

after shrinking some d′
ik may become zero: only genes

having at least one nonzero d′ik are retained in order to
classify test data. The larger ∆, the larger the amount of
shrinkage, and hence, the fewer genes are selected. It can
be noticed from the formula for d′ik above that there is a
working range of ∆ values (outside of this range, changes
in ∆ do not affect d′ik).

Table VIII contains the best NSC results collected over
100 runs. These results might look good compared to our
results in Table VII but one should take into account that
NSC results in Table VIII are obtained for the optimal values
of ∆. Figures 4-6 show the complete picture. In each of
these figures, the vertical axis denotes the working range
of ∆ values and the horizontal axis denotes the bolstered
resubstitution error values. It can be seen that the NSC results
are very sensitive to ∆. Hence, they can be highly sub-
optimal to our results if ∆ is not carefully set up. Besides,
for Colon dataset and L = 5, 7, our results are better than the
NSC ones for the optimal ∆. Best NSC results for Brain and
SAGE datasets are achieved with no gene selection. Based
on them, two conclusions can be drawn: 1) our ensemble
scheme provides both dimensionality reduction4 and 2) high
accuracy, especially for ‘complex’ datasets. On the other
hand, NSC can be competitive on ‘easy’ datasets but its
results strongly depend on the optimal ∆. It turned out
that reaching both gene selection and high accuracy can be
difficult for this algorithm.

4In the worst case when different sampled subsets of features do not
overlap, our ensemble scheme provides the compression ratio c = D

50L
,

where D and 50 are the number of original features and the maximal subset
size, respectively. For instance, given L = 7, c ≈ 5.7 for Colon, c ≈ 16.8
for Brain, and c ≈ 76.5 for SAGE. For smaller L, compression is even
higher.
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Fig. 4. (Colon) Bolstered resubstitution error of NSC versus ∆
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Fig. 5. (Brain) Bolstered resubstitution error of NSC versus ∆
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Fig. 6. (SAGE) Bolstered resubstitution error of NSC versus ∆



TABLE VIII
AVERAGE BOLSTERED RESUBSTITUTION ERROR AND ITS STANDARD

DEVIATION FOR NSC. BEST RESULTS ARE GIVEN (THIRD COLUMN)
TOGETHER WITH THE OPTIMAL ∆ (SECOND COLUMN)

1 1.1 0.099±0.004
2 0.0 0.059±0.000
3 0.0 0.052±0.005

IX. CONCLUSION

We proposed a new ensemble method, based on random
selection of features and direct estimation of data complexity
to guide the construction of committees of k-NN classi-
fiers. As demonstrated on three gene expression datasets,
our approach leads to lower bolstered resubstitution error
compared to 1) the conventional ensemble approach, purely
based on random selection of features, 2) the single best
classifier in the ensemble, and 3) the nearest shrunken cen-
troids algorithm proposed for gene expression based cancer
classification.

Our approach springs from dependence between dataset
complexity and bolstered resubstitution error established
through the copula method. Using the Frank copula fit
to the data, we found that there is positive dependence
between complexity and error, where low (high) complex-
ity corresponds to small (large) error. Hence, the dataset
complexity serves as a reliable indicator of the expected
classification performance without the need to carry out
actual classification. As a result, selection of least complex
subsets of features implies more accurate ensemble members
and therefore it ensures better ensemble performance.

Our method is advantageous to apply at very low L (e.g.,
from 3 to 7), which is important when further analysis of
relations among selected genes is desired.

Future work includes exploring new measures of dataset
complexity (see e.g. [23], [24] and comparing them with
our measure in order to find out if they can complement
each other. Using several complexity measures will allow us
to consider more sophisticated relations between complexity
and accuracy which might escape our notice in the bivariate
copula model analyzed in this paper. We also plan to compare
our ensemble scheme with other feature selection/ensemble
methods (see e.g. [25], [26]), using also a larger set of bio-
molecular data, in order to have a better understanding of
pros and cons of our approach.
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