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Abstract. We apply supervised machine learning methods to the recognition of hu-
man lymphoma, using gene expression data from ”Lymphochip”, a specialized DNA
microarray developed at Stanford University School of Medicine. We show that Multi-
Layer Perceptrons and Support Vector Machines can correctly separate cancerous
from normal tissues, giving also insights into the role of sets of coordinately expressed
genes in carcinogenic processes of lymphoid tissues. Moreover our experimental re-
sults show that two subgroups of cells can be distinguished inside the class ofDiffuse
Large B-cell Lymphoma, confirming the existence of two distinct tumoral diseases
inside this type of aggressive malignancy of mature B lymphocytes.

1 Introduction

DNA hybridization microarrays [8] supply information about gene expression through mea-
surements of mRNA levels of large amounts of genes in a cell, offering a wide picture of
its functional status. The large amount of data produced by this powerful analytic technique
can be processed through machine learning methods, using both unsupervised and supervised
approaches. In a typical unsupervised approach, expression patterns of several hundreds or
thousands of genes are obtained both from cancerous and non cancerous tissues; then clus-
tering algorithms [4, 2] are used to group together similar expression patterns corresponding
to different cells, in order to correctly separate cancerous from normal samples.

Anyway, unsupervised methods cannot always correctly separate classes, because they
use unlabeled data to indirectly identify classes through clusters of gene expression data.
Supervised methods can overcome this problem, exploiting ”a priori” biological and medi-
cal knowledge on the problem domain, using labeled data to directly identify and separate
classes. Recently, Support Vector Machines (SVM) and other supervised machine learning
methods have been applied to the analysis of DNA microarray gene expression data in order
to classify functional groups of genes and multiple tumor types [3, 5, 11].

In this paper we applied SVM and Multi-Layer Perceptrons (MLP) for tasks related to
human lymphoma classification using DNA gene expression data. We tackled two types of
classification problems related to the analysis of DNA microarray data: classification of can-
cerous and non-cancerous lymphoid tissues, and the identification ofDiffuse Large B-cell
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Lymphomasubgroups, exploiting ”a priori” biological knowledge about sets of genes and
information provided by clusters of coordinately expressed genes.

2 Classification of lymphoma using DNA microarray data

2.1 Data

We used data of a specialized DNA microarray, named ”Lymphochip”, developed at Stan-
ford University School of Medicine1. Data used in our experimentation consist in 96 tissue
samples from normal and malignant populations of human lymphocytes, considering for each
sample 4026 different genes preferentially expressed in lymphoid cells or with known roles in
processes important in immunology or cancer. Gene expression data are expressed as fluores-
cence ratios normalized subtracting for each value the median between all the values. Missing
gene expression data (about 6% of all the data) have been replaced with zeros. We consid-
ered three main classes of lymphoma:Diffuse Large B-cell Lymphoma(DLBCL), Follicular
Lymphoma(FL) andChronic Lymphocytic Leukemia(CLL) together withTransformed Cell
Lines(TCL) and normal lymphoid tissues [1]. The total number of cancerous samples is 72,
while the number of different non-cancerous samples amounts to 24.

2.2 Classification tasks and methods

In our experimentation we faced two problems: (i)Separating normal from cancerous lym-
phoid cells:we tried to distinguish malignant from normal tissues using the overall infor-
mation available, i.e. the expression data relative to all the 4026 genes; (ii)Identifying and
separating two different subclasses of lymphoma inside Diffuse Large B-cell Lymphoma using
subsets of coordinately expressed genes:in this second task we tried to validate the hypoth-
esis of Alizadeh et al. [1] about the existence of two distinct functional types of lymphoma
inside DLBCL. Two subgroups of DLBCL, that they namedGerminal Centre B-like DLBCL
(GCB-like) andActivated B-like DLBCL(AB-like) can be separated using hierarchical clus-
tering algorithms. We tried to support Alizadeh’s hypothesis using supervised methods to
separateGCB-likefrom AB-likecells.

In order to solve the above classification problems, we applied three different types of
SVMs, i.e. linear, polynomial and radial basis kernel functions, varying kernel and regular-
ization parameters, and MLPs with one hidden layer. The generalization error of the learning
machines had been evaluated through 10-fold cross validation techniques, and through the
Joachims’ estimatorξα [7] of the leave-one-out error (for the SVMs only).

In all learning tasks we usedNEURObjects[10], a set of C++ library classes for neural
networks development, andSVMlight [6], a set of C applications implementing dichotomic
SVM for classification tasks.

1The original ”Lymphochip” DNA microarray data are available at
http://llmpp.nih.gov/lymphoma and the data directly suitable for SVM and MLP analysis are
available athttp://ftp.disi.unige.it/person/ValentiniG/Data/Lymphoma.
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Table 1: Classification of cancerous and non-cancerous lymphoid cells: generalization error, precision and sen-
sitivity percent estimation through 10-fold cross validation. SVM-poly stands for polynomial SVM, SVM-RBF
for radial basis (gaussian) SVM and LP for linear perceptron

Learning machine model Gen. error St. dev. Prec. Sensitivity
SVM-linear 1.04 3.16 98.63 100.0
SVM-poly 4.17 5.46 94.74 100.0
SVM-RBF 25.00 4.48 75.00 100.0
MLP 2.08 4.45 98.61 98.61
LP 9.38 10.24 95.65 91.66

3 Results

3.1 Classifying malignant and normal tissues

The results of the first classification task are shown in Tab. 1. SVM-linear achieved the best
results, but MLP also showed an estimated generalization error of about 2% (using 10-fold
cross validation). SVM showed also a very high estimation (100%) of the probability of
detecting malignant lymphoid cells (sensitivity), no matter the type of kernel function used.
Radial basis SVM showed an high misclassification rate, entirely due to the low precision of
this type of SVM.

Receiver Operating Characteristic ROC analysis gives more insights into the behavior of
the SVMs and MLPs used in this classification task. The ROC curve of the SVM-linear is al-
most ideal (Fig. 1 a), and the polynomial SVM also achieves a reasonably good ROC curve,
lying just below the SVM linear ROC curve. The SVM-RBF registers the worst ROC curve,
with values lying on the diagonal: the highest sensitivity is achieved only when it completely
fails in correctly detecting normal cells. It is likely that the local nature of the radial basis
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Figure 1: ROC curves for the classification problem of separating cancerous from normal tissues: (a) Compari-
son of ROC curves between SVM, LP and MLP; (b) Polynomial kernel SVM.
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SVM in this case yields to overfitting (in all cases the accuracy on the training set is very
high), considering that we have a small data set associated with a very high dimension of the
input data. This type of SVM has an high estimatedVapnik Chervonenkisdimension, con-
firmed also by the fact that systematically all the input patterns are support vectors. The ROC
analysis of the polynomial kernel SVM (Fig. 1 b) confirms that it is better to use not too com-
plex SVM for this classification task. In this case the simplest (second degree) outperforms
all other higher degree polynomial kernels.

Comparing our results with those obtained in [1] using hierarchical clustering, we achieved,
as expected, a significant improvement of the classification accuracy, as supervised methods
exploit ‘a priori’ biological knowledge (i.e. labeled data), while clustering methods use only
unlabeled gene expression data to group together different tissues.

3.2 Identifying DLBCL subgroups

Using clustering methods, Alizadeh et al. [1] showed that two subgroups of molecularly dis-
tinct DLBCL lymphoma can be separated. Lossos [9] and Alizadeh [1] claimed that different
subsets of genes could be responsible for the distinction of these two DLBCL subgroups. The
expression signatures related to proliferation, T cell, lymphnode, and genes that distinguish
germinal centre B-cells from other stages in B-cell ontogeny (GCB expression signature)
showed differential gene expressions between these two subgroups.

In our experimentation we employed ”a priori” biological knowledge about sets of genes
and information provided by clusters of coordinately expressed genes (expression signatures)
in order to verify if we can identify an expression signature related to the DLBCL partition
proposed by Alizadeh. More precisely, we performed 5 classification tasks, using SVM and
leave-one-out methods for estimating the generalization error relative to the separation of
germinal centre B-cells and activated B-like cells. For each classification task we used a
different expression signature from the four listed above, and all the 4 signatures together.
The results are shown in Fig. 2. Only with theGCB expression signaturewe achieved quite
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Figure 2: Estimated generalization error through leave-one-out techniques for the classification of GCB-like
and AB-like subgroups of DLBCL using 4 different gene expression signatures and the 4 signatures all together.
SVM poly stands for polynomial SVM and SVM-RBF stands for radial basis SVM.
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good results, with an estimated generalization error (through leave-one-out techniques) of
about 4% and an estimated precision of 100% (estimated sensitivity 91%) using SVM-RBF.
With all the other signatures we obtained a relatively low accuracy.

The results show that theGCB expression signatureis specifically related to the separa-
tion of GCB-likeandAB-likesubgroups of lymphoma inside theDLBCL group, supporting
the hypothesis of Alizadeh about the existence of two distinct subgroups inDLBCL, and iden-
tify the GCB signature as a cluster of coordinately expressed genes related to the separation
between theGCB-likeandAB-like DLBCLsubgroups.

4 Conclusion

We performed two classification tasks for the analysis of gene expression data related to dif-
fuse large B-cell lymphoma. In the first task we showed that SVM and MLP can be success-
fully applied to the classification of cancerous and normal lymphoid tissues. In the second
task we pointed out how to use ”a priori” biological and medical knowledge to separate two
functional subclasses of DLBCL not detectable with traditional morphological classification
of lymphoma, identifying a set of coordinately expressed genes related to the separation of
the two DLBCL subgroups.

A planned development of this work consist in the integration of ”a priori” biological
knowledge and supervised learning methods using a more structured approach based on hy-
brid neuro-fuzzy systems.
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