FONDAMENTI DI RICERCA OPERATIVA (turno unico) Prof. M.Trubian a.a. 2006/07 Seconda prova in itinere 25/01/07

Nome studente:						Matricola:		
	Esercizio	1	2	3	4	5	6	
	Punteggio massimo	5	5	7	3	5	7	
	Valutazione							

[1] E' dato un grafo non orientato G=(N,E) con costi c_e sui lati, con $c_e \ge 0$, $\forall e \in E$. Si fornisca un modello di programmazione lineare intera per il problema di determinare in G due cicli hamiltoniani disgiunti sui lati (che non abbiano lati in comune) e tali che sia minima la differenza dei loro costi.

[2] Partendo dal seguente tableau ottimo di un problema di PLI, si aggiunga un taglio di Gomory, si riottimizzi e, se necessario, si ripeta il processo al più un'altra volta.

0	-3/2	0	-2	-10
0	9/2	1	-3/4	31/4
1	1/2	0	3	4

[3] Si risolva mediante un algoritmo di Branch & Bound il seguente modello di PLI. Si disegni la regione ammissibile del problema e si riportino i tagli generati. Si adotti una strategia di esplorazione "Best Bound First". Si riporti l'albero di branching. Per ogni nodo si riportino: il suo numero progressivo, *i* (partendo dal valore 0 del nodo radice), il valore UB_i ed il vettore con il corrispondente valore delle variabili. Nella regione ammissibile si evidenzino i vertici ottimi corrispondenti ai vari sottoproblemi con lo stesso numero del nodo corrispondente nell'albero di branching.

max
$$z = 18x_1 + 10x_2$$

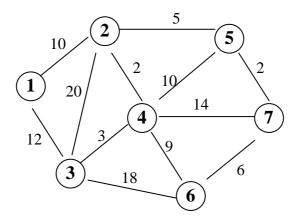
(I) $2x_1 + 2x_2 \le 5$
(II) $6x_1 + 2x_2 \le 9$
 $x_1, x_2 \ge 0$ e intere

[4] Si formuli il modello di programmazione lineare del rilassamento lagrangiano dei vincoli (II) e (III) del seguente problema di PL a variabili binarie, dove il secondo vincolo ha moltiplicatore lagrangiano 3 ed il terzo ha moltiplicatore lagrangiano 2.

min
$$z = +5x_1 + 2x_2 + 6x_3$$

(I) $+3x_1 + 2x_2 + 2x_3 \ge 6$
(II) $-2x_1 - 4x_2 + x_3 \ge 6$
(III) $+4x_1 + 2x_2 - 5x_3 \le 10$
 $x_1, x_2, x_3 \ge 0$ e binarie

[5] Si risolva mediante l'algoritmo di Prim-Dijkstra il problema di determinare l'albero di costo minimo nel grafo sotto riportato, a partire dal nodo 5:

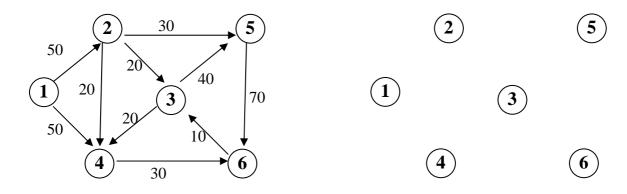


5.1 Si riportino i valori delle etichette L(i) nella tabella sottostante

3.1 St riportino i varori dene ettenette E(i) nena tabena sottostante.							
	Nodo 1	Nodo 2	Nodo 3	Nodo 4	Nodo 5	Nodo 6	Nodo 7
Iterazione 1							
Iterazione 2							
Iterazione 3							
Iterazione 4							
Iterazione 5							
Iterazione 6							
Iterazione 7							

5.2 Si mettano in evidenza i lati che formano l'albero.

[6] Si determini, con l'algoritmo di Ford-Fulkerson, il valore del flusso massimo dal nodo 1 al nodo 6 nella rete sotto riportata, partendo dal flusso inviabile lungo il cammino 1, 2, 3, 4, 6. Si disegni, a destra, la rete incrementale corrispondente al flusso massimo. Si riporti nella rete di sinistra, a fianco della capacità, il valore del flusso finale lungo ciascun arco. Si riportino tutti i cammini aumentanti come sequenze di nodi ed il corrispondente incremento di flusso. Si trovi un taglio di capacità minima.



Cammini	aumentanti
s	

s -....

Sezione di capacità minima								
S=(s,)	N/S=(t,)	Flusso massimo:				