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Drug repositioning
 Small scale (Kotelnikova et al. 2010, Li et al 2010)

 Large scale (Iorio et al 2010, Gottlieb et al 2011)

Computational tasks related to drug discovery:
 Clustering-based approaches (Noeske et al 2005, Iorio et al 

2010)
 Prediction of drug-target interactions (Keiser et al 2009, 

Yamanishi et al 2010)
 Prediction of drug-disease association (Gottlieb et al 2011, 

Chiang and Butte, 2009)
 ...
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A novel prediction task: 

Why DrugBank therapeutic categories?
  Why not diseases? “At present, there is not a 

comprehensive and systematic representation of 
known drugs indications that would enable a fine-
scale delineation of types of drug-disease 
relationships” (Dudley et al 2011)

  Manually curated using medical literature

Large scale ranking of drugs w.r.t. DrugBank 
therapeutic categories



        5Re and Valentini

Drug ranking problem
Having : 
  A network G=<V,E>  connecting a large set of drugs: 

   A subset                of drugs belonging to a given therapeutic category C

Rank  drugs           w.r.t. to a given therapeutic category C

Nodes → drugs
Edges → similarities

V C⊂V

v∈V
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Drug repositioning in homogeneous 
pharmacological networks

1. Construction and integration of homogeneous 
pharmacological networks

2. Network-based algorithms to rank drugs
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How to construct meaningful 
pharmacological networks?

 A direct solution: a pairwise chemical 
structure similarity network N

StructSim

 Can we construct other more general 
pharmacological networks?
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ΨNetPro: Pharmacological Space Integration Based 
on Networks Projections

Bipartite network 
(e.g. drug-target) One-mode pharm. network

Drugs Targets
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Integration of pharmacological 
spaces

 Max integration (union)

 Min integration (intersection)

 Average

 Weighted average

 ...

 Per edge weighted average
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Per edge weighted average

A set of n pharmacological networks: Gd=〈V d ,E d 〉 , 1≤d≤n

with weights         of edgeswij
d vv ,v j ∈E d

The integrated pharmacological network:

G= 〈V,E 〉 ,V=U d V d ,E⊆U d E d

has weights:

wij=1 /∣D  i,j ∣ ∑
d∈D  i,j 

w ij
d , D  i,j ={d∣v i∈V d∧v j∈V d }

High coverage and no penalization for drugs with a 
limited number of data sources
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Kernelized score functions: an algorithmic scheme for 
ranking drugs

Any kernel. E.g.:
- Linear kernel
- Gaussian kernel
- Graph kernels

S AV v,V C =
1

∣V C∣
∑

x∈V C

K v,x 

S kNN v,V C = ∑
x∈kNN  v 

K v,x 

S NN v,V C =max x∈V C
K v,x 

Average score :

kNN score :

NN score :

Drug-drug
network
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An example of graph kernel: the 
Random Walk kernel

 One-step random walk kernel (Smola and Kondor, 2003):

K= a−1  I+D−1/ 2 WD−1/2

W : weighted adjacency matrix of the graph
K : Gram matrix with elements
I : identity matrix 
D: diagonal matrix with  

k ij =K v i ,v j 

d ii=∑
j

w ij

 q-step random walk kernel:

K q−step =K q

q: number of steps

By setting q>1 we can explore also “indirect neighbours” between drugs

Normalized 
Laplacian of the graph
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A picture of the ranking method
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Experiments

 1253 FDA approved drugs

 51 DrugBank therapeutic classes

 3 pharmacological networks:
- N

structSim 
: pairwise chemical similarity (Tanimoto 

coefficients)

- N
drugTarget

: projection from drug-target interactions 

(from DrugBank 3.0)

- N
drugChem

: projection from chemical interactions (from 

STITCH 2.0)
 Binarization and Graph Laplacian normalization



        15Re and Valentini

High coverage                                         Low coverage   
100%        ........................................................       50%  

Progressive integration through “per edge” 
weighted average

          N
structSim                                                    

N
drugTarget                                                       

N
drugChem

N
structSim    

→   W
1  (1253 nodes, 13010 edges)

N
structSim   

+   N
drugTarget  

→   W
2  (1253, 43827)

N
structSim   

+   N
drugTarget 

+  N
drugChem

 → W
3   (1253, 96711)
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A view of the integrated pharmacological network 
with Cytoscape
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Results: AUC

Kernelized score functions with random walk kernels compared with 
Random Walk (RW) and Random Walk with Restart (RWR) algorithms:
 5-fold CV 
 AUC results averaged across 51 DrugBank therapeutic classes:

 W1 → W2 → W3 : AUC increments are statistically significant 
(Wilcoxon rank sum test, α=0.01)
 RW fails
 SAV and SkNN significantly better than the other methods (Wilcoxon 

rank sum test, α=0.01)
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Results: precision at fixed recall

SkNN: precision a fixed recall levels. 
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Time complexity

5-fold CV repeated 10 times for 51 therapeutical categories

 No model learning is required (transductive method)
 Score computation complexity : O(|V| |VC|)

Approximately linear when |VC| << |V| 
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Preliminary analysis of top ranked “false 
positives”

• “Anti HIV agents”: first top ranked FP is 
Darunavir (annotated in DrugBank as “HIV 
Protease Inhibitor”)

• “GABA modulators”: Adinazolam and other 4 
top ranked “false positives” are 
benzodiazepines, known to modulate the effect 
of GABA (Hanson et al, 2008)
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Conclusions

 ΨΝetPro: a general framework for the construction and 
integration of pharmacological spaces based on 
networks projections

 Kernelized score functions: an algorithmic scheme for 
ranking drugs in pharmacological networks

 Cross-validated results show that our proposed 
methods are able to recover DrugBank therapeutic 
categories and to potentially reuse existing drugs for 
novel therapeutic indications
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Developments and research perspectives

1. Integration of projected one-mode pharmacological networks from 
different two-mode networks: e.g. annotated side-effects (SIDER), 
curated pathway DB (Reactome), gene expression signature 
repositories (Connectivity Map)
2. Novel algorithms from the proposed algorithmic scheme:
- novel distance measures and score functions
- design of novel kernels well suited to the topology of the drug-drug 
networks 
3. Low complexity of the algorithm: applicability to thousands of 
investigational compounds (not only FDA approved drugs)
4. Experimenting with different variants of network projections and 
integration
5. Systematic analysis of top ranked “false positive” drugs extended 
to all the therapeutic categories, or using other taxonomies 
(supported by text mining and text disambiguation techniques?)
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Thank you for your attention!

Matteo Re Giorgio Valentini
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