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Abstract
Size constrained clustering has been recently proposed to embed "a priori"

knowledge in clustering methods. By exploiting the "string property" we propose
an exact and efficient algorithm based on dynamic programming techniques to
solve size-constrained one-dimensional clustering problems. We show the applica-
bility of the proposed method in a difficult computational biology problem: the pre-
diction of the transcription start sites of genes. The obtained experimental results
clearly show the potential of the proposed approach when compared with previ-
ously published methods.
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Introduction

Clustering is one of the most used technique in statistical data analysis. A cluster is a set
of data points that are similar in some sense, and clustering is a process of partitioning a
data set into disjoint clusters. In distance clustering , "similarity" is interpreted in terms
of a distance function. Distance clustering is a difficult problem: it is NP-hard even if
the number of clusters is 2 (for arbitrary dimension) [1], or if the dimension of data is 2
(for arbitrary arbitrary number of clusters) [5]. For the Euclidean distance, a well-known
heuristics is the Lloyd’s algorithm [4]; as it is a heuristic algorithm, there is no guarantee
that it will converge to the global optimum. In real-world problems, often people has
some information on the clusters: incorporating this information can increase the clus-
tering performance. Models that incorporate instance-level background information are
called constrained clustering [2,9,10]. Typically, clustering problems with cluster-based
constraints incorporate constraints concerning the size of the possible clusters [2,8,9]: in
[7] clustering with cluster size constraints has been studied in the 1-dimensional case.
In this setting, it can be proved that the optimal solution verifies the so called "String-
Property", i. e. every cluster is composed by consecutive examples. This fact allows to
design an exact dynamical programming techniques. In particular, we present an algo-
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rithm (1SCC) in the Euclidean case, in time O(m ·n2), where n is the size of data and m
is the number of clusters

Mono dimensional clustering techniques can be applied to the problem of the iden-
tification of promoter regions in genomic sequences [12]. Promoters are regions in the
genomic sequence, that act as finely regulated switchers enabling the cell to activate or
silence the genes; mutations occurring in the promoters regions are involved in the patho-
genesis of many diseases. In this paper we apply the 1SCC algorithm to detect the tran-
scription start sites of known genes in a genomic region. Experiments were realized us-
ing public data [11] associated with the previously published experiments [12], in order
to allow a fair evaluation of performances achievable by the proposed method. Results
show the effectiveness of the method.

1. 1-Dimensional size constraint clustering

In distance clustering , "similarity" is interpreted in terms of a distance function. A pop-
ular distance is the Minkowski metric d(x, y) = ||x− y||p, derived by the norm Lp that,
for d-dimensional data, is:

||(t1, ..., td)||p := p
√
|t1|p + ...+ |td|p

The Euclidean distance and the Manhattan metric are special cases with p = 2 and p
= 1. In this setting, given n points x1, ..., xn ∈ Rd and an integer m, Clustering Problem
requires to determine a m-partition (A1, A2, ..., Am) of {1, 2, ..., n}, that minimizes the
objective function:

W (B1, B2, ..., Bm) =

m∑
i=1

∑
j∈Bi

||xj − CBi
||pp (1)

where CBi
is the p-centroid of Bi, i.e.

CBi
= argminc∈Rd

∑
j∈Bi

||xj − c||p

In real-world problems, often people has some information on the clusters: incor-
porating this information into traditional clustering algorithms can increase the cluster-
ing performance. For instance, clustering problems with cluster-based constraints incor-
porate constraints concerning the size the possible clusters. Here we are interested in
efficiently solving clustering with cluster size constraints in 1-dimensional case.

The problem of 1-Dimensional Size Constraint Clustering (1SCC) consists, given
n reals x1 ≤ x2, ... ≤ xn), an integer m and a set F = {k1, .., ks} of size constraints,
in finding a m-partition (A1, A2, ..., Am) of {1, 2, ..., n}, with |A1| , |A2| , ..., |Am| ∈ F
that minimizes (1).

An important condition verified by the optimal partition (A1, A2, ..., Am) is the
"‘String-Property"’: (A1, A2, ..., Am) verifies the string-property if every class Aj is
composed by consecutive examples.

This result has been proved for 1-dimensional clustering with Euclidean distance
in [3]; it has been extended to the case of arbitrary norm || · ||p with p > 1 in [6] and
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furthermore proved in the case of 1-Dimensional Size Constraint Clustering in [7] for all
p ≥ 1.

The fact that the optimal partition verifies the string property allows us to design
algorithms for 1SCC by means of dynamical programming techniques: the algorithm is
particularly simple and efficient in case of Euclidean distance. In this case, in fact, by
simple manipulations the objective functionW (B1, B2, ..., Bm) can be rewritten as:

W (B1, B2, ..., Bm) =

n∑
i=1

x2
i −

m∑
k=1

(Sk)
2

|Bk|

where, for 1 ≤ k ≤ m, Sk =
∑

i∈Bk
xi.

Since
∑n

i=1 x
2
i is constant, the problem is equivalent to find the partition (A1, A2, ...,

Am) of {1, 2, ..., n}, with |A1| , |A2| , ..., |Am| ∈ F that maximizes the function:

G(B1, B2, ..., Bm) =

m∑
k=1

(Sk)
2

|Bk|

LetD(j, k) be the optimal value of G on the instance 〈(x1, ..., xn), j,F= {k1, k2, ...,
ks}〉.D(j, k) verifies the recurrence:
⎧⎪⎪⎨
⎪⎪⎩

D(1, k) = 0 if k /∈ F

D(1, k) = (Sk)
2

|Bk|
if k ∈ F

D(j, k) = Max1≤g≤s,kg≤kD(j − 1, k − kg) +
(Sk−S(k−kg))

2

kg
(1 < j < m)

D(m,n) may be computed by the following program:

Algorithm for 1SCC:

Input:

⎧⎪⎨
⎪⎩

Reals: x1 ≤ x2 ≤ ... ≤ xn

Integer m ≤ n

Constraint set F = {k1, k2, ..., ks}
Begin procedure
S(1)← x1

for k = 2 : n do S(k)← S(k − 1) + xk

for j = 1 : m, k = 1 : n do D(j, k)← 0
for t ∈ F do D(1, t)← S2

t /t
for j = 2 : m, k = 1 : n, t ∈ F do

if t < k then

{
cand = D(j − 1, k − t) +

(Sk−Sk−t)
2

t

if cand ≥ D(j, k) then D(j, k)← cand.

return D(m,n)
End procedure

The number of arithmetical operations in the previous algorithm is O(m · n2). By an empirical
analysis, the computational time T has been estimated as T = 3.2 · 10−8

· n1.95
·m1.05 sec.
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2. Prediction of transcription start sites (TSSs) in the human genome using 1SCC
clustering

Mono dimensional clustering techniques can be easily applied to problems of great in-
terest in computational biology. A typical example is the identification of promoter re-
gions in genomic sequences [12]. In this section we introduce briefly some basic notions
describing the transcriptional regulation and the role played by the promoter regions in
this process.

2.1. Transcription and translation

The information required to drive the synthesis of proteins is encoded in the DNA, a long
polymer constituted by nucleotides. The synthesis of proteins occurs in two main steps:
transcription and translation. In the first one (transcription) the information encoded in
the DNA by mean of regions known as genes is copied into the RNA. Once completed
the transcription step, the RNA leaves the nucleus and moves to the cytoplasm. In the
second phase (translation) a ribosome read the information encoded into the RNA by
means of a set of rules known as genetic code and translate them into a protein.

2.2. Promoter regions

Both the transcription and translation processes are finely regulated in order to ensure
the presence of specific proteins only in case of need and in response to specific intra
and extracellular signals. The complex network of regulatory events governing the ex-
pression of thousands of proteins is of crucial importance because the presence of some
proteins in the cell can trig signaling cascades leading to irreversible processes that, if not
coordinated, can literally kill the cell. The regulation of transcription initiation is realized
by mean of signals located immediately before the genes in the DNA molecule. These
signals are bound by regulatory proteins and only if specific combination of signals are
covered by specific set of regulatory proteins the transcription process can start. The re-
gions containing the signals located upstream the genes are called promoters. Promoters
are finely regulated switchers enabling the cell to activate or silence the genes. Mutations
occurring in the promoters regions can disrupt the ability of the cell to control the genes
and are involved in the pathogenesis of many diseases.

2.3. Automated identification of promoter regions

The automated identification of promoter regions is an important and active research area
in computational biology. The easiest approach for the identification of the promoters
is to produce the sequence of all the DNA of an organism and the sequences of all the
transcripts. The DNA is a very long molecule and only a little fraction of its informa-
tion is transcribed. Once obtained the sequences of both the DNA and the transcripts,
the transcripts can be mapped onto the DNA producing a series of points in genomics
coordinates corresponding to the transcription starting points (TSS). These points can be
clustered to identify the initial position of each gene. This allows investigators to infer
the location of the proximal promoters because the promoters are defined relatively to the
TSS: a proximal promoter is, indeed, a region comprising the 1000 nucleotides upstream
the TSS.
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3. Experimental setup

The goal of the presented experiments is to verify the extent at which the proposed 1SCC
algorithm is able to detect the transcription start sites of known genes in a genomic re-
gion. All the experiments were realized using public data [11] associated with previously
published experiments in order to allow a fair evaluation of the performances achievable
by the proposed method.

3.1. Datasets

In [12] Shmid et al. analyzed a 250 kb region of the human chromosome 12. This region
is characterized by a relatively high gene density. Raw data were collected by using a wet
lab technique named ChIP-chip, that combines chromatin immunoprecipitation (ChIP)
with microarray technology (chip).

The usage of this method enables the investigator to filter out the noise present in
the output of canonical microarray experiments, mainly due to the low rate transcrip-
tion events physiologically occurring outside the promoter regions. ChIP-on-chip is thus
a very effective and specific filter enabling molecular biologist to record the transcrip-
tional activity only in regions of the genome known to be compatible with the promoters
regions.

The raw output of a ChIP-on-chip experiment is constituted by a collection of
peaks, each characterized by volume, height and center and directly related with the fre-
quency of the detected transcriptional events and to a specific coordinate along the ge-
nomic sequence. In [12] the authors proposed a mono dimensional clustering method,

filter τ n. cluster TP

10 750 1 1
10 750 2 2
10 750 3 3
10 750 4 3
10 750 5 3
10 750 6 3
10 750 7 4
10 750 8 5
10 750 9 6
10 750 10 7
10 750 11 7
10 750 12 8
10 750 13 9
10 750 14 9
10 750 15 10
10 750 16 11
10 750 17 12
10 750 18 13
10 750 19 13
10 750 20 14

Table 1. Results obtained in the analysis of filtered data. τ = 750
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Figure 1. Evaluation of the predicted TSS.

MADAP, based on mixtures of Gaussians and EM algorithms, able to detect the po-
sitions in a genomic sequence associated with high transcriptional activity and thus
suggesting the presence (and the position) of the genes that are transcriptionally ac-
tive under the investigated experimental conditions. The expression obtained by eval-
uation via ChIP-on-CHIP of the genomic region analyzed in [12] (human chromo-
some 12, 6767416-6990346) and involved in the presented test were downloaded from
www.isrec.isb-sib.ch/madap/. The usage of the data provided by the MADAP
web site ensures the absence of biases in the comparison of the collected experimen-
tal results. The downloaded data were preprocessed according to the experimental setup
guidelines reported in [12]. In particular we applied a filter aimed to remove all the peaks
with an expression events count lower than 10. We then projected the starting nucleotides
of the sequences transcripts onto the genome and we finally duplicated each genomic
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coordinate times the number of the transcription events. The application of this protocol
produced two mono dimensional datasets: the first obtained by projecting the unfiltered
data and the second obtained by projecting the filtered data. In [12] the authors iden-
tified, in the evaluated genomic regions, 8 clusters corresponding to 8 transcriptionally
active sites. Their conclusions were supported by the a priori known content (in terms
of genes) of the genomic region. We empirically decided to set the parameters of the
proposed method in order to force it to retrieve solutions comprising at most 20 clusters.
This choice is not too restrictive because the algorithm return all the optimal solutions
composed by a number of clusters ranging from 1 to 20 and is also motivated by the
interest in the detection of potentially unannotated TSS.

3.2. Performance evaluation

In this test the method was evaluated only w.r.t. it’s ability to detect experimentally sup-
ported TSS located in the considered genomic region. To this end we extracted the coor-
dinates of the first elements of each clusters and we used them as centers of windows of
2τ size (τ nt upstream and τ nt downstream each center). We then evaluated the overlap
of the identified genomic regions with existing TSS annotations. In the reported experi-
ments we set τ = 750 nt which leads to genomic windows of 1500 nt, a value compat-
ible with the expected size of the proximal promoter regions, commonly accepted to be
comprised between 1000 and 2000 nt. Each time a windows corresponding to a cluster
was found to be in overlap with at least one gene TSS the prediction was counted as true
positive. The genomic annotations containing the locations of the TSSs were obtained by
mean of in house written MySQL queries to the public UCSC Genome Browser database
(genome-mysql.cse.ucsc.edu, database: hg19). In order to provide a fair comparison of
the performances achieved by MADAP and by the described method we used the anno-
tations available at the moment of the publication of [12].

4. Results

In absence of the transcription level filter, the best solution, among the 20 available, was
the one composed by 20 clusters. In this test, when using a τ value of 750 nt we found
only 5 true positives and thus we failed to overcome the results produced by MADAP (8
true positive). In order to raise the sensitivity of the method to 8 true positives we were
forced to increase the value of the τ parameter to 2000. This way we obtained the same
predictions produced by MADAP (data not shown). Using the filtering policies reported
in [12], the optimal solution obtaining the best performances was the one composed by
20 clusters. In this test we used a τ value of 750 and 14 out of 20 clusters were found to
be true positives. Results are reported in Table.1.

These results are quite promising because we detected an amount of TSSs which
is near twice the one obtained by MADAP in the same test. Despite these encouraging
results, we are left with 6 false positives. In order to better characterize the obtained false
positives we compared their genomic coordinates with updated genomic annotations ob-
tained by direct SQL query to the UCSC database. This final step was performed by
comparing the false positives against all the available annotations included in the UCSC
genome database until February 2011. Results are reported in Figure.1.
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Of the 6 false positives, the clusters 3 and 6 are located near to the TSS of the
CDCA3 gene while the cluster 9 maps immediately downstream the TSS of the TPI1
gene. It was not possible to support the predictions associated with clusters 12 and 13
but the last false positive, cluster 19 is located very close to two microRNA annotations
(MIR200C and MIR141). We thus found a total of 18 out of 20 supported predictions.

5. Conclusions

In this work we presented a novel 1-dimensional constrained clustering method. The
proposed method was applied to a complex computational biology problem and was
found to be more sensitive than previously published approaches in the identification
of putative TSS. When applied on expression data preprocessed via standard filtering
techniques, the proposed method was not only able to correctly predict the TSS of more
genes than the compared MADAP method but also able to predict the location of the
TSS of genes that were unknown at the moment of the experiment reported in [12]. All
the collected results clearly demonstrated the potential of the proposed research line in
the solution of complex computational biology problems.
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