Lucent Technologies }
Bell Labs innovations

Hooking Your Solver to AMPL

David M. Gay

Technical Report 97-4-06
Computing Sciences Research Center
Bell Laboratories
Murray Hill, NJ07974

April 18, 1997

Thisisan extensively revised version of a
report that first appeared on June 15, 1993.

20001005: omit Table 5 and renumber tables; Table 4 gives
the ordering of nonlinear variables used since 19930630.

Hooking Your Solver to AMPL

David M. Gay

Bell Laboratories, Lucent Technologies
Murray Hill, NJ07974

ABSTRACT

This report tells how to make solvers work with AMPL’s sol ve command. It
describes an interface library, anpl sol ver . a, whose source is available from netlib.
Examples include programs for listing LPs, automatic conversion to the LP dual (shell-
script as solver), solvers for various nonlinear problems (with first and sometimes second
derivatives computed by automatic differentiation), and getting C or Fortran 77 for non-
linear constraints, objectives and their first derivatives. Drivers for various well known
linear, mixed-integer, and nonlinear solvers provide more examples.

CONTENTS

1. Introduction
Sub. nl files

2. Linear Problems
Row-wise treatment
Columnwise treatment
Optional ASL components
Example: linrc, a‘*solver’” for row-wise printing
Affine objectives: linear plus a constant
Example: shell script as solver for the dual LP

3. Integer and Nonlinear Problems
Ordering of variables and constraints
Priorities for integer variables
Reading nonlinear problems
Evaluating nonlinear functions
Example: nonlinear minimization subject to simple bounds
Example: nonlinear least squares subject to simple bounds
Partially separable structure
Fortran variants
Nonlinear test problems

4. Advanced Interface Topics
Writing the stub. sol file
L ocating evaluation errors
User-defined functions
Checking for quadratic programs: example of a DAG walk
C or Fortran 77 for a problem instance
Writing stub. nl filesfor debugging
Usewith MATLAB

October 5, 2000

5. Utility Routines and Interface Conventions
- AMPL flag
Conveying solver options
Printing and St der r
Formatting the optimal value and other numbers
More examples
Multiple problems and multiple threads

Appendix A: Changes from Earlier Versions

1. Introduction

The AMPL modeling system [5] lets you express constrained optimization problems in an algebraic
notation close to conventional mathematics. AMPL’ssol ve command causes AMPL to instantiate the cur-
rent problem, send it to a solver, and attempt to read a solution computed by the solver (for use in subse-
guent commands, e.g., to print values computed from the solution). This technical report tells how to
arrange for your own solver to work with AMPL’ssol ve command. Seethe AMPL Web site at

htt p: //ww. anpl . conf anpl /

for much more information about AMPL, and see Appendix A for a summary of changes from earlier ver-
sions of thisreport.

Stub. n/ files

AMPL runs solvers as separate programs and communicates with them by writing and reading files.
The files have names of the form stub. suffix; AMPL usually chooses the stub automatically, but one can
specify the stub explicitly with AMPL’s wri t e command. Before invoking a solver, AMPL normally
writes a file named stub. nl . This file contains a description of the problem to be solved. AMPL invokes
the solver with two arguments, the stub and a string whose first five characters are - AMPL, and expects the
solver to write afile named stub. sol containing a termination message and the solution it has found.

Most linear programming solvers are prepared to read so-called MPS files, which are described, e.g.,
in chapter 9 of [14]; see also the linear programming FAQ at
http: //ww. nts. anl . gov/ hore/ ot ¢/ Gui de/ f ag/
AMPL can be provoked to write an MPS file, stub. nps, rather than stub. nl , but MPS files are slower to
read and write, entail loss of accuracy (because of rounding to fit numbers into 12-column fields), and can
only describe linear and mixed-integer problems (with some differences in interpretations among solvers

for the latter). AMPL’s stub. nl files, on the other hand, contain a complete and unambiguous problem
description of both linear and nonlinear problems, and they introduce no new rounding errors.

In the following, we assume you are familiar with C and that your solver is callable from C or C++.
If your solver is written in some other language, it is probably callable from C, though the details are likely
to be system-dependent. If your solver is written in Fortran 77, you can make the details system-
independent by running your Fortran source through the Fortran-to-C converter f2¢ [4]. For more informa-
tion about f 2c, including how to get Postscript for [4], send the el ectronic-mail message

send readne fromf2c
tonetli b@ esearch. bel | -1 abs. com or read
ftp://netlib.bell-labs.conm netlib/f2c/readne. gz

Netlib’s AMPL/solver interface directory,
http://netlib.bell-1abs.confnetlib/anpl/solvers/

which here is smply called sol vers, contains some useful header files and source for a library,
anpl sol ver. a, of routines for reading stub. nl and writing stub. sol files. Much of the rest of this
report is about using routinesin anpl sol ver . a.

October 5, 2000

Material for many of the examples discussed hereisin sol ver s/ exanpl es; you will find it help-
ful to look at these files while reading this report. You can get both them and source for the sol ver s
directory from netlib. For more details, send the el ectronic-mail message

send readne from anpl/sol vers
tonetli b@esearch. bel | -1 abs. com or see
ftp://netlib.bell-labs.conlnetlib/anpl/solvers/readne. gz

Asthe above URL s suggest, this material is available by anonymous ftp and Web browser, as well as by E-
mail. For ftp access, log in as anonynous, give your E-mail address as password, and look in
/netlib/anpl/sol vers and itssubdirectories. Theftp filesare all compressed, as discussed in

http://netlib.bell-labs.confnetlib/bib/conpression.htn

Be sure to copy compressed files in binary mode. Appending ‘*‘.tar'’’ to a directory name gives the name of
atar file containing the directory and its subdirectories, so you can get anpl / sol ver s and its subdirec-
tories by changing to directory

ftp://netlib.bell-labs.conlnetlib/anpl

and saying
bi nary
get solvers.tar

From aWorld Wide Web browser, give URL
http://netlib.bell-labs.confnetlib/anpl/

andclick on“‘tar’’ intheline
* lib solvers (tar)
to get thesamesol vers. t ar file

In this report, we use ANSI/ISO C syntax and header files, but the interface source and header files
are designed to alow use with C++ and K&R C compilers as well. (To activate the older syntax, compile
with - DKR_header s, i.e,, with KR_header s #defi ned.)

2. Linear Problems

Row-wisetreatment

For simplicity, we first consider linear programming (LP) problems. Solvers can view an LP as the
problem of finding x O IR" to

minimize or maximize c'x
subjectto b < Ax < d (LP)
and € £x<u

where A O IR™", b, d O IR™ andc, ¢, u O IR". Again for simplicity, the initial examples of reading
linear problems simply print out the data (A, b, ¢, d, ¢, u) and perhaps the primal and dual initial guesses.

Thefirst example, sol ver s/ exanpl es/ |i nl. c, just printsthe data. (On aUnix system, type
make |inl

to compile and load it; sol ver s/ exanpl es/ makefi | e hasrulesfor making al of the examplesin the
sol ver s/ exanpl es directory. This directory also has some makef i | e variants for several PC com-
pilers; see the comments in the READMVE file and the first few lines of the makefil e. * files) File
['inl. c startswith

#i ncl ude "asl . h"

(i.e., sol vers/ asl . h;thephrase‘‘ad’’ or ‘**ASL’’ that appears in many names stands for AMPL/Solver
interface Library). In turn, asl.h includes various standard header files: mat h. h, stdi o. h,

October 5, 2000

string. h,stdlib. h,setjnp.h,anderrno. h. Among cther things, asl . h defines type ASL for
a structure that holds various problem-specific data, and as| . h providesalong list of #def i nesto facili-
tate accessing itemsin an ASL when apointer as| declared

ASL *asl ;

isin scope. Among the components of an ASL are various pointers and such integers as the numbers of
variables (n_var), constraints (n_con), and objectives (n_obj). Most higher-level interface routines
have their prototypes in asl . h, and a few more appear in get st ub. h, which is discussed later. Also
defined in asl . h are the types Long (usually the name of a 32-bit integer type, which isusualy | ong or
int), fint (“Fortran integer’’, normally a synonym for Long), real (normaly a synonym for
doubl e), and f t nl en (aso normally a synonym for Long, and used to convey string lengths to Fortran
77 routines that follow the f 2c calling conventions).

The i n routinein | i nl. c expects to see one command-line argument: the stub of file stub. nl
written by AMPL, as explained above. After checking that it has a command-line argument, the mai n rou-
tine allocates an ASL via

asl = ASL_alloc(ASL read f);

the argument to ASL_al | oc determines how nonlinearities are handled and is discussed further below in
the section headed ‘* Reading nonlinear problems’’. The mai n routine appears to pass the stub to interface
routinej ac0di m with prototype

FI LE *jacOdi m(char *stub, fint stub_|en);
inreality, a#def i ne inasl . h turnsthe cal

j ac0di m(st ub, stubl en)
into

jacO0di m ASL(asl, stub, stublen)

There are analogous #def i nesinasl . h for most other high-level routines in anpl sol ver. a, but for
simplicity, we henceforth just show the apparent prototypes (without leading asl arguments). This
scheme makes code easier to read and preserves the usefulness of solver drivers written before the _ ASL
suffix was introduced.

For use with Fortran programs, j acOdi massumes st ub is st ubl en characters long and is not
null-terminated. After trimming any trailing blanks from st ub (by alocating space for ASL field
filenane,i.e,asl->i.filenane_, and copying st ub there as the stub), j ac0di mreads the first
part of stub. nl and records some numbersin * asl , as summarized in Table 1. If stub. nl does not exist,
j ac0di mby default prints an error message and stops execution (but setting return_nofile to a
nonzero value changes this behavior: see Table 2 below).

To read therest of stub. nl , 1i n1. c invokesf read. As discussed more fully below and shown
in Table 6, severa routines are available for reading stub. nl, one for each possible argument to
ASL_al | oc; f _read just reads linear problems, complaining and aborting execution if it sees any non-
linearities. F_r ead allocates memory as necessary by calling Mal | oc, which appears in most of our
examples; Mal | oc callsmal | oc and aborts execution if mal | oc returns 0. (The reason for breaking the
reading of stub. nl into two steps will be seen in more detail below: sometimesiit is convenient to modify
the behavior of the stub. nl reader — here f _r ead — by allocating problem-dependent arrays before
calingit.)

AMPL may transmit several objectives. The linear part of each is contained in alist of ogr ad struc-
tures (declared inasl . h; notethat asl . h declares

t ypedef struct ograd ograd;

and has similar t ypedef sfor al the other structures it declares). ASL field Ogr ad[i] points to the head
of alinked-list of ogr ad structures for objectivei + 1, so the sequence

October 5, 2000

CComponent Meaning O
En_v ar number of variables (total) E
Chbv number of binary variables O
Chi v number of other integer variables O

_con number of constraints (total) E
n_obj number of objectives (total) 0
ml o number of nonlinear objectives: they come O
O before linear objectives O
Chr anges number of ranged constraints: O
. Hi: o0 < by < dj < 0} .
Ml c number of nonlinear general constraints, 0
O including nonlinear network constraints O
Chl nc number of nonlinear network constraints: d
O they come after general nonlinear constraints O
B 0 and before any linear constraints E
! vb number of variables appearing nonlinearly 0
0 0 in both constraints and objectives O
Chl vbi number of integer variables appearing nonlinearly O
O in both constraints and objectives O
%ul \o 0 number of variables appearing nonlinearly in constraints g
! vci number of integer variables appearing nonlinearly 0
0 just in constraints 0
Chl vo number of variables appearing nonlinearly in objectives U
Chi voi number of integer variables appearing nonlinearly O
O just in objectives g
9 nc number of linear network constraints 0
nzc number of nonzeros in the Jacobian matrix 0
Chzo number of nonzerosin objective gradients O
Chvaxr ownanel en length of longest constraint or O
B objective name (0 if no stub. r owfile) E
jrexcol namel en length of longest variable name 0
O (Oif nostub. col file) O
Ch_conj ac[0] Conval and Jacva operate on constraintsi for O
Ch _conj ac[1] n_conjac[0] <i < n_conjac[1], O
. initially n_conj ac[0] = Oand .
0 n_conjac[1] = n_con (al constraints) 0
B Tablel: ASL componentsset byj acOdi m E
N OAMPL versions = 19930630; otherwisenl vb = -1. 0

c = (real *)Malloc(n_var*sizeof(real));
for(i = 0; i < n_var; i++)
c[i] = O;
if (n_obj)
for(og = Qgrad[0]; og; 0g = 0g->nhext)
c[og- >varno] = og->coef;

allocates a scratch vector ¢, initializes it to zero, and (if there is at least one objective) stores the coeffi-

cients of the first objectiveinc. (Thevar no valuesin the ogr ad structure specify O for the first variable,
1 for the second, etc.)

Among the arraysallocatedinl i n1. c’scal onf _r ead arean array of alternating lower and upper
variable bounds called LUv and an array of alternating lower and upper constraint bounds called LUr hs.
For the present exercise, these arrays could have been declared to be arrays of

October 5, 2000

struct LU bounds { real |ower, upper; };

however, for the convenience discussed below of being able to request separate lower and upper bound
arrays, both LUv and LUr hs havetyper eal *. Thusthe code

printf("\nVariable\tl ower bound\tupper bound\tcost\n");
for(i = 0; i < n_var; i++)
printf("o8ld\t%8g\t% 8g\tyg\n", i+1,
LWi[2*i], LW[2*i+1], c[i]);

prints the lower and upper bounds on each variable, along with its cost coefficient in the first objective.

For | i nl. c, thelinear part of each constraint is conveyed in the same way as the linear part of the
objective, but by alist of cgr ad structures. These structures have one more field,

int goff;

than ogr ad structures, to allow a ‘‘columnwise’’ representation of the Jacobian matrix in nonlinear prob-
lems; the computation of Jacobian elements proceeds ‘‘row-wise’’. Thefinal f or loopsof | i nl. ¢ pre-
sent the A of (LP) row by row. The outer loop compares the constraint lower and upper bounds against
neglnfinity andlnfinity (declared in asl . h and available after ASL_al | oc has been called) to
seeif they are — oo Or + 0.

Columnwise treatment

Most LP solvers expect a‘‘columnwise'’ representation of the constraint matrix A of (LP). By dlo-
cating some arrays (and setting pointers to them in the ASL structure), you can make the stub. nl reader
give you such a representation, with subscripts optionally adjusted for the convenience of Fortran. The
next examples illustrate this. Their sourcefilesarel i n2. ¢ and | i n3. ¢ insol ver s/ exanpl es, and

you can say
make 1in2 |in3

to compile and link them.
Thebeginning of | i n2. ¢ differsfromthat of | i n1. c inthat | i n2. ¢ executes

A vals = (real *)Malloc(nzc*sizeof(real));

before invoking f _read. When a stub. nl reader finds A val s non-null, it alocates integer arrays
A colstarts and A rownos and stores the linear part of the constraints columnwise as follows:
A colstarts is an array of column offsets, and linear coefficient A val s[i] appears in row
A rownos| i] ; thei values for column j satisfy A col starts[j] <i<A colstarts[j+]1] (inC
notation). The column offsets and the row numbers start with the value Fortran (i.e,
asl ->i . Fortran_), whichis 0 by default — the convenient value for use with C. For Fortran solvers,
it is often convenient to set Fortran to 1 before invoking a stub. nl reader. This is illustrated in
I i n3. ¢, which also illustrates getting separate arrays of lower and upper bounds on the variables and con-
straints: if LUv and Uvx are not null, the stub. nl readers store the lower bound on the variables in LUv
and the upper bounds in Uvx; similarly, if LUr hs and Ur hsx are not null, the stub. nl readers store the
constraint lower bounds in LUr hs and the constraint upper bounds in Ur hsx. Table 2 summarizes these
and other ASL components that you can optionally set.

Optional ASL components

Table 2 lists some ASL (i.e,, asl - >i_) components that you can optionally set and summarizes
their effects.

Example: linrc, a‘‘solver’” for row-wise printing

It is easy to extend the above examples to show the variable and constraint names used in an AMPL
model. When writing stub. nl , AMPL optionally stores these names in files stub. col and stub. r ow, as
described in 8A13.6 (page 333) of the AMPL book [5]. As an illustration, example filelinrc.c isa

October 5, 2000

IComponent Type Meaning O
O O
(return_nofile int If nonzero, j ac0di mreturns O rather than halting execution O
O if stub. nl does not exist. O
Elr/\ant _derivs i nt If you want to compute nonlinear functions but will never B
0 compute derivatives, reduce overhead by setting 0
O want _derivs = 0 (beforecalingf g_read). O
Ebzort ran i nt Adjustmentto A col starts and A _r ownos. B
LW real * Array of lower (and, if UVx isnull, upper) bounds on variables. [
Cuvx real * Array of upper bounds on variables. B
Ef_Ur hs real * Array of lower (and, if Ur hsx isnull, upper) constraint bounds.
Ur hsx real * Array of upper bounds on constraints. O
X0 real * Primal initial guess: only retained if X0 is not null. O
Lhavex0 char * If not null, havexO[i] !=0means X0[i] was specified O
g (evenif itis zero). B
[(pi 0 real * Dual initial guess: only retained if pi 0 isnot null. O
Chavepi 0 char* If not null, havepi O[i] !=0meanspi O i] was specified 0
g (eveniif it is zero). B
want _xpi 0 i nt want _xpi 0 & 1 == 1tellsstub. nl readerstoalocate X0 [
O if aprimal initial guessis available; O
0 want _xpi 0 & 2 == 2tellsstub. nl readerstoallocate pi 0 U
g if adual initial guessisavailable. B
A val s real * If not null, store linear Jacobian coefficientsin A _val s, O
O A rownos, and A _col st art s rather than in lists of 0
E cgr ad structures. B
[fA_r ownos i nt* Row numberswhen A val s isnot null; 0
0 allocated by stub. nl readersif necessary. 0
A colstarts i nt* Column startswhen A _val s isnot null; O
g alocated by stub. nl readersif necessary. B
err_jnp Jnp_buf* If not null and an error occurs during nonlinear expression 0
O evaluation, | ongj np here (without printing an error message). [
Cerr_jnpl Jnp_buf* If not null and an error occurs during nonlinear expression O
g evaluation, | ongj np here after printing an error message. B
obj _no fint Objective number forw i t esol () andgpcheck(): 0
O 0 = first objective, —1 = no objective, i.e., just find afeasible O
O point. 0
O . O
A Table 2: Optionally settable ASL components. A

variant of | i n1. ¢ that shows these names if they are available — and tells how to get them if they are not.
Among other embellishments, | i nrc. ¢ uses the value of environment variable di spl ay_wi dt h to
decide when to break lines. (By the way, $di spl ay_w dt h denotes this value, and other environment-
variable values are denoted analogously.) Say

make linrc

tocreateal i nrc programbasedonl i nrc. ¢, and say
linrc -7

to see asummary of its usage. It can be used stand-alone, or asthe ‘*solver’” in an AMPL session:
anpl: option solver linrc, linrc_auxfiles rc;, solve;

will send alisting of the linear part of the current problem to the screen, and

October 5, 2000

anpl : sol ve >foo;

will send it to filef oo. Thus!| i nrc can act much like AMPL’s expand and sol expand commands.
See

htt p: // ww. anpl . conf anpl / NEW examni ne. ht n

for more details on these commands. They are among the commands introduced after publication of the
AMPL book.

Affine objectives: linear plus a constant

Adding a constant to a linear objective makes the problem no harder to solve. (The constant may be
stated explicitly in the original model formulation, or may arise when AMPL’s presolve phase deduces the
values of some variables and removes them from the problem that the solver sees.) For agorithmic pur-
poses, the solver can ignore the constant, but it should take the constant into account when reporting objec-
tive values. Some solvers, such as MINOS, make explicit provision for adding a constant to an otherwise
linear objective. For other solvers, such as CPL Ex" and OSL, we must resort to introducing a new vari-
able that is either fixed by its bounds (CPLEX) or by a new constraint (OSL). Function obj const , with
apparent signature

real objconst(int objno)

returns the constant term for objective obj no (with 0 < obj no < n_obj). See the printing of the
“*Objective adjustment’” insol ver s/ exanpl es/ | i nrc. c for an example of invoking obj const .

Example: shell script as solver for thedual LP

Sometimes it is convenient for the solver AMPL invokes to be a shell script that runs severa pro-
grams, e.g., to transform stub. nl to the form the underlying solver expects and to create the stub. sol that
AMPL expects. As an illustration, sol ver s/ exanpl es contains a shell script called dm nos that
arrangesfor m nos to solve the dual of an LP. Why isthisinteresting? Well, sometimes the dual of an LP
is much easier to solve than the original (‘‘primal’’) LP. Because of this, several of the LP solvers whose
interface source appears in subdirectories of anpl / sol ver s, such as cpl ex and osl , have provision
for solving the dual LP. (Thisis not to be confused with using the dual simplex algorithm, which might be
applied to either the primal or the dual problem.) Because mi nos is meant primarily for solving nonlinear
problems (whose duals are more elaborate than the dual of an LP), m nos currently lacks provision for
solving dual LPs directly. At the cost of some extra overhead (over converting an LP to its dua within
m nos) and loss of flexibility (of deciding whether to solve the primal or the dual LP after looking at the
problem), the dmi nos shell script provides an easy way to see how m nos would behave on the dua of an
LP. And one can use dmi nos to feed dual LPs to other LP solvers that understand stub. nl files: it's just
amatter of setting the shell variable $dsol ver (which is discussed below).

The dmi nos shell script relies on a program called dual conv whose source, dual conv. c, also
appears in sol ver s/ exanpl es. Dual conv reads the stub. nl for an LP and writes a stub. nl (or
stub. nps) for the dual of the LP. Dual conv also writes a stub. duw file that it can use in a subsequent
invocation to tranglate the stub. sol file from solving the dual LP into the primal stub. sol that AMPL
expects. Thusdual conv isrealy two programs packaged, for convenience, asone. (Type

make dual conv
to create dual conv and then
dual conv ' -?

for more detail on its invocation than we discuss below.)
Hereisasimplified version of thedm nos shell script (for Unix systems):

October 5, 2000

#!/ bi n/ sh

dual conv $1

m nos $1 - AMPL
dual conv -u $1
rm $1. duw

This simplified script and the fancier version shown below use Bourne shell syntax. In this syntax, $1 is
the script’ s first argument, which should be the stub. Thus

dual conv $1

passes the stub to dual conv, which overwrites stub. nl with a description of the dual LP (or complains,
as discussed below). If all goeswell,

m nos $1 - AMPL
will cause m nos to write stub. sol , and

dual conv -u $1
will overwrite stub. sol with the form that AMPL expects. Finally,

rm $1. duw
cleans up: in the usual case where AMPL chooses the stub, AMPL removes the intermediate files about
which it knows (e.g., stub. nl and stub. sol), but AMPL does not know about stub. duw.

The simplified dmi nos script above does not clean up properly if it is interrupted, e.g., if you turn

off your terminal whileit isrunning. Hereisthe more robust sol ver s/ exanpl es/ dmi nos:

#!/bin/sh
Script that uses dualconv to feed a dual LP problemto $dsol ver
dsol ver =${ dsol ver - m nos}
trap "rm-f $1l.duw' 1 2 3 4 13
dual conv $1
case $? in 0)
$dsol ver $1 - AMPL
case $? in 0) dualconv -u $1;; esac

;. esac
rc=$?

rm-f $1.duw
exit $rc

It starts by determining the name of the underlying solver to invoke:
dsol ver =${ dsol ver - m nos}

is an idiom of the Bourne shell that checks whether $dsol ver isnull; if so, it sets $dsol ver tom nos.
Theline

trap "rm-f $1.duw' 1 2 3 4 13
arranges for automatic cleanup in the event of various signals. The next line
dual conv $1

works as before. If all goes well, dual conv gives a zero exit code; but if dual conv cannot overwrite
stub. nl with a description of the dual LP (e.g., because stub. nl does not represent an LP), dual conv
complains and givesreturn code 1. The next line

case $? in 0)

checks the return code; only if it is0is $dsol ver invoked. If the latter is happy (i.e., gives zero return
code), theline

October 5, 2000

-10-

case $? in 0) dualconv -u $1;; esac

adjusts stub. sol appropriately. In any event,

rc=$?
saves the current return code (i.e., $? isthe return code from the most recently executed program), since the
following clean-up line

rm-f $1.duw
will change $?. Findly,

exit $rc
uses the saved return code as dmi nos’s return code. This is important, as AMPL only tries to read
stub. sol if the solver gives a0 return code.

To write stub. sol files, dual conv calswrite_sol , which appears in most of the subsequent
examples and is documented below in the section on **Writing the stub. sol file'’.

3. Integer and Nonlinear Problems

Ordering of integer variables and constraints

When writing stub. nl , AMPL orders the variables as shown in Tables 3 and 4 and the constraints as
shown in Table 5. These tables also give expressions for how many entities are in each category. Table 4
applies to AMPL versions = 19930630; nl vb = —1 signifies earlier versions. For all versions, the first
nl vc variables appear nonlinearly in at least one constraint. If nl vo > nl vc, the first nl vc variables
may or may not appear nonlinearly in an objective, but the next nl vo —nl vc variables do appear nonlin-
early in at least one objective. Otherwise all of the first nl vo variables appear nonlinearly in an objective.
““Linear arcs'’ are linear variables declared with an ar ¢ declaration in the AMPL model, and ‘* nonlinear
network’’ constraints are nonlinear constraints introduced with anode declaration.

[Category Count O

O O

thonlinear max(nl vc, nl vo); see Table 4. 0

Uinear arcs nw O

Lother linear ~ n_var — (max {nl vc, nl vo} +ni v +nbv + nw) U

inary nbv g

rptherinteger ni v 0

H Table3: Ordering of Variables. H
Smoothness ~ Appearance Count d
O O
[continuous inan objectiveand inaconstraint nl vb - nl vbi O
Uinteger inan objectiveand inaconstraint nl vbi d
Leontinuous ~ just in constraints nlvc - (nlvb + nlvci) U
nteger just in constraints nl vci B
[continuous just in objectives nlvo - (nlvc + nlvoi) g
Cjnteger just in objectives nl voi O
E Table4: Ordering of Nonlinear Variables. %

October 5, 2000

-11-

[ICategory Count O
O O
tnonlinear general nlc -nlnc 0
Chonlinear network nl nc 0
Uinear network I nc O

inear general n_con—(nl c +1nc) E

H Table5: Ordering of Constraints.

Prioritiesfor integer variables

Some integer programming solvers let you assign branch priorities to the variables. Interface routine
m p_pri provides a smple way to get branch priorities from $nmi p_priorities. It complains if
stub. col is not available. Otherwise, it looksin $mi p_prioriti es for variable names followed by
integer priorities (separated by white space). See the comments in sol vers/ m p_pri.c for more
details. For examples, seesol ver s/ cpl ex/ cpl ex. c andsol vers/ osl /osl . c.

Reading nonlinear problems

It is convenient to build data structures for computing derivatives while reading a stub. nl file, and
anpl sol ver . a provides several ways of doing this, to suit the needs of various solvers. Table 6 summa:
rizes the available stub. nl readers and the kinds of nonlinear information they make available. They are
to be used with ASL_al | oc invocations of the form

asl = ASL_al | oc(AS type) ;

Table 6's ASLtype column indicates the argument to supply for ASLtype. (Thisargument affects the size of
the allocated ASL structure. Though we could easily arrange for a single routine to call the reader of the
appropriate ASLtype, on some systems this would cause many otherwise unused routines from
anpl sol ver. ato belinked with the solver. Explicitly calling the relevant reader avoids this problem.)

Creader ASLtype nonlinear information

O

f _read ASL read f no derivatives: linear objectives and constraints only
(fg read ASL read fg first derivatives

L¥ gh_read ASL read_fgh first derivatives and Hessian-vector products
fg read ASL read_pfg first derivatives and partially separable structure
Pfgh_read ASL_read_pfgh firstand second derivatives and partially separable structure

E Table6: stub. nl readers.

1 e |

All these readers have apparent signature
i nt reader(FILE *nl, int flags);

they return O if al goes well. The bits in the flags argument are described by enum
ASL_reader_flag_bits inasl.h; most of them pertain only to reading partialy separable prob-
lems, which are discussed later, but one bit, ASL_return_read_err, isrelevant to al the readers: it
governs their behavior if they detect an error. If this bit is O, the readers print an error message and abort
execution; otherwise they return one of the nonzero valuesinenum ASL_r eader _error _codes. See
asl . h for details.

Evaluating nonlinear functions

Specific evaluation routines are associated with each stub. nl reader. For simplicity, the readers
supply pointers to the specific routines in the ASL structure, and asl . h provides macros to simplify call-
ing the specific routines. The macros provide the following apparent signatures and functionality; many of
them appear in the examples that follow. Reader pf g_r ead ismainly for debugging and does not provide
any evaluation routines; it is used in solver “‘v8’’, discussed below. Reader f gh_r ead is mainly for

October 5, 2000

-12 -

debugging of Hessian-vector products, but does provide all of the routines described below except for the
full Hessian computations (which would have to be done with n_var Hessian-vector products). Reader
pf gh_r ead generally provides more efficient Hessian computations and provides the full complement of
evaluation routines. If you invoke an ‘‘unavailable’’ routine, an error message is printed and execution is
aborted.

Many of the evaluation routines have final argument nerr or of typefi nt *. This argument con-
trols what happens if the routine detects an error. If nerr or isnull or points to a negative value, an error
message is printed and, unlesserr _j npl (i.e, asl ->i . err_j npl_) is nonzero, execution is aborted.
(Youcanseterr _j npl much the sameway that obj 1val _ASL and obj 1grd_ASL infileobj val . c
set err _j np to gain control after the error message is printed.) If ner r or points to a nonnegative value,
*nerror issetto 0if no error occurs and to a positive value otherwise.

real objval (int nobj, real *X, fint *nerror)
returns the value of objective nobj (withO < nobj < n_obj) at the point X.

void objgrd(int nobj, real *X, real *G fint *nerror)
computes the gradient of objective nobj and storesitin G[i] ,0<i < n_var.

void conval (real *X, real *R, fint *nerror)

evaluates the bodies of constraints at point X and stores them in R. Recall that AMPL puts constraints into
the canonical form

left-hand side < body < right-hand side,

with left- and right-hand sides contained in the LUr hs and perhaps Ur hsx arrays, as explained above in
the section on ‘* Row-wise treatment’’. Conval operateson constraintsi with

n_conjac[0] <i < n_conjac[1]
(i.e., al constraints, unless you adjust the n_conj ac values) and stores the body of constraint i in
Rl i-n_conj ac[0]], i.e,, it storesthefirst constraint body it evaluatesin R[0] .
void jacval (real *X, real *J, fint *nerror)

computes the Jacobian matrix of the constraints evaluated by conval and storesit in J, at the gof f off-
setsin the cgr ad structures discussed above. In other words, there is one gof f value for each nonzero in
the Jacobian matrix, and the gof f values determine where in J the nonzeros get stored. The stub. nl
readers compute gof f values so a Fortran program will see Jacobian matrices stored columnwise, but you
can adjust the gof f fieldsto make other arrangements.

real conival (int ncon, real *X, fint *nerror)
evaluates and returns the body of constraint ncon (withO < ncon < n_con).
void congrd(int ncon, real *X, real *G fint *nerror)

computes the gradient of constraint ncon and stores it in G By default, congrd sets
G i],0<i < n_var, butif you set asl - >i . congrd_node = 1, it will just store the partials that
are not identically 0 consecutively in G, and if you set asl - >i . congrd_node = 2, it will store them at
thegof f offsetsof the cgr ad structures for this constraint.

void hvconp(real *HV, real *P, int nobj, real *ON real *Y)

storesin HV (afull vector of length n_var) the Hessian of the Lagrangian times vector P. In other words,
hvconmp computes

HV = W-P,
where Wisthe Lagrangian Hessian,
[h_obj -1) n_con-1 O
W=0%0 3 OWilfi +o Ylileio O
] i=0 i=0 0

October 5, 2000

-13-

inwhich f; and c; denote objective function i and constraint i, respectively, and ¢ is an extra scaling factor
(most commonly +1 or —1) that is + 1 unless specified otherwise by a previous call on | agscal e (see
below). If 0 < nobj < n_obj, hvconp behaves as though OWwere a vector of all zeros, except for
OW nobj] =1; otherwise, if OWis null, hvconp behaves as though it were a vector of al zeros; and if Y
is null, hvconp behaves as though Y were a vector of zeros. W is evaluated at the point where the
objective(s) and constraints were most recently computed (by calls on obj val or obj grd, and on
conval , coni val , j acval , or congrd, in any convenient order). Normally one computes gradients
before dealing with W, and if necessary, the gradient computing routines first recompute the objective(s)
and constraints at the point specified in their argument lists. The Hessian computations use partial deriva-
tives stored during the objective and constraint evaluations.

voi d duthes(real *H, int nobj, real *ON real *Y)

evaluates and stores in H the dense upper triangle of the Hessian of the Lagrangian function W. Here and
below, arguments nobj , OWand Y have the same meaning asin hvconp, so dut hes stores the upper tri-
angle by columnsin H, in the sequence

WO,O WO,l Wl,l WO,2 W1,2 W2,2
of lengthn_var *(n_var +1) / 2 (with 0-based subscripts for W).
void fullhes(real *H fint LH int nobj, real *ON real *Y)
computes the W of () and storesit in Has a Fortran 77 matrix declared

i nteger LH
doubl e precision H(LH, *)

In C notation, f ul | hes sets
H[l +]LH] = Wi,j

forO<i<n_var and 0<j < n_var. Both dut hes and f ul | hes compute the same numbers;
ful | hes first computes the Hessian’s upper triangle, then copies it to the lower triangle, so the result is
Ssymmetric.

fint sphsetup(int nobj, int ow, int y, int uptri)

returns the number of nonzeros in the sparse Hessian W of the Lagrangian (O (if uptri = 0) or its upper
triangle (if uptri = 1), and storesin fields sput i nf o- >hr ownos and sput i nf o- >hcol starts a
description of the sparsity of W, as discussed below with sphes. For sphes’s computation, which deter-
mines the components of W that could be nonzero, arguments ow and y indicate whether ONand Y, respec-
tively, will be zero or nonzero in subsequent calls on sphes. In analogy with hvconp, dut hes,
ful | hes andsphes,if 0 < nobj < n_obj,thennobj takesprecedence over ow.

voi d sphes(real *H, int nobj, real *ON real *Y)

computes the W given by (0 and stores it or its sparse upper triangle in H; sphset up must have been
called previously with arguments nobj , owand y of the same sparsity (zero/nonzero structure), i.e., with
the same nobj , with ownonzero if ever OMwill be nonzero, and with y nonzero if ever Y will be nonzero.
Argument upt ri to sphset up determines whether sphes computes W' s upper triangle (uptri =1) or
all of W (uptri = 0); in the latter case, the computation proceeds by first computing the upper triangle,
then copying it to the lower triangle, so the result is guaranteed to be symmetric. Fields
sput i nf o- >hr ownos and sput i nf o- >hcol st art s are pointers to arrays that describe the sparsity
of Win the usual columnwise way:

H[J] = Wi,rownows[j]

for 0<i < n_var and hcol starts]i] <j < hcol starts[i+1]. Before returning, sphset up
adds the ASL value For t r an to the valuesin the hr ownos and hcol st art s arrays. The row numbers
in hr ownos for each column are in ascending order.

voi d xknown(real *X)

October 5, 2000

-14-

indicates that this X will be provided to the function and gradient computing routines in subsequent calls
until either another xknown invocation makes a new X known, or xunknown() is executed. The latter,
with apparent signature

voi d xunknown(voi d)

reinstates the default behavior of checking the X arguments against the previous value to see whether com-
mon expressions (or, for gradients, the corresponding functions) need to be recomputed. Appropriately
caling xknown and xunknown can reduce the overhead in some computations.

void conscale(int i, real s, fint *nerror)

scales function body i by s, initial dual value pi O[i] by 1/s, and the lower and upper bounds on con-
straint i by s, interchanging these bounds if s < 0. This only affects the pi 0, LUr hs and Ur hsx arrays
and the results computed by conval , j acval , coni val , congr d, dut hes, ful | hes, sphes, and
hvconmp. Thew i t e_sol routine described below takes callson conscal e into account.

void | agscal e(real sigma, fint *nerror)
specifiesthe extrascaling factor o : = si grma in the formula () for the Lagrangian Hessian.
void varscale(int i, real s, fint *nerror)

scalesvariablei , itsinitial value XO[i] and its lower and upper bounds by 1/s, and it interchanges these
bounds if s < 0. Thus var scal e effectively scales the partia derivative of variablei by s. This only
affects the nonlinear evaluation routines and the arrays X0, LUv and Uvx. The wri te_sol routine
described below accounts for callsonvar scal e.

Example: nonlinear minimization subject to simple bounds

Our first nonlinear example ignores any constraints other than bounds on the variables and assumes
there is one objective to be minimized. This example involves the PORT solver drmgb, which amounts to
subroutine SUMSL of [6] with added logic for bounds on the variables (as described in [7]). If need be,
you can get (Fortran 77) source for dnmghb by asking netlib to

send dnmmgb from port

(It is best to use an E-mail request, as this brings subroutine dnmghb and all the routines that it calls, directly
orindirectly.) Sourcefor thisexampleissol ver s/ exanpl es/ mgl. c.

Most of mg1l. c isspecific to dnrmgb. For example, dnrmghb expects subroutine parameters cal cf
and cal cg for evaluating the objective function and its gradient. Interface routinesobj val and obj grd
actually evaluate the objective and its gradient; the cal cf and cal cg defined in mg1. ¢ simply adjust
the calling sequences appropriately. The calling sequencesfor obj val and obj gr d were shown above.

Since dmmgb is prepared to deal with evaluation errors (which it learns about when argument * NF to
cal cf andcal cgissetto0),cal cf andcal cg passapointer to O for nerr or.

The main routine in mg1l. c is caled MAI N rather than mai n because it is meant to be used
with an f2c-compatible Fortran library. (A C nmai n appears in this Fortran library and arranges to catch
certain signals and flush buffers. The mai n makes its arguments ar gc and ar gv available in the external
cellsxar gc and xar gv.)

Recall that when AMPL invokes a solver, it passes two arguments. the stub and an argument that
starts with - AMPL. Thus mmgl. ¢ gets the stub from the first command-line argument. Before passing it
to jacOdim mgl.c calls ASL _al |l oc(ASL_read _fg) to make an ASL structure available.
ASL_al | oc storesitsreturn valueinthe global cell cur _ASL. Sincermgl. ¢ startswith

#i nclude "asl.h"
#define asl cur_ASL

the value returned by ASL_al | oc is visible throughout mgl. ¢ as ‘‘asl '’. This saves the hassle of
making as| visibletocal cf and cal cg by some other means.

The invocation of drmgb directly accesses two ASL pointers: X0 and LUv (i.e., asl - >i . X0_ and

October 5, 2000

-15-

asl ->i . LUv_). X0 contains the initial guess (if any) specified in the AMPL model, and LUv is an array
of lower and upper bounds on the variables. Before calling f g_r ead to read therest of stub. nl , mg1l. c
asksf g _read to save X0 (if an initial guessis provided in the AMPL model or data, and otherwise to ini-
tialize X0 to zeros) by executing

X0 = (real *)Malloc(n_var*sizeof(real));

After invoking dnmgb, mg1l. ¢ writes a termination message into the scratch array buf and passes
it, along with the computed solution, to interface routine wri t e_sol , discussed later, which writes the
termination message and solution to file stub. sol inthe form that AMPL expectsto read them.

The use of Cext er n in the declaration

typedef void (*U fp)(void);

Cextern int dmgb_(fint *n, real *d, real *x, real *h,
Ufp calcf, Ufp calcg,
fint *iv, fint *liv, fint *lv, real *v,
fint *uiparm real *urparm U fp ufparn;

at the start of nmg1l. ¢ permits compiling this example with either a C or a C++ compiler; Cext ern is
#defi nedinasl . h.

Example: nonlinear least squares subject to simple bounds

The previous example dealt only with a nonlinear objective and bounds on the variables. The next
example deals only with nonlinear equality constraints and bounds on the variables. It minimizes an
implicit objective: the sum of squares of the errorsin the constraints. The underlying solver, dn2gb, again
comes from the PORT subroutine library; it is a variant of the unconstrained nonlinear |east-squares solver
NL2SCL [2, 3] that enforces simple bound constraints on the variables. If need be, you can get (Fortran)
source for dn2gb by asking netlib to

send dn2gb from port

Source for thisexampleissol ver s/ exanpl es/ nl 21. ¢c. Muchlikermgl. c, it startswith

#i nclude "asl.h"
#define asl cur_ASL

followed by declarations for the definitions of two interface routines: cal cr computes the residual vector
(vector of errorsin the equations), and cal cj computes the corresponding Jacobian matrix (of first partial
derivatives). Again these are just wrappers that invoke anpl sol ver. a routines described above,
conval andj acval . Parameter NF to cal cr and cal ¢cj works the same way as in the cal cf and
cal cg of mg1l. c. Recall again that AMPL puts constraints into the canonical form

left-hand side < body < right-hand side.

Subroutine cal cr callsconval to have avector of n_con body values stored inarray R. The MAI N_
routine in nl 21. ¢ makes sure the left- and right-hand sides are equal, and passes the vector LUr hs of
left- and right-hand side pairs as parameter UR to dn2gb, which passes them unchanged as parameter UR to
cal cr. (Of course, cal cr could also access LUr hs directly.) Thusthe loop

for(Re = R+ *N, R< Re; UR += 2)
*Ri+ -= *UR;
incal cr convertsthe constraint body values into the vector of residuals.

MAI N_ _ invokes the interface routine dense_j () totell j acval that it wants a dense Jacobian
matrix, i.e.,, a full matrix with explicit zeros for partial derivatives that are aways zero. If necessary,
dense_j adjusts the gof f components of the cgr ad structures and tells j acval to zero its J array
before computing derivatives.

October 5, 2000

-16 -

Partially separable structure
Many optimization problems involve a partially separable objective function, one that has the form

q
fo) = 2 fi(Uix),
i=1
in which U; isan m; xn matrix with a small number m; of rows[11,12]. Partially separable structure is of
interest because it permits better Hessian approximations or more efficient Hessian computations. Many
partially separable problems exhibit a more detailed structure, which the authors of LANCELOT [1] call
“*group partialy separable structure’’:

q i
f(x) = 2 0;(Xfi;(Uijx)),
i=1 j=1
where 6; :IR - IR isaunary operator. Using techniques described in [10], the stub. nl readerspf g_r ead
and pfgh_read discern this latter structure automatically, and the Hessian computations that
pf gh_r ead makes available exploit it. Some solvers, such as LANCELOT and VEO8 [17], want to see
partially separable structure. Driving such solversinvolves afair amount of solver-specific coding. Direc-
tory sol ver s/ exanpl es has drivers for two variants of VEO8: ve08 ignores whereas v8 exploits par-
tially separable structure, using reader pf g_r ead. Directory sol ver s/ | ancel ot contains source for
| ancel ot , asolver based on LANCELOT that uses reader pf gh_r ead.

Fortran variants

Fortran variants fmmgl.f and fnl21.f of mmgl.c and nl2l.c appear in
sol ver s/ exanpl es; themakef i | e hasrulesto make programsf g1 and f nl 21 from them. Both
invoke interface routines j acdi m_ and j aci nc_. The former alocates an ASL structure (with
ASL_al | oc(ASL_r ead_f g))andreadsastub. nl filewithf g_r ead, and the latter provides arrays of
lower and upper constraint bounds, the initial guess, the Jacobian incidence matrix (which neither example
uses), and (in the last variable passed toj aci nc_) thevaluel nf i ni t y that represents co. These routines
have Fortran signatures

subroutine jacdi mstub, M N, NO Nz, MXROWN MXCOL)
character*(*) stub
integer M N, NO Nz, MXROW MXCOL

subroutine jacinc(M N, Nz, JP, JI, X L, U Lrhs, Uhs, Inf)
integer M N, Nz, JP

i nteger*2 Jl

doubl e precision X(N, L(N), WN, Lrhs(M, Uhs(M, Inf

Jacdi m_ sets its arguments as shown in Table 7. The values MXROWand MXCOL are unlikely to be of
much interest; MXKROWis O unless AMPL wrote stub. r ow (a file of constraint and objective names), in
which case MXROWis the length of the longest name in stub. r ow. Similarly, MXCOL is O unless AMPL
wrote stub. col , in which case MKROWis the length of the longest variable namein stub. col .

1 MKROW = naxr ownanel en

[MXCOL = maxcol narel en
O
| Table7: Assignmentsmadebyj acdi m . 8

length of longest constraint name [
length of longest variable name [
O

oM = n_con = number of constraints O
EJN = n_var = number of variables O
B* NO = n_obj = number of objectives E
0 NZ = ncz = number of Jacobian nonzeros 0

The Fortran examples call Fortran variants of some of the nonlinear evaluation routines. Table 8
summarizes the currently available Fortran variants; others (e.g., for evaluating Hessian information) could
be made available easily if demand were to warrant them. In Table 8, Fortran notation appears under

October 5, 2000

-17 -

“‘Fortran variant’’; the corresponding C routines have an underscore appended to their names and are
declared in asl . h. The Fortran routines shown in Table 8 operate on the ASL structure at which
cur _ASL points. Thus, without help from a C routine to adjust cur _ASL, they only deal with one prob-
lem at atime. After solving a problem and executing

call delprb

aFortran code could call j acdi mandj aci nc again to start processing another problem.

[Routine Fortran variant

Epongrd congrd(N, I, X, G NERROR
Ctoni val cnival (N, I, X, NERROR)
Lonval conval (M N, X, R NERROR)
ense_j densej ()

vconp hvconp(HvV, P, NOBJ, ON Y)

0j acval jacval (M N, Nz, X, J, NERROR
(bbj grd objgrd(N, X, NOBJ, G NERROR
Cobj val objval (N, X, NOBJ, NERROR)

i tesol wtsol (MSG NLINES, X YY)
xknown xknown(X)
xunkno xunkno()
Eﬂel prb_ del prb()

I e s Y

ETA rgument Type Description
(N i nt eger number of variables (n_var)
i nt eger number of constraints (n_con)
i nt eger number of Jacobian nonzeros (nzc)
CNERROR i nt eger if 20, set NERROR to O if all goeswell
O and to a positive value if the evaluation fails
0 i nt eger which constraint
i nt eger which objective
LI NES i nt eger linesin M5G
OvsG character*(*) solution message, dimension(NLI NES)
X doubl e precision incoming vector of variables
Ne doubl e precision result gradient vector
BJ doubl e precisoin result Jacobian matrix
oW doubl e precision objectiveweights
oy doubl e precision dua variables
P doubl e precision vectortobemultiplied by Hessian
EH\/ doubl e precision result of Hessian times P
E Table8: Fortran variants.

Nonlinear test problems
Some nonlinear AMPL models appear in directory

http://netlib.bell-Iabs.conf netlib/anpl/nodel s/nlnodel s/
The tar version of thisdirectory is

ftp://netlib.bell-Iabs.comnetlib/anpl/nodel s/ nlnodels.tar

October 5, 2000

-18-

4. Advanced Interface Topics

Writing the stub. sol file

Interface routine wr i t e_sol returns the computed solution and a termination message to AMPL.
This routine has apparent prototype

void wite sol (char *nsg, real *x, real *y, Option_Info *0i);

The first argument is for the (null-terminated) termination message. It should not contain any empty
embedded lines (though, e.g.," \ n",i.e, aline consisting of a single blank, is fine) and may end with an
arbitrary number of newline characters (including none, asin nmgl. ¢). The second and third arguments,
x and y, are pointers to arrays of primal and dual variable values to be passed back to AMPL. Either or
both may be null (asisy in mgl. ¢), which causes no corresponding values to be passed. Normally itis
helpful to return the best approximate solution found, but for some errors (such as trouble detected before
the solution algorithm can be started) it may be appropriate for both x and y to be null. The fourth argu-
ment points to an optional Opt i on_| nf o structure, which is discussed below in the section on ** Convey-
ing solver options”.

Locating evaluation errors

If the routines in anpl sol ver . a detect an error during evaluation of a nonlinear expression, they
look to seeif stub. r ow (or, if evaluation of a‘‘defined variable’” was in progress, stub. f i x) is available.
If so, they use it to report the name of the constraint, objective, or defined variable that they were trying to
evaluate. Otherwise they simply report the number of the constraint, objective, or variable in question (first
one = 1). This is why the Student Edition of AMPL provides the default value RF for
$m nos_auxfil es. See the discussion of auxiliary files in 8A13.6 of the AMPL book [5]; as docu-
mented in netlib’s‘‘changes from anpl ", i.e,

ftp://netlib.bell-labs.conlnetlib/anpl/changes. gz

capital lettersin $sol ver _auxfi | es have the same effect as their lower-case equivalents on nonlinear
problems, including problems with integer variables, and have no effect on purely linear problems. (We
hope soon to permit two-way conversations with solvers, which will simplify this detail .)

User -defined functions

An AMPL model may involve user-defined functions. If invocations of such functions involve vari-
ables, the solver must be able to evaluate the functions. You can tell your solver about the relevant func-
tions by supplying a suitable f uncadd function, rather than loading a dummy f uncadd compiled from
sol ver s/ funcaddO. c. (To facilitate dynamic linking, which will be documented separately, this
dummy f uncadd no longer appearsin anpl sol ver. a.) Include file f uncadd. h gives f uncadd’s
prototype:

voi d funcadd(Anpl Exports *ae);
Among the fieldsin the Anpl Expor t s structure are some function pointers, such as

void (*Addfunc)(char *nane, real (*f)(Arglist*), int type,
int nargs, void *funcinfo, AnplExports *ae);

asoinfuncadd. h are#def i nesthat smplify using the function pointers, assuming
Anpl Exports *ae
isvisible. Inparticular, f uncadd. h givesaddf unc the apparent prototype

voi d addfunc(char *nane, real (*f)(Arglist*), int type,
int nargs, void *funcinfo);

To make user-defined functions known, f uncadd should call addf unc once for each one. The first
argument, namne, is the function’s name in the AMPL model. The second argument points to the function
itself. Thet ype argument tells whether the function is prepared to accept symbolic arguments (character

October 5, 2000

-19-

strings): 0 means ‘‘no’”’, 1 means ‘‘yes’. Argument nar gs tells how many arguments the function
expects; if nar gs = 0, the function expects exactly that many arguments; otherwise it expects at least
—(nar gs +1). (Thus nar gs = -1 means 0 or more arguments, nar gs = —2 means 1 or more, etc. The
argument count and type checking occurs when the stub. nl file is subsequently read.) Finally, argument
funci nf o is for the function to use as it sees fit; it will subsequently be passed to the function in field
funci nfoof structargl i st.

When a user-defined function is invoked, it aways has a single argument, al , which points to an
ar gl i st structure. This structure is designed so the same user-defined function can be linked with AMPL
(in case AMPL needs to evaluate the function); the final ar gl i st components are relevant only to AMPL.
Thefunction receivesal - >n arguments, al - >nr of which are numeric; for0O < i < al - >n,

if al->at[i] =0, argumentiis al->ra[al->at[i]]
if al->at[i] <0, argumenti is al->sa[—(al->at[i] +1)].
If al - >deri vs isnonzero, the function must store its first partial derivative with respectto al - >r a[i]
in al ->derivs[i], and if al ->hes is nonzero (which is possible only with fgh read or
pf gh_read), it must also store the upper triangle of its Hessian matrix inal - >hes, i.e, for
O<i<j<al->nr
it must store its second partial with respectto al - >ra[i] and al ->ra[j] in
al ->hes[i + %j(j+1)].
If the function does any printing, it should initially say
Anpl Exports *ae = al - >AE;
to make specia variantsof pri nt f available.

See sol ver s/ funcadd. ¢ for an example f uncadd. The rmg, mMh and nl 2 examples men-
tioned below illustrate linking with thisf uncadd.

Checking for quadratic programs: example of a DAG walk

Some solvers make specia provision for handling quadratic programming problems, which have the
form

minimize or maximize %x'Qx + c'x
subjectto b < Ax<d (QP)
and ¢ <x<u

inwhich Q O IR™". For example, CPLEX, LOQO, and OSL handle general positive-definite Q matrices,
and the old KORBX solver handled positive-definite diagonal Q matrices (‘‘ convex separable quadratic
programs'’). These solvers assume the explicit 2 shown above in the (QP) objective.

AMPL considers quadratic forms, such as the objective in (QP), to be nonlinear expressions. To
determine whether a given objective function is a quadratic form, it is necessary to walk the directed acyclic
graph (DAG) that represents the (possibly) nonlinear part of the objective. Function ngpcheck (in
sol ver s/ ngpcheck. c) illustrates such a wak. It is meant to be used with a variant of fg_r ead
caled qp_r ead, which has the same prototype as the other stub. nl readers, and which changes some
function pointers to integers for the convenience of ngpcheck. After gp_r ead returns, you can invoke
ngpcheck one or more times, but you may not call obj val , conval , etc., until you have called
gp_opi fy, with apparent prototype

voi d qp_opi fy(void)
to restore the function pointers. Ngpcheck itself has apparent prototype
fint ngpcheck(int co, fint **rowgp, fint **col gp, real **del sqp);

its first argument indicates the constraint or objective to which it applies: co = 0 means objective co, and
co < 0 means constraint —(co + 1). If the relevant objective or constraint is a quadratic form with Hessian
Q, ngpcheck returns the number of nonzerosin Q (which is 0 if the function islinear), and sets its pointer
arguments to pointers to arrays that describe Q. Specificaly, * del sqp points to an array of the nonzeros

October 5, 2000

-20-

in Q, *r owgp to their row numbers (first row = 1), and * col gp to an array of subscripts, incremented by
For t r an, of thefirst entry in *r owgp and *del sqp for each column, with (*col gp) [n_var] giv-
ing the subscript just after the last column. Ngpcheck sorts the nonzeros in each column of Q by their
row indices and returns a symmetric Q. For non-quadratic functions, npqcheck returns —1; it returns —2
in the unlikely casethat it seesadivision by 0, and -3 if co isout of range.

Usually it ismost convenient to call gpcheck rather than ngpcheck; qpcheck has apparent pro-
totype

fint gqpcheck(fint **rowgp, fint **colqp, real **del sqp);

It looks at objective obj _no (i.e, asl - >i . obj _no_, with default value 0) and complains and aborts
execution if it sees something other than alinear or quadratic form. When it sees one of the latter, it gives
the same return value as ngpcheck and sets its arguments the same way.

Driverssol ver s/ cpl ex/ cpl ex. c andsol ver s/ osl /osl . c cal gp_r ead and gpcheck,
andfilesol ver s/ exanpl es/ gt est . ¢ illustratesinvocations of nqpcheck and qp_opi fy.

More elaborate DAG walks are useful in other situations. For example, the nl ¢ program discussed
next does a more detailed DAG walk.

C or Fortran 77 for a problem instance: nlc

Occasionally it may be convenient to turn a stub. nl file into C or Fortran. This can lead to faster
function and gradient computations — but, because of the added compile and link times, many evaluations
are usually necessary before any net timeissaved. Program nl ¢ converts stub. nl into C or Fortran code
for evaluating objectives, constraints, and their derivatives. Y ou can get source for nl ¢ by asking netlib to

send all from anpl/sol vers/nlc
or getting
ftp://netlib.bell-labs.coninetlib/anpl/solvers/nlc.tar
By default, nl ¢ emits C source for functions f eval _ and ceval _; the former evaluates objectives and

their gradients, the latter constraints and their Jacobian matrices (first derivatives). These functions have
signatures

real feval (fint *nobj, fint *needfg, real *x, real *g);
void ceval (fint *needfg, real *x, real *c, real *1J);

For both, x is the point at which evaluations take place, and * needf g tells whether the routines compute
function values (if * needf g = 1), gradients (if * needf g = 2), or both (if * needf g = 3). For f eval _,
*nobj is the objective number (O for the first objective), and g points to storage for the gradient (when
*needf g =2or 3). For ceval _, c pointsto storage for the values of the constraint bodies, and J points
to columnwise storage for the nonzeros in the Jacobian matrix. Auxiliary arrays

extern fint funcom]|[];
extern real boundc_[], xOcom_[];

describe the problem dimensions, nonzeros in the Jacobian matrix, left- and right-hand sides of the con-
straints, bounds on the variables, and the starting guess. Specifically,

funcom [0] = n_var =number of variables;

funcom [1] = n_obj = number of objectives;

funcom [2] = n_con = number of constraints;

funcom [3] = nzc = number of Jacobian nonzeros;

funcom [4] = densej iszeroin the default case that the Jacobian matrix is stored

sparsaly, and is 1 if the full Jacobian matrix is stored (if requested by the - d command-line option to nl c).

funcom[i],5<i <4 + n_obj,islif theobjectiveisto be maximizedand Qif itis
to be minimized. If densej = funcom[4] isO, then col starts = funcom_ + n_obj] +5
and rownos = funcom_+ n_obj + n_var + 6 are arrays describing the nonzeros in the columns
of the Jacobian matrix: the nonzeros for column i (with i = 1 for the first column) are in J[j] for

October 5, 2000

-21-

colstarts[i—-1] —1<j<colstarts[i] — 2, whichlooks more natural in Fortran notation: the
calling sequences are compatible with the f 2c calling conventions for Fortran.

Bounds are conveyed in boundc__ asfollows:;
boundc_|[0] isthe value passed for oo;
boundc_ + 1isanarray of lower and upper bounds on the variables, and
boundc_ + 2*n_var + 1 isan aray of lower and upper bounds on the constraint
bodies. Theinitial guess appearsinx0comm_.

The - f command-line option causes nl ¢ to emit Fortran 77 equivalents of f eval _ and ceval _;
they correspond to the Fortran signatures

doubl e precision function feval (nobj, needfg, x, Q)
i nt eger nobj, needfg
doubl e precision x(*), g(*)

and

subrouti ne ceval (needfg, x, ¢, J)
i nteger needfg
doubl e precision x(*), c(*), J(*)

and the auxiliary arrays are rendered as the COMMON blocks

common /funcom nvar, nobj, ncon, nzc, densej, colrow
i nteger nvar, nobj, ncon, nzc, densej, colrow(?*)
comon / boundc/ bounds

doubl e precision bounds(*)

comon /x0comm/ xO0

doubl e precision x0(*)

where col r ow is only present if densej is 0 and the *'s have the values described above. (Strictly
speaking, it would be necessary to make problem-specific adjustments to the dimensions in other Fortran
source that referenced these common blocks, but most systems follow the rule that the array size seen first
wins, in which case it sufficesto load the object for f eval and ceval first)

Command-line option —1 causes nl ¢ to emit variants f eval 0_ and ceval 0_ of feval _ and
ceval _ that omit gradient computations. They have signatures

real fevalO (fint *nobj, real *x);
void ceval 0 (real *x, real *c);

With command-line option - 3, nl ¢ produces al four routines (or, if - f is aso present, equivalent For-
tran).

Writing stub. nl filesfor debugging

You can use AMPL'swr i t e command or its - o command-line flag to get a stub. nl (and any other
needed auxiliary files) for use in debugging. Normally AMPL writes a binary-format stub. nl , which corre-
sponds to acommand-line - obstub argument. Such files are faster to read and write, but sightly less con-
venient for debugging, inthat wri t e_sol notesthe format of stub. nl (binary or ASCIl — by looking at
bi nary_nl) and writes stub. sol in the same format. To get ASCII format files, either issue an AMPL
wr i t e command of the form

wite gstub;

or use the - ogstub command-line option. Your solver should see exactly the same problem, and AMPL
should get back exactly the same solution, whether you use binary or ASCII format stub. nl and stub. sol
files (if your computer has reasonable floating-point arithmetic).

With AMPL versions = 19970214, binary stub. nl files written on one machine with binary 1EEE-
arithmetic can be read on any other.

October 5, 2000

-22-

Usewith MATLABD

It is easy to use AMPL with MATLAB — with the help of a mex file that reads stub. nl files, writes
stub. sol files, and provides function, gradient, and Hessian values. Example fileanpl f unc. c issource
for an anpl f unc. mex that looks at its left- and right-hand sides to determine what it should do and
works asfollows:

[x,bl,bu,v,cl,cu] = anpl func(’stub’)
readsst ub. nl and sets

X = primal initial guess,

bl = lower bounds on the primal variables,

bu = upper bounds on the primal variables,

v =dual initial guess (often a vector of zeros),
cl = lower bounds on constraint bodies, and
cu = upper bounds on constraint bodies.

[f,c] = anpl func(x, 0)

sets
f =valueof first objective at x and
¢ =valuesof constraint bodies at x.
[g,Jac] = anpl func(x, 1)
sets

g = gradient of first objective at x and
Jac = Jacobian matrix of constraints at X.

W= anpl func(Y)

sets Wto the Hessian of the Lagrangian (equation (*) in the section ‘‘Evaluating Nonlinear Functions'”’
above) for the first objective at the point x at which the objective and constraint bodies were most recently
evaluated. Finadly,

[T = anpl func(nsg, X, v)
cdlswite_sol (neg, X, v, 0) towritethe stub. sol file, with
nsg = termination message (astring),

X = optimal primal variables, and
% = optimal dual variables.

It is often convenient to use . mfiles to massage problems to a desired form. To illustrate this, the
exanpl es directory offers the following files (which are simplified forms of files used in joint work with
Michael Overton and Margaret Wright):

e i ni t. m which expects variable pnane to have been assigned a stub (a string value), reads stub. nl ,
and puts the problem into the form
minimize f(x)

st.c(x) =0
and d(x) = O.

For simplicity, the examplei ni t . massumes that the initial x yieldsd(x) > 0. A more elaborate version
of i ni t. misrequiredin general.

e eval f. mwhichprovides[f,c,d] = eval f(x).

October 5, 2000

-23-

e eval g. m which provides[g, A, B] = eval g(x),whereA = ¢’ (x) andB = d’ (x) arethe
Jacobian matrices of ¢ and d.

« eval w. m which computes the Lagrangian Hessian, W = eval Wy, z), inwhichy and z are vec-
tors of Lagrange multipliers for the constraints
c(x) =0
and
d(x) = 0,
respectively.

e enewt. m which uses eval f. m eval g. mand eval w. min a simple, non-robust nonlinear
interior-point iteration that is meant mainly to illustrate setting up and solving an extended system involv-
ing the constraint Jacobian and L agrangian Hessian matrices.

e savesol . m which writes file stub. sol to permit reading a computed solution into an AMPL ses-
sion.

* hs100. anp, an AMPL mode for test problem 100 of Hock and Schittkowski [13].
* hs100. nl , derived from hs100. anp. To solve this problem, start MATLAB and type

pname = ' hs100’ ;
init

enewt

savesol

Anpl f unc. c provides dense Jacobian matrices and Lagrangian Hessians; spanf unc. ¢ is avari-
ant that provides sparse Jacobian matrices and Lagrangian Hessians. To see an example of using
spanf unc, change al occurrencesof ‘‘anpl f unc’ to‘‘spanf unc’’ inthe. mfiles.

5. Utility Routines and I nterface Conventions

—-AMPL Flag

Sometimes it is convenient for a solver to behave differently when invoked by AMPL than when
invoked ‘‘stand-alone’’. This is why AMPL passes a string that starts with - AMPL as the second
command-line argument when it invokes a solver. As asimple example, nl 21. ¢ turns dn2gb’s default
printing off when it sees- AMPL, and it only invokeswr i t e_sol whenthisflag is present.

Conveying solver options

Most solvers have knobs (tolerances, switches, algorithmic options, etc.) that one might want to turn.
An AMPL convention is that appending _opt i ons to the name of a solver gives the name of an environ-
ment variable (AMPL option) in which the solver looks for knob settings. Thus a solver named
wonder sol would take knob settings from $wonder sol _opt i ons (the value of environment variable
wonder sol _opti ons). For interactive use, it's usually a good idea for a solver to print its name and
perhaps version number when it starts, and to echo nondefault knob settings to confirm that they’ ve been
seen and accepted. It's also conventional for the nsg argument towr i t e_sol to start with the solver's
name and perhaps version number. Since AMPL echoesthe wri t e_sol 's nsg argument when it reads
the solution, a minor problem arises: if there are no nondefault knob settings, an interactive user would see
the solver’'s name printed twice in a row. To keep this from happening, you can set need_nl (i.e,
asl - >i . need_nl _) to apositive value; this causeswr i t e_sol to insert that many backspace charac-
ters at the beginning of stub. sol . Usually thisisdone asfollows: initially you execute, e.g.,

need _nl = printf("wondersol 3.2: ");

(Note that pri nt f returns the number of characters it transmits — exactly what we need.) Subsequently,
if you echo any options or otherwise print anything, also set need_nl to 0.

Conventionally, $solver_opt i ons may contain keywords and name-value pairs, separated by white
space (spaces, tabs, newlines), with case ignored in names and keywords. For name-value pairs, the usual
practice is to allow white space or an = (equality) sign, optionally surrounded by white space, between the

October 5, 2000

-24-

name and the value. For debugging, it is sometimes convenient to pass keywords and name-value pairs on
the solver's command line, rather than setting $solver_opt i ons appropriately. The usual practice is to
look first in $solver_opt i ons, then at the command-line arguments, so the | atter take precedence.

Interface routines get st ub, get opt s, and get st ops facilitate the above conventions. They
have apparent prototypes

char *getstub (char ***pargv, Option_Info *oi);
i nt getopts (char **argyv, Option_Info *oi);
char *getstops(char ***pargv, Option_Info *oi);

which you can import by saying
i ncl ude "getstub. h"
rather than (or in addition to)

i ncl ude "asl . h"

TypeOpti on_I nf oisasodeclaredinget st ub. h; itisastructure whose initial components are

char *snane; /* invocation nane of solver */

char *bsnane; /* solver nane in startup "banner" */

char *opnane; /* nanme of solver _options environnment var */
keyword *keywds; /* key words */

int n_keywds; /* nunber of key words */

i nt want_funcadd; /* whether funcadd will be called */

char *versi on; /* for -v and Ver_key ASL() */

char **usage; /* sol ver-specific usage nessage */

Sol ver KW func *kwf; [/* solver-specific keyword function */

Fil eeq _func *feq; /* for n=filenanme */

keyword *options; /* command-line options (with -) before stub */
int n_options; /* nunber of options */

Ordinarily a solver declares
static Option_Info Gnfo ={ ... };

and supplies only the first few fields (in place of **. . . '"), relying on the convenience of static initialization
setting the remaining fields to zero.

Function get st ub looks in * par gv for the stub, possibly preceded by command-line options that

start with **-'"; get st ub provides a small default set of command-line options, which may be augmented
or overridden by names in oi - >opt i ons. Among the default command-line options are ’ - ?’ , which
requests a usage summary that reports oi - >snane as the invocation name of the solver; ' - =" , which

summarizes possible keyword values, -v, which reports the versions of the solver (supplied by
oi - >versi on) and of anpl sol ver.a (which is available in cell ASLdat e ASL, declared in
asl . h); and, if oi - >want _f uncadd is nonzero, - u, which lists the available user-defined functions;
user-defined functions are discussed in their own section above. If it finds a stub, get st ub checks
whether the next argument begins with - AMPL and setsanpl f | ag accordingly; if so, it executes

i f (oi->bsnane)
need nl = printf("%: ", oi->bsnane);

At any rate, it sets * par gv to the command-line argument following the stub and optional - AMPL and
returns the stub. It returns O (NULL) if it does not find a stub.

Function get opt s looks first in $solver_opt i ons, then at the command line for keywords and
optional values;, oi - >opnane provides the name of the solver_opti ons environment variable.
Get opt s is separate from get st ub because sometimes it is convenient to call j ac0di m do some stor-
age alocation, or make other arrangements before processing the keywords. For cases where no such sepa-
ration is useful, function get st ops callsget st ub and get opt s and returns the stub, complaining and
exiting if noneisfound.

October 5, 2000

-25-

Keywords are conveyed in keywor d structuresdeclared in get st ub. h:

typedef struct keyword keyword;
typedef char *Kwfunc(Option_Info *oi, keyword *kw, char *val ue);

struct keyword {

char *nane;

Kwf unc *Kkf;

voi d *info;

char *desc;

s
Array oi - >keywds describes oi - >n_keywds keywords that may appear in $solver_opt i ons; these
keywor d structures must be sorted (with comparisons as though by st r cnp) on their nane fields, which
must be in lower case. Similarly, oi - >opt i ons isan array of oi - >n_opt i ons keywor ds for initial
command-line options, which must also be sorted; often oi - >n_opti ons = 0. The desc field of a
keywor d may be null; it provides a short description of the keyword for use with the - = command-line
option. If desc starts with an = sign, the text in desc up to the first space is appended to the keyword in
the output of the - = command-line option. The kf field provides a function that processes the value (if
any) of the keyword. Itsargumentsare oi (the Qpt i on_I nf o pointer passed to get st ub), apointer kw
to the keywor d structure itself, and a pointer val ue to the possible value for the keyword (stripped of
preceding white space). The kf function may use kw- >i nf o as it sees fit and should return a pointer to
the first character in val ue that it has not consumed. Ordinarily get opt s echoes any keyword assign-
ments it processes (and sets need_nl = 0), but the kf function can suppress this echoing for a particular
assignment by executing

oi - >option_echo & “ASL_Q _echothis;
or for all subsequent assignments by executing

oi - >option_echo & “ASL_O _echo;

Chame description of value O
EK:K_V al known character value in known place E
C val character value in known place O
(DA vall real (double) valuein asl O
_val known real (double) value in known place g

) val real (double) value: offset from uinfo 0
D _val real (double) value in known place O
a A val int valuein ad O
0 Ko _val int value 0 in known place O
K1_val int value 1 in known place O

. X O

K val known int value in known place 0

0 U val int value: offset from uinfo 0
a _val int value in known place g
O K val known Long value in known place O
U val Long value: offset from uinfo g
_val Long value in known place 0
(SU_val short value: offset from uinfo 0
Ver _val report version O
E\/\B_v al set wantsol in Option_Info g
E Table9: keyword functionsin get st ub. h. H

For convenience, anpl sol ver. a provides a variety of keyword-processing functions. Table 9

October 5, 2000

-26-

summarizes these functions; their prototypes appear in get st ub. h, which also provides a macro,
nkeywds, for computing the n_keywds field of an Opt i on_I nf o structure from akeywor d declara-
tion of the form

static keyword keywds[] ={ ... };

To alow compilation by a K&R C compiler, it is best to cast the i nf o fields to (Char *) (which is
(char*) with K&R C and (voi d*) with ANSI/ISO C and C++). Often it is convenient to use macro
KW defined in get st ub. h, for this. An example appearsin filet nmai n. c, in which the keywds dec-
laration is followed by

static Option_Info G nfo =
{ "tn", "TN', "tn_options", keywds, nkeywds, 1 };

Many other examples appear in various subdirectories of netlib’'s anpl / sol ver s directory. Occasion-
ally it is necessary to make custom keyword-processing functions, as in the example files keywds. c,
rvinsg. ¢c andr vnsg. h, which are discussed further below.

Some solvers, such as m nos and npsol , have their own routines for parsing keyword phrases. For
such a solver you can initiadlize oi - >kwf with a pointer to a function that invokes it; if get opt's seesa
keyword that does not appear in oi - >keywds, it changes any underscore characters to blanks and passes
the resulting phrase to oi - >kwf . Some solvers, such asm nos, also need away to associate Fortran unit
numbers with file names; oi->feq (if not null) points to a function for doing this. See
anpl / sol ver s/ m nos/ nb5. ¢ for an example that uses al 12 of the Opt i on_|I nf o fields shown
above, including oi - >kwf and oi - >f eq.

Many solversalow out | ev to appear in $solver_opt i ons. Generaly, out| ev = 0 means‘'‘no
printed output’’, and larger integers cause the solver to print more information while they work. Another
common keyword is maxi t , whose value bounds the number of iterations allowed. For stand-alone invo-
cations (those without - AMPL), solvers commonly recognize want sol =n, where n isthe sum of

1 towritea. sol file

2 toprint the primal variable values,

4 to print the dual variable values, and

8 to suppress printing the solution message.

A specia keyword function, W5_val , processes want sol assignments, which are interpreted by
wite sol. StringsW5_desc_ASL and Wsu_desc_ASL provide descriptions of want sol for con-
strained and unconstrained solvers, respectively, and appear in many of the sample drivers available from
netlib.

Printing and St der r

To facilitate using AMPL and solvers in some contexts, such as Microsoft Windows (in various ver-
sions), it is best to route all printing through pri nt f and f pri nt f ; a separate report will provide more
details. Because of this, and because some systems furnish aspri nt f that does not give the return value
specified by ANSI/ISO C, anpl sol ver . a provides suitable versionsof pri ntf,fprintf,sprintf,
viprintf and vspri ntf that function as specified by ANSI/ISO C, except that they do not recognize
the L qualifier (for | ong doubl e), and, asin AMPL, they provide some extensions: they turn % Og and
% 0G into the shortest decimal string that rounds to the number being converted, and they allow negative
precisions for %f. These provisions apply to systems with IEEE, VAX, or IBM mainframe arithmetic, and
sol ver s/ makefi | e explains how to use the system’spr i nt f routines on other systems.

On systems where it is convenient to redirect st der r , it is best to write error messagesto st derr .
Unfortunately, redirecting st der r is inconvenient on some systems (e.g., Microsoft systems with the
usual Microsoft shells). To promote portability among systems, anpl sol ver . a provides accessto

extern FILE *Stderr,

which can be set, as appropriate, to st der r or st dout . Thus we recommend writing error messages to
St der r rather than st der r, asisillustrated in various examples discussed above.

October 5, 2000

-27 -

For matting the optimal value and other numbers

An AMPL convention is that solvers should report (in the msg argument towri t e_sol) the fina
objective value to $obj ecti ve_preci si on significant figures. Interface routines g_f nt op and
obj _pr ec fecilitate this. They have apparent prototypes

int g fntop(char *buf, double v);
int obj prec(void);

For use as the ‘**’" argument in the format % *g, obj _prec returns $obj ecti ve_preci si on.
Occasionally it may be convenient to use g_f nt op instead. It stores the appropriate decimal approxima-
tion in buf (using the same conversion routine as AMPL’s printing commands), and returns the number of
characters (excluding the terminating null) it has stored in buf . The end of nl 21. ¢ illustrates both the
use of g_f nt op and of the Spri ntf inanpl sol ver. a. The latter is there because, contrary to stan-
dard (ANSI/ISO) C, the spri nt f on some systems does not return the count of characters written to its
first argument. Ordinarily, Sprintf is the sprintf described above in the section ‘‘Printing and
stderr’’, but if you are using the system’s spri nt f, then Spri ntf issimilar to spri nt f, but only
understands %, %d, % d, and % (and complainsif it sees something else).

Two relativesof g_f nt op that arealsoinanpl sol ver. a are

int g fnm(char *buf, double v);
int g fnmp(char *buf, double v, int prec);

g_f mt p rounds its argument to pr ec significant figures unless pr ec is 0, in which case it stores in buf
the shortest decimal string that rounds to v (provided the machine uses IEEE, VAX, or IBM mainframe
arithmetic: see[8]); g_fnt (buf,v) =g_fnm p(buf, v, 0).

If they find an exponent field necessary, both g_f nt op and its relatives delimit it with the current
value of

extern char g fnt_E;

(whose declaration appearsin asl . h). Thedefaultvalueof g fnt _Eis’ e’ .
By default, g_f nt op and its relatives only supply a decimal point if it is followed by a digit, but if
you set
extern int g fm _decpt;

(declared in asl . h) to a nonzero value, they aways supply a decimal point when v is finite. If you set
g_fm decpt to 2, these routines supply an exponent field for finite v. The nl ¢ program discussed
above uses these features when it writes Fortran.

Mor e examples

Some examples illustrating the above points appear in sol ver s/ exanpl es. One such exampleis
t nmai n. c, awrapper for Stephen Nash's LMON and LMQNBC [16, 15], which solve unconstrained and
simply bounded minimization problems by a truncated Newton algorithm. Since t nnai n. ¢ calls
get st ub, theresulting solver, t n, explains its usage when invoked

tn -7
and summarizes the keywords it recognizes when invoked
tn ' -=
For another example, filesrmg. ¢ and nl 2. ¢ are for solvers called mg and nl 2, which are more
elaborate variants of the g1 and nl 21 considered above (source filesrmgl. ¢ and nl 21. ¢). Both use
auxiliary fileskeywds. ¢, rvnsg. ¢ andr vinsg. h to turn the knobs summarized in [9] and pass a more
elaborate nsg to write_sol . Their linkage, in sol ver s/ exanpl es/ nakefi | e, aso illustrates

adding user-defined functions, which we will discuss shortly. Unlike g1, nmmg checks to see if the
objective isto be maximized and internally negatesit if so.

October 5, 2000

-28-

Filermh. ¢ isavariant of g. ¢ that supplies the analytic Hessian matrix computed by dut hes to
solver mh, based on PORT routine dmrmhb. For maximum likelihood problems, it is sometimes appropri-
ate to use the Hessian at the solution as an estimate of the variance-covariance matrix; mh offers the
option of computing standard-deviation estimates for the optimal solution from this variance-covariance
matrix estimate. Specify st ddev=1 in $mrmh_opt i ons or on the command line to exercise this option,
or specify st ddev_fi | e=filename to have thisinformation written to afile.

Various subdirectories of
http://netlib.bell-1abs.confnetlib/anpl/solvers/
provide other examples of driversfor linear and nonlinear solvers. See
ftp://netlib.bell-labs.conlnetlib/anpl/solvers/READVE. gz

for more details.

Multiple problems and multiple threads

It is possible to have several problemsin memory at once, each with its own ASL pointer. To free
the memory associated with a particular ASL pointer asl , execute

ASL free(&asl);

this call sets asl = 0. To alocate problem-specific memory that will be freed by ASL free, call
MLal | oc rather than Mal | oc. Do not pass such memory tor eal | oc or f r ee.

Independent threads may operate on independent ASL structures when anpl sol ver . a is compiled
with MULTI PLE THREADS #defined. In this case, it is necessary to suitably #defi ne
ACQUI RE_DTQA LOCK(n) and FREE DTQA LOCK(n) to provide exclusive accessto afew short crit-
ical regions (with distinct values of n); the recommended procedure is first to create ar i t h. h by saying
“make arith. h”, thentoadd

#defi ne MIULTI PLE_THREADS

and suitable definitions of ACQUI RE_DTQA LOCK(n) and FREE DTOA LOCK(n) to the end of
arith. h, and finaly to create anpl sol ver. a by saying ‘‘nake’’. It is possible for two or more
threads to compute function values simultaneously from the same ASL structure (e.g., for different objec-
tives or constraint bodies), but because of the way derivative values are stored, they should do so for the
same X vector. Only one thread at a time should compute derivative values for a particular ASL structure
because of the way the scratch vector for adjoint values is used. Lifting this restriction would likely slow
the computations.

Acknowledgment

Thanks go to Bob Fourer, Brian Kernighan, Bob Vanderbei, and Margaret Wright for helpful com-
ments.

REFERENCES

[1] A.R.ConN, N. 1. M. GouLD, AND PH. L. ToINT, LANCELOT, a Fortran Package for Large-Scale
Nonlinear Optimization (Release A), Springer-Verlag, 1992. Springer Seriesin Computational Math-
ematics 17.

[2] J E. DENNIS, JR., D. M. GAY, AND R. E. WELSCH, ‘‘An Adaptive Nonlinear Least-Squares Algo-
rithm,”” ACM Trans. Math. Software 7 (1981), pp. 348-368.

October 5, 2000

(3]

[4]

(5]

6]

(8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

-29-

J. E. DENNIS, JR., D. M. GAY, AND R. E. WELSCH, ‘*Algorithm 573. NL2SOL—An Adaptive Non-
linear Least-Squares Algorithm,”” ACM Trans. Math. Software 7 (1981), pp. 369-383.

S. I. FELDMAN, D. M. GAY, M. W. MAIMONE, AND N. L. SCHRYER, ‘‘A Fortran-to-C Converter,’’
Computing Science Technical Report No. 149 (1990), Bell Laboratories, Murray Hill, NJ.

ROBERT FOURER, DAVID M. GAY, AND BRIAN W. KERNIGHAN, AMPL: A Modeling Language for
Mathematical Programming, Duxbury Press’'Wadsworth, 1993. ISBN: 0-89426-232-7.

D. M. Gay, ““ALGORITHM 611—Subroutines for Unconstrained Minimization Using a
Model/Trust-Region Approach,’”” ACM Trans. Math. Software 9 (1983), pp. 503-524.

D. M. GAy, “‘A Trust-Region Approach to Linearly Constrained Optimization,”” pp. 72-105 in
Numerical Analysis. Proceedings, Dundee 1983, ed. D. F. Griffiths, Springer-Verlag (1984).

D. M. Gay, ‘‘Correctly Rounded Binary-Decima and Decimal-Binary Conversions,’”” Numerical
Analysis Manuscript 90-10 (11274-901130-10TMS) (1990), Bell Laboratories, Murray Hill, NJ.

D. M. GAY, ‘‘Usage Summary for Selected Optimization Routines,”” Computing Science Technical
Report No. 153 (1990), AT&T Bell Laboratories, Murray Hill, NJ.

D. M. GAY, ‘“More AD of Nonlinear AMPL Models: Computing Hessian Information and Exploit-
ing Partial Separability,”” in Computational Differentiation: Applications, Techniques, and Tools, ed.
George F. Corliss, SIAM (1996).

A. GRIEWANK AND PH. L. TOINT, ‘*On the Unconstrained Optimization of Partially Separable Func-
tions,”” pp. 301-312 in Nonlinear Optimization 1981, ed. M. J. D. Powell, Academic Press (1982).

A. GRIEWANK AND PH. L. TOINT, ‘‘Partitioned Variable Metric Updates for Large Structured Opti-
mization Problems,”” Numer. Math. 39 (1982), pp. 119-137.

W. Hock AND K. ScHITTKOwsKI, Test Examples for Nonlinear Programming Codes, Springer-
Verlag, 1981.

B. A. MURTAGH, in Advanced Linear Programming: Computation and Practice, McGraw-Hill, New
York (1981).

S. G. NASH, ‘*Newton-type Minimization via the Lanczos Method,”” SAM J. Num. Anal. 21 (1984),
pp. 770-788.

S. G. NAsH, ‘““User’s Guide for TN/TNBC: Fortran Routines for Nonlinear Optimization,”” Report
397 (1984), Mathematical Sciences Dept., The Johns Hopkins Univ., Baltimore, MD.

PH. L. TOINT, ‘‘User’s Guide to the Routine VEO8 for Solving Partially Separable Bounded Opti-
mization Problems,”” Technical Report 83/1 (1983), FUNDP, Namur, Belgium.

October 5, 2000

-30-

Appendix A: Changesfrom Earlier Versions

Some changes are cosmetic, such as updates to netlib addresses to reflect the breakup of AT&T.
Others are intended to make the AMPL/solver interface library more flexible and useful. Changes intro-
duced in 1997 include:

» New facilities for computing second derivatives in nonlinear problems.
* Facilities for addressing several problems independently.

 Adjustments to the external name space: most names contributed by the AMPL/solver interface library
now end with _ASL (for AMPL/Solver Library).

» New facilities for processing command-line arguments and solver _opt i ons environment variables,
meant to unify behavior among solvers and simplify writing solver interfaces.

e Changes to the #i ncl ude files: j acdi m h is gone, replaced for most purposes by asl . h or
get st ub. h (whichincludesasl . h).

* Inthe stub. nl readers, logic to recognize some of the *‘suffix’’ arraysthat AMPL will soon be able to
write. Use of these arrays will be documented in arevised version of this report.

 Function f uncadd, which one provides to make user-defined functions available, now takes an argu-
ment, and the addf unc routine it calls has an additional argument; for more details, see the section on
“*User-defined functions'’ above.

e To alow for dynamic linking of user-defined functions, the dummy f uncadd routine in source file
f uncaddO. c nolonger appearsin anpl sol ver. a; if desired, it must be linked explicitly.

Header file asl . h provides #def i nes that permit older solver interface routines to be used with
only afew changes. Oftenit sufficesto change‘‘j acdi m h’’ to‘‘asl . h’’ and to add

#define asl cur_ASL

after the#i ncl ude line.

October 5, 2000

