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ABSTRACT: DNA hybridization microarrays supply information about gene expression through measurements of mRNA levels of

large amounts of genes in a cell. The large amounts of data generated by DNA microarray technology need suitable methods for

their processing and analysis. In this paper we apply supervised machine learning methods to the classification and recognition of

human malignancies using DNA microarray gene expression data. We show that Multi-Layer Perceptrons and Support Vector

Machines can correctly distinguish cancerous from normal tissues and Error Correcting Output Coding ensembles of learning

machines can classify different types of lymphoma. Moreover our experimental results confirm the existence of distinct tumoral
diseases inside the class of diffuse large B-cell lymphoma. offering also insights into the role of sets of coordinately expressed

INTRODUCTION

DNA microarrays [1,14] provide us with a large amount of
information about gene expression, offering a wide picture of
the functional status of a cell.

This information can be used to refine the traditional
classification of human cancer based on morphological and
clinical parameters; although the current taxonomy takes also
into account molecular characteristics, in some cases it cannot
detect functional differences among classes. In fact, actually,
many patients receiving the same diagnosis could have
distinct diseases, as reported by different clinical courses and
treatment responses.

Information obtained by DNA microarray technology gives a
snapshot of the overall functional status of a cell, offering
new insights into potential different types of cancer,
discriminated on molecular and functional basis.

The large amount of data produced by this powerful analytic
technique can be processed through machine learning
methods, using both unsupervised and supervised approaches.
In a typical unsupervised approach, expression patterns of
several hundreds or thousands of genes are obtained both
from cancerous and non cancerous tissues; then clustering
algorithms [2] are used to group together similar expression
patterns corresponding to different cells, in order to correctly
separate cancerous from normal samples. By this approach we

can also discover new functional classes not detected by
traditional classifications of  tumours, sometimes
corresponding to different diseases with different clinical
courses [3].

Anyway, unsupervised methods cannot always correctly
separate classes. Supervised methods can overcome this
problem, exploiting “a priori” biological and medical

knowledge on the problem domain.

In this paper we show how to apply supervised learning
methods for tasks related to cancer classification using DNA
microarray gene expression data. We tackle the problem of
recognizing cancerous and normal tissues, classifying
different types of human malignancies and also identifying
groups of genes related to a specific type of human cancer.
We have used data of a specialized DNA microarray, named
“Lymphochip”, developed at Stanford University School of
Medicine [4], specifically designed to study lymphoid and
carcinogenesis related genes.

These data are very challenging from a machine learning
standpoint, considering that they are constituted by a small
number of 4026-dimensional samples.

In our first task we distinguish cancerous from normal tissues
using the overall information available. This dichotomic
problem is tackled using Support Vector Machines (SVM),
Multi-Layer Perceptrons (MLP) and linear perceptrons (LP).
SVM have been recently used in microarray gene expression
analysis of data [5].
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In our second task we try to directly classify different types of
lymphoma (a multiclass problem) using MLPs and Parallel
Non linear Dichotomizers (PND), i.e. ensembles of learning
machines based on output coding decomposition of a
multiclass problem [6].

Finally, we attempt to identify groups of genes specifically
related to the expression of a tumour phenotype, exploiting “a
priori” biological knowledge about sets of genes and
information provided by clusters of coordinately expressed
genes, i.e. “expression signatures”[3].

The paper is structured as follows. In the next section we
summarize the basics about DNA microarray technology and
machine learning methods for analyzing DNA microarray
data. Then we present our experimental approach to the
recognition of human lymphoma using gene expression data.
We show three types of classification problems related to the
analysis of DNA microarray data: classification of cancerous
and non-cancerous lymphoid tissues, classification of
different types of lymphoma and identification of diffuse
large B-cell lymphoma subgroups. After a brief description of
the supervised methods applied in our experimentation, the
results are presented and discussed. Conclusions and future
developments of this work end the paper.

DNA MICROARRAY FOR GENE EXPRESSION
MONITORING

DNA hybridization microarrays [1] supply information about
gene expression through measurements of mRNA levels of
large amounts of genes in a cell.

Although regulation of protein amounts is not accomplished
solely by regulation of mRNA, these methods offer a
snapshot of the overall functional status of a cell: virtually all
differences in cell type or state are related with changes in the
mRNA levels of many genes.

DNA microarrays have been used in mutational analyses,
genetic mapping studies and in genome monitoring of gene
expression [1,2,5,9].

DNA microarray technology

DNA microarrays are microscopic arrays of DNA sequences
printed on glass microscope slides. Using state of the art
technologies all the human genome can be printed on a
standard 1°° by 3”’ microscopic slide in about one day.
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The first step in preparing DNA microarrays involves the
selection of suitable DNA targets. For organisms as mouse
and humans, individual cDNA clones from cDNA libraries
can be used as the source of gene-specific targets in the
arrays. Then an arrayer robot prints the DNA samples through
a cluster of specialized printing tips on a standard microscopic
slide: each DNA sample is printed in a precise and known
position on the slide.

The next step consists in the preparation of the fluorescent
cDNA probes that will be used to hybridize the arrays. The
mRNA of the cell whose gene expression has to be studied is
isolated and purified. The prepared mRNA is used as template
for synthesis of fluorescent cDNA probe by means of reverse
transcription. Usually fluorecently labeled
deoxyribonucleotides are used for producing cDNA probes.
The cDNA sequences obtained by reverse transcription are
then hybridized with the DNA samples printed on the
microarray. A laser beam successively scans the slide and a
raster image of the array is acquired. Measuring the
fluorescent intensities of the image we can reconstruct the
quantities of cDNA that hybridizes with each individual
sample on the printed microscope slide. Consequently we
gain information about the quantities of mRNA produced by
the cell; i.e. we have a quantitative image of the gene
expression.

Unfortunately the absolute representation of every RNA
species in any cell or tissue sample cannot be obtained, as
there is a complex relationship between the amount of input
mRNA for a given gene and the intensity of the fluorescent
cDNA probes, depending on a multitude of experimental
conditions. Using relative representation of RNA species in
two or more samples we can bypass these problems and
moreover we are interested in differences in gene expression
between samples, not in the absolute amounts of RNA.

For these reasons the ratios between two differently labeled
cDNA probes, one of them acting as reference, are usually
considered.

Gene expression data of different cells or different
experimental/functional conditions are collected in matrices
for numerical processing: each row corresponds to the gene
expression data of a specific cDNA clone relative to all the
examples, and each column corresponds to the expression
data of all the cDNA clones relative to a specific cell sample.
Typically thousands of genes are used and analyzed for each
microarray sample.

Machine learning methods for analyzing microarray data
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This powerful analytic technique requires machine learning
methods for analyzing and extracting significant knowledge
from these large amounts of gene expression data. Both
unsupervised and supervised approaches can be used for
analysing gene expression data.

In a typical unsupervised approach, expression patterns of
several hundreds or thousands of genes are obtained for
different cells or tissues or for different functional status of
the same cell. Then clustering algorithms are used to group
together similar expression patterns both for grouping sets of
genes or sets of different cells (or different functional status
of the same cell). By this approach we can discover genes
functionally correlated [1] or we can separate expressions
patterns of normal from pathological tissues [3].

Anyway, unsupervised methods cannot always correctly
separate classes. Supervised methods can overcome this
problem, exploiting “a priori” biological and medical
knowledge on the problem domain. For instance, if we know
from biological and medical knowledge that some genes are
related to carcinogenesis, we can use the corresponding gene
expression data for detecting tumoral cells, or we can learn to
distinguish between normal and pathological tissues from
known samples of cells, using in both cases supervised
learning methods.

CLASSIFICATION OF LYMPHOMA USING DNA
MICROARRAY DATA

In this paper we apply supervised machine learning methods
for analyzing DNA microarray data with genes preferentially
expressed in normal and cancerous lymphoid cells. Our aim
consists in evaluating if supervised methods can be used to
distinguish normal and cancerous lymphoid cells, and in
assessing if supervised methods, exploiting “a priori”
biological knowledge, can offer insights into the role of
particular groups of genes in carcinogenic processes of
lymphoid cells.

The data
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In particular we have used data of a specialized DNA
microarray, named “Lymphochip”, developed at the Stanford
University School of Medicine [4], specifically designed to
study lymphoid and carcinogenesis related genes.

Data used in our experimentation' consist in 96 tissue samples
from normal and cancerous populations of human
lymphocytes, considering for each sample 4026 different
genes preferentially expressed in lymphoid cells or with
known roles in processes important in immunology or cancer.
We consider three main classes of lymphoma: diffuse large B-
cell lymphoma (DLBCL), follicular lymphoma (FL) and
chronic lymphocytic leukaemia (CLL) together with
transformed cell lines (TCL) and normal lymphoid tissues [3].

Tab. 1 DNA microarray samples

. Number of
Type of tissue
samples

Normal lymphoid cells 24

DLBCL 46

FL 9

CLL 11

TCL 6

The total number of cancerous samples is 72, while the
number of different non-cancerous samples amounts to 24.
Then we have a relative small amount of samples in a high
dimensional (4026) space.

Gene expression data are expressed as fluorescence ratios
normalized subtracting for each value the median between all
the values. Missing gene expression data (about 6% of all the
data) have been replaced with zeros.

The classification problems

Our first task consists in distinguish cancerous from normal
tissues using the overall information available, i.e. all the
4026 gene expression data.

In our second task we try to directly classify different types of
lymphoma (a multiclass problem), using again all the
available gene expression data.

' The “Lymphochip” DNA microarray data are available at
http://llmpp.nih.gov/lymphoma
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The third task tries to validate the hyphothesis of Alizadeh et
al. [3] about the existence of two distinct functional types of
lymphoma inside DLBCL. Their clustering studies showed
that two subgroups of DLBCL that they named germinal
centre B-like DLBCL (GCB-like) and Activated B-like
DLBCL (AB-like) can be separated using subsets of related
genes. In our experimentation we attempt to identify groups
of genes specifically related to the expression of these two
different tumour phenotypes. In order to attain this goal, we
employ “a priori” biological knowledge about sets of genes
and information provided by clusters of coordinately
expressed genes, i.e. “expression signatures” [3,9]. A gene
expression signature is a set of genes identified by the
biological process in which its component genes are known to
function (i.e. proliferation), or by the cell type in which its
component genes are expressed (i.e. germinal center B-cell).
Using these subsets of genes to classify cancerous and normal
tissues we can indirectly gain information on the significance
of sets of correlated genes in carcinogenic processes.

Methods

For the first task (a dichotomic classification problem) we
have used Support Vector Machines (SVM) [10], Multi Layer
Perceptrons (MLP) and a linear perceptron. SVM are two-
class classifiers theoretically founded on Vapnik’s Statistical
Learning Theory [11]. They act as linear classifiers in an high
dimensional feature space originated by a projection of the
original input space: the resulting classifier is in general non
linear in the input space and it achieves good generalization
performances maximizing the margin between the classes.

For the second multiclass problem we have used MLP,
Parallel Linear Dichotomizers (PLD) and Parallel Non linear
Dichotomizers (PND) [6].

PLD are ensembles of linear perceptrons, and PND are
ensembles of MLP based on output coding decomposition of
a multiclass problem [12]. These methods consist in
decomposing a multi-class problem in a set of L of two-class
problems according to some decomposition scheme, training
the dichotomizers independently and combining the L outputs
to give the class label. Learning machines based on
decomposition methods are composed by two units: the
Decomposition and the Decision Unit. In the decomposition
unit a multiclass classification problem is decomposed in a set
ot two class problems assigned to different dichotomic
learning machines; each class is univocally determined by a
codeword, i.e. a string of bits each of them learned by a
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different dichotomic classifier. The Decision unit reconstructs
the original multiclass problem and selects the class through a
suitable decoding function.

For the third problem we have used only SVM, as they
showed good generalization performances in the first task

For the first two classification problems we used used 10-fold
cross validation techniques for evaluating the generalization
error of the learning machines together with the Joachims’
& estimator [13] of the leave-one-out error for SVM. In
the third classification problem we used only the sa
estimator, as in the first classification task we achieved the
same results about the estimation of the generalization error
both using 10-fold cross validation and & estimator of the
leave-one-out error. In the two-classes classification problems
we have estimated also the precision and recall [13]. The
recall is the probability that a pattern of a positive class is
correctly classified; the precision is the probability that a
pattern classified as positive is indeed correctly classified.

In all learning tasks we have used NEURObjects [7], a set of
C++ library classes for neural networks development’ and
SVM"" [8], a set of C applications implementing dichotomic
SVM for classification tasks. We have also developed C++
software for preparing and analyzing input and output data.

Results

We have trained about 1500 SVM and 1500 MLP considering
globally all the classification tasks involved in this
experimentation. We have applied three different types of
SVM, using linear, polynomial and radial basis kernel
functions, and we have considered only MLP with one hidden
layer both in two-class and multiclass MLP. The dichotomic
base learner of the decomposition unit of the PND have been
implemented by MLP with one hidden layer.

Gene expression data from the original data set have been
transformed into a format suitable for SVM and MLP
analysis.

Considering SVM, we have tried different values of the
regularization parameter, varying it from 0.5 to 1000. We
have used polynomials of degree from 2 to 5 and we have

> NEURODbjects is on line available at
http://www.disi.unige.it/person/ValentiniG/NEURObjects
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varied the sigma value of the radial basis SVM from 0.01 to
100.

We have used MLP with 1 hidden layer and we have
performed model selection varying the number of hidden
neurons from 3 to 15, and the parameters of  the
backpropagation algorithm.

Classifying cancerous versus non-cancerous tissues

In the first classification task we have used all the available
gene expression information (input patterns 4026-
dimensional) for separating cancerous from normal lymphoid
cells. The results are shown in Tab. 2.

Linear SVM achieve the best results, but also MLP show an
estimated generalization error of about 2% (using 10-fold
cross validation). Interestingly the & estimation of the
leave-one-out error for SVM is identical to the computed
estimation of the generalization error through 10-fold cross
validation for all the 3 types of SVM. SVM show also a very
high estimation (100%)
tumoral lymphoid cells (recall), no matter the type of kernel

of the probability of detecting

function used.

Radial basis SVM show an high misclassification rate, due
entirely to the low precision of this type of SVM (in fact the
recall is 100%). This type of SVM has an high estimated
Vapnik Chervonenkis (VC) dimension [11], confirmed also
by the fact that sistematically all the input patterns are support
vectors. Conversely linear SVM show a low estimated VC
dimension and can correctly separate the two classes directly
in the input space: it is likely that the local nature of the radial
basis SVM in this case yields to overfitting, considering that
we have also a small data set associated with a very high
dimension of the input data.
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Gloabally, we can state that supervised learning machines
methods correctly separate cancerous from normal lymphoid
tissues.

Classifying different types of lymphoma

In our second task we have classified directly different types
of lymphoma, considering all the classes listed in Tab. 1. For
this task we have used multiclass MLP, Parallel Linear
Dichotomizers (PLD), One-Per-Class Parallel Non linear
Dichotomizers (OPC-PND) and Error-Correcting-Output-
Coding Parallel Non linear Dichotomizers (ECOC-PND)
ensembles [7]. For ECOC-PND we have used 15-bit ECOC
codes generated by exhaustive algorithms [12]. Fig.1 shows
the results obtained varying the number of hidden units both
for multiclass MLP and for the base learners of PND
ensembles.

OPC and ECOC PND achieve the best results, with an
estimated generalization error (through 10-fold cross
validation) of about 5%, but also simple MLP achieve slightly
worse but similar results. PLD fail on this task, achieving an
high estimated error rate (about 23%), revealing that simple
linear classifiers cannot be used for this task. Analysis of the
confusion matrix for PND ensembles shows that the errors are
due to false positives DLBCL (whereas they are normal
lymphoid cells) and false positives TCL (whereas they are
DLBCL) sistematically repeated in different PND ensembles.
We need more studies to verify if these negative results
depend on the limited accuracy of the classifiers, the unlucky
partitions of data for cross validation, the too small size of the
available samples or on the biological features of the analyzed
samples.

Tab. 2 Classification of cancerous vs non-cancerous lymphoid cells: generalization error, precision and recall percent estimation
through 10-fold cross validation. SVM-poly stands for polynomial SVM, SVM-rbf stands for radial basis SVM and LP stands for

linear perceptron.

Learning machine ..
Gen. error St. dev. Precision Recall

model

SVM-linear 1.04 3.16 98.63 100.0
SVM-poly 4.17 5.46 94.74 100.0
SVM-rbf 25.00 4.48 75.00 100.0
MLP 2.08 4.45 98.61 98.61
LP 9.38 10.24 95.65 91.66
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Fig. 1 Multiclass classification of different types of lymphoma using MLP multiclass, PLD and PND ensembles of learning

machines.

Identifying DLBCL subgroups

Using clustering methods, Alizadeh et al. [3] showed that two
subgroups of DLBCL lymphoma can be separated. They
identified two subgroups of molecularly disitinct DLBCL:
germinal centre B-like cells characterized by expression of
genes normally expressed in germinal center B-cells and
activated B-like cells characterized by expression of genes

normally induced during in vitro activation of B cells. These
two classes correspond also to patients with very different
prognosis: those with activated B-like cells showed a
significantly lower overall survival after treatment with
comparable multi-agent chemoterapy regimens.

Lossos [9] and Alizadeh [3] showed that different subsets of
genes could be responsible for the distinction of these two
DLBCL subgroups: the expression signatures related to
proliferation, T cell, lymphnode, and genes that distinguish
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Fig. 2 Estimated generalization error for the classification of GCB-like and AB-like subgroups of DLBCL using 4 different gene
expression signatures (and the 4 signatures alltogether). SVM poly stand for polynomial SVM and SVM rbf stands for radial basis
SVM.
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Fig.3 Estimated precision and recall for the classification of GCB-like and AB-like subgroups of DLBCL using 4 different gene
expression signatures and the 4 signatures alltogether.
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germinal centre B-cells from other stages in B-cell ontogeny
(GCB expression signature) showed differential gene
expressions between these two subgroups.

In our experimentation we have employed “a priori”
biological knowledge about sets of genes and information
provided by clusters of coordinately expressed genes
(expression signatures) in order to verify if we can identify an
expression signature related to a DLBCL partition proposed
by Alizadeh.

More preisely, we have performed 5 classification tasks,
using SVM and leave-one-out methods for estimating the
generalization error on the dichotomic classification task for
separating germinal center B-cells and activated B-like cells.
For each classification task we have used a different
expression signature from the four listed above, and we have
also tried the same classificaction task using the above
signatures alltogether. The results are shown in Fig. 2 and Fig.
3.

Using the “Proliferation” and the “Lymphnode” signature we
cannot separate these two subgroups and also using only the
Tcell signature we can separate the two subclasses only with
an estimated error of about 13%, a precision of about 90%and
an estimated recall of about 81% using linear SVM. The best
results are achieved with the GCB expression signature, with
an estimated generalization error of about 4% and an
estimated precision of 100% (estimated recall 91%) using
radial basis SVM. Using all the signatures we obtain an high
precision (100%) both with polynomial and radial basis SVM
but a generalization error of about 10%.

These results confirm the hyphotesis of Alizadeh about the
existence of two distinct subgroups in DLBCL and identify
the GCB signature as a cluster of coordinately expressed
genes highly related to the separation between the GCB-like
and AB-like DLBCL subgroups.

CONCLUSIONS

This paper shows that supervised machine learning methods
can be applied to the analysis of DNA microarray gene
expression data.

We have performed three classification tasks for the analysis
of gene expression data related to diffuse large B-cell
lymphoma.

In the first two tasks we have shown that SVM, MLP and
PND can be successfully applied to the classification of
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cancerous and normal lymphoid tissues and to the recognition
of different types of lymphoma.

In the third task we pointed out how to use “a priori”
biological and medical knowledge for separating two
functional subclasses of DLBCL not detectable with
traditional morphological classification of lymphoma,
identifying a set of coordinately expressed genes related to the
separation of the two DLBCL subgroups.

The analysis of the causes of the classification errors of the
SVM on the third task remains an open problem: we need
more experimentation (and probably more data) for
establishing if the SVM errors are due to the errors of the
clustering algorithm [2] that have defined the two DLBCL
subclasses or to the limited accuracy of SVM or to the too
small number of the available samples.

Developments of this work could consist in integrating “a
priori” biological knowledge, supervised machine learning
methods and unsupervised clustering methods for discovering
distinct subclasses of malignancies based on functional and
molecular differences. These tasks are fundamental to detect
types of tumours not detectable with traditional methods,
enabling physicians to select therapies targeted to specific
tumoural diseases.
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