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Metrics and distances

A metric, d, satisfies the following 5 properties:
(i) Non negativity d(x, y) ≥ 0
(ii) symmetry d(x, y) = d(y, x)
(iii) identity d(x, x) = 0
(iv) definiteness d(x, y) = 0 if and only if x = y
(v) triangle inequality d(x, y) + d(y, z) ≥ d(x, z).
We can also consider pairwise distances, which are functions 

that are required to satisfy the first three properties only.
We will refer to distances which include metrics and only 

mention metrics when the behavior of interest is specic to 
them.
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Similarity functions

A similarity function S is more loosely defined and 
satisfies the three following properties:

(i) Non negativity S(x, y) ≥ 0;
(ii) symmetry S(x, y) = S(y, x);
(iii) The more similar the objects a and b, the greater

S(x, y).
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Measuring Similarity
• Similarity function sim or dissimilarity/distance function 

dist
• Similarity function sim(x, y):

Large value: x and y are more similar, small value: x and y 
are less similar

• Often 0 ≤ sim(x, y) ≤ 1
• Dissimilarity/Distance function dist(x, y):

Small value: x and y are more similar, large value: x and y 
are less similar

• Dual properties for a similarity function
• Definition of a similarity or dissimilarity function is 

application dependent
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MinkowskiMinkowski distancesdistances

• One group of popular distance measures for interval-
scaled variables are MinkowskiMinkowski distancesdistances

where  i = (xi1, xi2, …, xip) and j = (xj1, xj2, …, xjp) are 
two p-dimensional data objects (e.g. vectors of gene 
expression data), and q is a positive integer
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Example: Manhattan and Euclidean distances

• If q = 1, the distance measure is Manhattan (Manhattan (or
city block) distancecity block) distance

• If q = 2, the distance measure is Euclidean Euclidean 
distancedistance
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MinkowskiMinkowski distancedistance

• Minkowski Distance is a generalization of 
Euclidean Distance

Where r is a parameter, n is the number of 
dimensions (attributes) and xk and yk are, 
respectively, the kth attributes (components) of data 
objects x and y (e.g. gene expression levels 
corresponding to two different patients)
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Minkowski Distance: Examples

• r = 1.  City block (Manhattan, L1 norm) distance. 
– A common example of this is the Hamming distance, which is just 

the number of bits that are different between two binary vectors.

• r = 2.  Euclidean distance.
• r →∞.  “supremum” (Lmax norm, L∞ norm) 

distance. 
– This is the maximum difference between any component of the 

vectors.

• Do not confuse r with n, i.e., all these distances are 
defined for all numbers of dimensions.
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Minkowski Distance

Distance Matrix

point x y
p1 0 2
p2 2 0
p3 3 1
p4 5 1

L1 p1 p2 p3 p4
p1 0 4 4 6
p2 4 0 2 4
p3 4 2 0 2
p4 6 4 2 0

L2 p1 p2 p3 p4
p1 0 2.828 3.162 5.099
p2 2.828 0 1.414 3.162
p3 3.162 1.414 0 2
p4 5.099 3.162 2 0

L∞ p1 p2 p3 p4
p1 0 2 3 5
p2 2 0 1 3
p3 3 1 0 2
p4 5 3 2 0
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Cosine Similarity

•If d1 and d2 are two document vectors, then
cos( d1, d2 ) =  (d1 • d2) / ||d1|| ||d2|| , 

where • indicates vector dot product and || d || is  the   length of vector d.
•Example: 

d1 =  3 2 0 5 0 0 0 2 0 0 
d2 =  1 0 0 0 0 0 0 1 0 2

d1 • d2=  3*1 + 2*0 + 0*0 + 5*0 + 0*0 + 0*0 + 0*0 + 2*1 + 0*0 + 0*2 = 5

||d1|| = (3*3+2*2+0*0+5*5+0*0+0*0+0*0+2*2+0*0+0*0)0.5 =  (42) 0.5 = 
6.481

||d2|| = (1*1+0*0+0*0+0*0+0*0+0*0+0*0+1*1+0*0+2*2) 0.5 = (6) 0.5 = 
2.245

cos( d1, d2 ) = .3150
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Correlation
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• Correlation measure the linear relationship between 
objects.

• To compute correlation, we standardize data objects, x
and y, and then take the dot product.
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• A distance (dissimilarity measure) can be easily 
obtained from the correlation:

d(x,y) = (1 – r(x,y))/2
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Visually evaluating correlation

Scatter plots showing the similarity from –1 to 1.



7

13

Mahalanobis Distance
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For red points, the Euclidean distance is 14.7, Mahalanobis distance is 6.

Σ is the covariance matrix. If Σ is the identity matrix
Mahalonobis distance is reduced to the Euclidean distance.
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Standardization (1)

• Standardization of the features is an important issue when considering 
distances between objects.

• Samples or genes are assigned to classes on the basis of their distance 
from other objects.

• The distance or similarity function that is used generally has a large 
effect on the performance of the classification or clustering procedure.

• The distance function and its behavior are intimately related to the 
scale on which measurements are made.

• There are no objective methods for dealing with this problem.
• The solution is generally problem specic.
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A common type of data transformation for continuous measurements is 
standardization.
For microarray data both genes and/or observations (arrays) can be
standardized. Which of the two should be carried out is dependent
upon whether samples or genes are being clustered or classied.

Standardization (2)

so that each array has mean zero and unit variance across genes.

Standardizing genes:

so that each gene has mean zero and unit variance across arrays.

Standardizing arrays:
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Standardizing genes
Gene standardization in some sense puts all genes on an equal

footing and weights them equally in the classication or
clustering. Common standardization procedures are:

where  and denote respectively the average and standard deviation
of gene g's expression levels across the n arrays.
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where  and denote respectively the median and the median
absolute deviation (MAD) of gene g's expression levels across the n arrays.
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Standardizing arrays

Standardization of arrays can be viewed as part of the normalization step.
Analogously to standardizing genes, we can normalize w.r.t to:

1. The average and standard deviation
2. The median and median absolute deviation
3. The fist ranked and the difference between the last and first 

ranked
but the normalization is performed across genes of the same array.

It is consistent with the common practice of using the correlation between 
the gene expression profiles of two mRNA samples to measure their 
similarity.
In practice, it is better to apply adaptive and robust normalization methods 
which correct for intensity, spatial, and other types of bias using robust local 
regression (see e.g. Bioinformatics and BMC Bioinformatics papers published 
within the last five years).


