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Abstract: Known pathogenic variants associated with genetic Mendelian diseases represent a tiny minority of the 
overall genetic variation that characterizes the human genome. In this context classical imbalance-aware machine 
learning methods are unable to distinguish pathogenic from benign variants, since they are severely biased toward 
the majority (benign) class. Recent works based on ensemble and hyper-ensemble methods showed that by 
adopting sampling techniques we can significantly improve performance on this challenging task. Inspired by 
these findings and by recent successful applications of deep learning to Precision Medicine, we propose two 
learning techniques for neural networks designed to assure a certain balancing between pathogenic and benign 
variants during the training phase, or to assure that with high probability at least one pathogenic variant is included 
in the training mini-batch set of examples. The experimental prediction of non-coding mutations associated with 
Mendelian diseases show the effectiveness of these proposed neural network training approaches. 
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1. Introduction 

 

An open problem in the context of Precision 
Medicine is the detection of the pathogenic variants 
associated with genetic Mendelian diseases. Indeed 
for most of the about 8000 different Mendelian 
diseases no known causative gene is known and hence 
no therapy is available for affected patients [1]. 
Recently several studies showed that most of the 
pathogenic variants associated with Mendelian 
disorders lie in the non-coding regulatory regions of 
the human genome [2]. 

For this reason several computational methods 
have been proposed to disentangle the regulatory 

mechanisms underlying Mendelian diseases and other 
disorders ranging from complex genetic diseases to 
cancer, using mainly supervised Machine Learning-
based techniques to predict the pathogenicity of 
genomic variants in regulatory regions of the human 
genome [3-5]. 

Unfortunately in practice only a very small amount 
of positive (pathogenic) variants are available for 
training and in this very imbalanced context, where 
neutral variants (negative examples) largely 
outnumber positive ones, machine learning methods 
are severely biased toward the majority class and are 
not able to detect pathogenic variants with a sufficient 
reliability. Very recently novel imbalance-aware 
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machine learning methods have been proposed in this 
context, showing that applying together ensemble and 
sampling techniques we can significantly improve 
prediction results [6-7]. 

Motivated by these results and by the very recent 
successful application of deep neural learning methods 
to Genomic Medicine [8], in this work we investigate 
whether a neural model, by adopting imbalance-aware 
and deep learning techniques can obtain state-of-the-
art results in this challenging prediction task. 

In the next sections, by expanding our previous 
work presented at ASPAI’ 2019 conference [9], we 
propose two imbalance-aware training techniques for 
neural networks, able to deal with highly imbalanced 
genomic data. Then we experimentally show that they 
largely outperform “vanilla” neural models, achieving 
state-of-the-art results in the prediction of pathogenic 
regulatory variants in Mendelian diseases. 

 
 

2. Methods 
 
We introduce two imbalance-aware neural 

methods, able to deal with highly imbalanced genomic 
data. The first one MiMiS-Net (Mini-batch Minority 
class Sized Neural Networks) simply enlarges the 
mini-batch size applied during the training of the 
neural network. The second one MiBa-Net (Mini-
batch Balanced Neural Networks), inspired by [10], 
uses sampling techniques to balance positive and 
negative examples in the mini-batch. 

 
 

2.1. Mini-batch Minority Class Sized Neural 
Networks (MiMiS-Net) 

 
The main idea behind this approach consists in 

improving the likelihood that at least one positive 
example will be included in each mini-batch during 
the training phase. We show that this can be 
accomplished by simply appropriately enlarging the 
size of the mini-batch itself. Indeed when the data are 
highly imbalanced, the update of the weights is likely 
performed with most of the mini-batches including 
only examples of the majority (negative) class: in this 
situation the neural network tends to be biased  
toward the negative class, since it learns only from 
negative examples, and hence cannot recognize 
positive examples. 

More precisely, let N be the overall number of 
available examples of the training set T, n the size of 
the mini-batch, and p the probability that a positive 
example will be randomly extracted from the overall 
training set. If Np is the total number of positive 

examples in the training set, we can estimate: ݌ ≃ ே೛ே . 

Let Xn be a random variable that counts how many 
positives have been randomly drawn from T into a 
mini-batch of size n. Then Xn is distributed according 
to a binomial distribution ܤሺ݌, ݊, ݇ሻ, where k is the 
number of successes (positive examples) across n 
Bernoulli experiments each one with probability of 
success p. Then the probability ܲሺܺ௡ ≥ 1ሻ that we 

have at least one positive example in a mini-batch of 
size n is: 

 ܲሺܺ௡ ≥ 1ሻ =෍ቀ݊݇ቁ ௞ሺ1݌ − ሻ௡ି௞௡݌
௞ୀ଴  (1) 

 

We can observe that 
 ሺܺ௡ ≥ 1ሻ = 1 − ܲሺܺ௡ = 0ሻ= 1 − ቀ0݊ቁ ଴ሺ1݌ − =ሻ௡݌ 1 − ሺ1 −  ሻ௡݌

(2) 

 

Hence Eq. (1) can be written as: 
 ܲሺܺ௡ ≥ 1ሻ = 1 − ሺ1 −  ሻ௡ (3)݌
 
If we would like to estimate the size n of the mini-

batch needed for having at least one positive in the 
mini-batch itself with probability ܲሺܺ௡ ≥ 1ሻ, we can 
apply a log transform to Eq. (3): 

 ݊ = ൫1݃݋݈ − ܲሺܺ௡ ≥ 1ሻ൯݈݃݋ሺ1 − ሻ݌  (4) 

 
Eq. (4) shows the mini-batch size n needed for 

having with probability ܲሺܺ௡ ≥ 1ሻ at least one 
positive example in each mini-batch. It is easy to see 
that n is large for large values of ܲሺܺ௡ ≥ 1ሻ and for 
small values of p, i.e. when we would like to be 
confident that at least one example is included in the 
mini-batch and when the data in the training set are 
imbalanced (Fig. 1). 

 
 

 
 

Fig. 1. Plot of the size n of the mini-batch (vertical axis)  
for drawing with probability P (horizontal axis) at least one 
positive example included in it when the frequency  

of the positives in the training set is about ݌ = ଵହ଴଴଴. 

 
 

For a reasonable probability (say P = 0.8) of having 
at least one positive example in the mini-batch, when 

data are imbalanced (say ݌ = ଵହ଴଴଴) we need a mini-

batch size of at least n = 8046, a size significantly 
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larger than those usually applied for mini- 
batch learning. 

 
 

2.2. Mini-batch Balanced Neural Networks 
(MiBa-Net) 

 
Sampling procedures to deal with the imbalance of 

the data have just been proposed in machine learning 
and neural network literature [11] and have been 
proven successful in the context of the analysis of 
genomic data with ensemble methods [6, 10]. Here we 
propose to balance the mini-batch during the training 
of the neural network, in order to provide a number of 
positive examples (the minority examples) 
comparable with those of the majority (negative class). 
In this way at each mini-batch the weights of the 
network are updated taking into account in a balanced 
way both positive and negative examples. 

The mini-batch generator samples with 
replacement, according to a uniform distribution, the 
positive examples by drawing a sample ratio ݎ௣ ∈൫0, ௣ݎ ௣௠௔௫൧ of the available positive examples: ifݎ < 1 
we subsample the positives, if r୮ = 1 we have a 
bootstrap sample, for ݎ௣ > 1 we perform 
oversampling. Negative examples are sub-sampled 
without replacement according to the ratio ݎ௡ ∈ሺ0,  ௡௠௔௫ሿ between the negatives and the positives inݎ
the mini-batch: if ݎ௡ < 1 we will have less negatives 
than positives in the mini-batch, if ݎ௡ = 1 positives 
and negatives are equally sized, and for ݎ௡ > 1 
negatives outnumber positives in the mini-batch. As 
an example, if we have ௡ܰ = 10଺ negative examples 
and ௣ܰ = 10ଶ positive examples, we have an 
imbalance ௣ܰ/ ௡ܰ = 1/10ସ. If we set ݎ௣ = 1 and 
௡ݎ  = 1 we can obtain a perfectly balanced mini-batch 
with 100 positives and 100 negatives. An epoch, with 
this generator, is considered to be finished when all the 
negative samples are used. Notice that the positive 
samples may appear repeatedly among different mini-
batches in the same epoch, while each negative  
will appear only once in one specific mini-batch at 
each epoch. 

 
 

3. Results 
 
We evaluated the proposed methods MiMiS-Net 

and MiBa-Net on Mendelian data, by comparing them 
with a baseline “vanilla” Neural Network and with 
hyperSMURF [10], an imbalance-aware hyper-
ensemble method that significantly outperformed 
other state-of-the-art methods such as CADD [3], 
DeepSEA [4], Eigen [5] [5] and GWAVA [6] on this 
specific task [10]. 

 
 

3.1. Experimental Set-up 
 

For the experiments we used the data set of 
Mendelian Single Nucleotide Variants (SNV) in non-
coding regions of the human genome originally 

collected in [12]. From this data set we used all the 
available manually curated 406 positive examples, and 
from the available 14 million of neutral variants 
(negative examples) we randomly drew one million of 

examples, thus resulting in an imbalance ݌ ≃ ଵଶହ଴଴. To 

each SNV example are associated 26 features 
representing different characteristics of the genomic 
variants, ranging from G/C content, population-based 
features, to conservation scores and transcription and 
regulation annotations (see [12] for more details). 

We trained the neural networks on all the genomic 
variants except those belonging to chromosome 19 
(19018 examples) that have been left out for 
evaluating the generalization performance. In other 
words we performed a “chromosome aware” hold-out 
procedure and we did not use the examples of the test 
set (chromosome 19) to train the model. The main 
hyper-parameters of the model, i.e. different number 
of hidden layers (ranging from 1 to 4), the number of 
hidden neuron per layer (ranging from 2 to 100) have 
been selected by 5-fold cross-validation on the training 
set. We used the ReLU activation function for the 
hidden layers and a sigmoid for the output layer. We 
chose as loss function to be optimized the hinge loss 
with the logit function applied to the sigmoid output, 
and we applied both the Stochastic Gradient Descent 
(SGD) with fixed learning rate (0.01) and the Adam 
method [13] as optimization algorithms. The weight 
matrix of each layer have been initialized using the 
Glorot normal initializer [14]. Before training each 
feature has been standardized by subtracting its  
mean and dividing by its standard deviation  
across examples. 

For evaluating the performance of the different 
methods we used the Area Under the Precision recall 
Curve (AUPRC), since it is well-known that in very 
imbalanced learning problems this metric is more 
informative than the Area Under the Receiving 
Operating Characteristic curve (AUROC) [15]. All the 
experiments and the new neural models have been 
implemented by deriving new Python classes from the 
Keras library [16] using Tensorflow as backend. 

 
 

3.2. MiMiS-Net Results 
 
At first we trained and test the state-of-the-art 

method hyperSMURF on the Mendelian data set, 
obtaining an AUPRC = 0.911 and an AUROC = 0.999. 
The best “vanilla” neural model, i.e. a neural network 
that does not adopt any imbalance-aware learning 
strategy, achieved an AUPRC = 0.078 and an  
AUROC = 0.968. This is not so surprising since a 
previous work clearly showed that imbalance-unaware 
strategies are not able to obtain good results on this 
challenging learning task [10]. 

The proposed MiMiS-Net imbalance-aware 
method, by setting the batch size n = 5000, 
corresponding to a probability ܲሺܺ௡ ≥ 1ሻ ≃ 0.85 of 
drawing at least one positive example in the mini-
batch in the training set (Eq. (4)) led to significantly 
better results than the vanilla Neural Network (Fig. 2).  
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Fig. 2. MiMiS-Net cross-validation results on the training 
set, using Adam and SGD optimization algorithms with and 
without feature normalization. In abscissa the number  
of hidden neurons for each layer of the selected best models 
is reported. The vertical lines represent the standard 
deviation across folds. 
 
 

On the test set we obtained an AUPRC = 0.794 and 
an AUROC = 0.973, significantly lower than that 
obtained by hyperSMURF but an order of magnitude 
larger than that obtained by the vanilla neural model. 
Fig. 2 shows that Adam optimization achieves 

significantly better results than SGD and as expected 
feature standardization is necessary to improve 
performances. Nevertheless, looking at Fig. 3(a), we 
can observe a certain overfitting of MiMiS-Net and for 
this reason we applied dropout techniques [17] to try 
to avoid this effect. Results show that MiMiS-Net with 
dropout reduces overfitting (Fig. 3) and achieves 
significantly better results on the test set  
(AUPRC = 0.879). 

 
 

3.3. MiBa-Net Results 
 
Results with MiBa-Net show that also this neural 

imbalance-aware technique can boost pathogenic 
Mendelian variants detection. Indeed MiBa-Net with 
dropout obtains on the test set an AUPRC = 0.674, but 
with a serious overfitting towards the training set 
(Fig. 3(c)). Recalling that regularization through 
maximization of the norm has been shown to work 
nicely when paired with dropout [17], we applied 
jointly dropout and Maxnorm regularization 
techniques, thus reducing overfitting (Fig. 3(d)) and 
achieving a test set AUPRC = 0.835. 

 
 

 
(a) 

 

 
(b) 

 

 
(c) 

 
(d) 

 
Fig. 3. MiMiS-Net and MiBa-Net training and test AUPRC across epochs. Horizontal axis: epochs; vertical axis: AUPRC. 
Orange and blue lines represent respectively test and train AUPRC results. (a) MiMiS-Net; (b) MiMiS-Net with dropout;  
(c) MiBa-Net with dropout; (d) MiBa-Net with dropout and Max norm regularization. 
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Even if we achieved results close to that obtained 
by the state-of-the-art method hyperSMURF, we tried 
to further improve performances by analyzing the 
correlation between the 26 features associated with the 
genomic variants. By systematically applying the 
Pearson correlation between each pair of features we 
individuated sets of highly correlated features, and 
removed accordingly 5 of them and then we retrained 
both MiMiS-Net and MiBa-Net with the reduced set of 
21 features using dropout and regularization. Results 
show a further significant enhancement of the 
performances (Fig. 4), with AUPRC values even better 
than those achieved by the state-of-the-art 
hyperSMURF method. 

 
 

 
(a) 

 

 
(b) 

 
Fig. 4. Precision Recall and ROC curves on the test set 
obtained with the best MiMiS-Net and MiBa-Net models 
using feature decorrelation, dropout and regularization 
techniques. (a) MiMiS-Ne} (b) MiBa-Net. 

4. Analysis of the Performance of MiMiS-
Net for Different Batch-sizes 
 

To investigate whether and in which way the 
MiMiS-Net idea of having with high probability at 
least one positive example in the mini-batch can 
improve the performance of the neural net, we 
experimentally explored the AUPRC performance for 
a relatively large set of batch sizes, from a few 
examples till to a single batch training including all the 
available examples of the training set. 

In these experiments we used a MLP with two 
hidden layers with 80 hidden neuron, as well as 
dropout techniques with drop rate equal to 0.2, ReLU 
activation and an output layer with a single neuron 
having a sigmoid activation function. The model was 
trained using Nadam (which is Adam with Nesterov 
momentum) [18] as optimizer with binary cross-
entropy as loss function. The models were trained up 
to 300 epochs, using early stopping: the stopping 
criterion is based on the evaluation of the AUPRC in 
the last 20 epochs when the average parameter growth 
descends below 0.001. 

We considered 100 mini-batch sizes from 
30 examples till to the whole dimension of the training 
set using equi-spaced sizes in a logarithmic scale.  

We used the same data as in the previous 
experiments, by adopting a single chromosomal 
holdout (chromosome 19 has been used as test set). 

The best AUROC and AUPRC results have been 
obtained for mini-batch sizes from around 500 to 
2000 examples (Fig. 5), showing that batch sizes 
larger than those commonly used (e.g. 16, 32 or 100) 
are beneficial to improve the performance in this 
highly imbalanced learning task. These results show 
that it is sufficient a probability	ܲ ≃ 0.5 of having at 
least one positive in the mini-batch (or also less – see 
Eq. (4)) to improve the results. For larger sizes of the 
mini-batch we may also obtain reasonable results, but 
with very large sizes (larger than 10ହ) we can observe 
a very significant decay in performance, likely due to 
the significant decay in the frequency of the update of 
the weights during the learning epochs. 

 
 

 

(a) 
 

(b) 
 

Fig. 5. AUPRC (top) and AUROC (bottom) results across different mini-batch sizes. 
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5. Conclusions 
 
Several machine learning methods have been 

recently proposed in literature for the detection of 
pathogenic genomic variants, associated with several 
diseases ranging from genetic disorders to cancer. We 
showed that in the case of the detection of rare SNV 
mutations in non-coding genome, causative of 
Mendelian diseases, imbalance-aware neural models 
based on mini-batch sampling techniques (MiBa-Net) 
and on the enlargement of the mini-batch (MiMiS-
Net), we can significantly improve results obtained 
with imbalance-unaware “vanilla” neural models. In 
particular by using deep learning techniques together 
with imbalance-aware methods we can achieve results 
at least comparable with state-of-the-art results. 
Finally we observe that in the context of Mendelian 
diseases the best results have been obtained with 
relatively simple neural models with one or two 
hidden layers and some tens on hidden neurons, while 
state-of-the-art models used ensembles or hyper-
ensemble of learning machines, characterized by a 
significantly larger complexity and training time. 
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