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Abstract

Combinatorial optimization problems arise in several areas ranging from manage-

ment to mathematics and graph theory. Most combinatorial optimization problems are

computationally hard due to the restriction that a subset of the variables have to take

integral values. During the last two decades there has been a remarkable development

in polyhedral techniques leading to an increase in the size of several problem types that

can be solved by a factor hundred. The basic idea behind polyhedral techniques is to

derive a good linear formulation of the set of solutions by identifying linear inequalities

that can be proved to be necessary in the description of the convex hull of feasible

solutions. The purpose of this article is to give an overview of the developments in poly-

hedral theory, starting with the pioneering work by Dantzig, Fulkerson and Johnson

on the traveling salesman problem, and by Gomory on integer programming. We also

discuss several computational aspects and implementation issues related to the use of

polyhedral methods.



Combinatorial optimization deals with maximizing or minimizing a function subject to a set

of constraints and subject to the restriction that some, or all, variables should be integers.

Several problems that occur in management and planning situations can be formulated as

combinatorial optimization problems, such as the lot sizing problem, where we need to decide
on which time periods to produce, and how much to produce in these periods, to satisfy cus-

tomers' demand at minimal total production, storage and setup costs. Another well-known

combinatorial optimization problem is the traveling salesman problem where we want to de-

termine in which order a \salesman" has to visit a number of \cities" such that all cities are

visited exactly once and such that the length of the tour is minimal. This problem is one of

the most studied combinatorial optimization problems, not because of its importance in the

planning of salesmen tours, but because of its numerous other applications, both in its own

right and as a substructure of more complex models, and because it is notoriously di�cult

to solve. The combination of being easy to state, relatively easy to formulate as a mathe-

matical programming problem, but computationally intractable is something a majority of

combinatorial optimization problems have in common.

The computational intractability of most core combinatorial optimization problems has

been theoretically indicated, i.e. it is possible to show that most of these problems belong to

the class ofNP-hard problems, see Karp (1972), and Garey and Johnson (1979).No algorithm
with a worst-case running time bounded by a polynomial in the size of the input is known for

any NP-hard problem, and it is strongly believed that no such algorithm exists. Therefore, to

solve these problems we have to use an enumerative algorithm, such as dynamic programming

or branch and bound, with a worst-case running time that is exponential in the size of the

input. The computational hardness ofmost combinatorial optimization problems has inspired

researchers to develop good formulations, and algorithms that are expected to reduce the size

of the enumeration tree. To use information about the structure of the convex hull of feasible

solutions, which is the basis for polyhedral techniques, has been one of the most successful

approaches so far. The pioneering work in this direction was done by Dantzig, Fulkerson

and Johnson (1954), who invented a method to solve the traveling salesman problem. They

demonstrated the power of their technique on a 49-city instance, which was huge at that time.

The idea behind the Dantzig-Fulkerson-Johnson method is the following. Assume we want

to solve the problem

minfcx subject to x 2 Sg; (1)

where S is the set of feasible solutions, which in our case is the set of traveling salesman tours.

Let S = P \ ZZn, where P = fx 2 IR
n
: Ax � bg and where Ax � b is a system of linear

inequalities. Since S is di�cult to characterize, we could solve the problem

minfcx subject to x 2 Pg (2)

instead. Problem (2) is easy to solve, but since it is a relaxation of (1) it may give us a solution

x� that is not a tour. More precisely, the following two things can happen if we solve (2): either

the optimal solution x� is a tour, which means that x� is also optimal for (1), or x� is not a

tour, in which case it is not feasible for (1). If the solution x� is not feasible for (1) it lies outside

the convex hull of S which means we can cut o� x� by identifying a hyperplane separating
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x� from the convex hull of S, i.e. a hyperplane that is satis�ed by all tours, but violated by

x�. An inequality that is satis�ed by all feasible solutions is called a valid inequality. When

Dantzig, Fulkerson and Johnson solved the relaxation (2) of their 49-city instance they indeed

obtained a solution x� that was not a tour. By looking at the solution they identi�ed a valid

inequality that was violated by x�, and added this inequality to the formulation. They solved

the resulting linear programming problem and obtained again a solution that was not a tour.

After repeating this process a few times a tour was obtained, and since only valid inequalities

were added to the relaxation, they could conclude that the solution was optimal.

Even though many theoretical questions regarding the traveling salesman problem re-

mained unsolved, the work of Dantzig, Fulkerson and Johnson was still a breakthrough as it

provided amethodology that was actually not limited to solving traveling salesman problems,

but could be applied to any combinatorial optimization problem. This new area of research on

how to describe the convex hull of feasible solutions by linear inequalities was called polyhedral
combinatorics. During the last decades polyhedral techniques have been used with consider-

able success to solve many previously unsolved instances of hard combinatorial optimization

problems, and it is still the only method available for solving large instances of the traveling

salesman problem. The purpose of this paper is to describe theoretical and computational

aspects of polyhedral techniques and to partially survey the results that have been obtained

by applying this approach.

A natural question that arises when studying the work by Dantzig, Fulkerson and Johnson

is whether it is possible to develop a general scheme for identifying valid inequalities. This

question was answered by Gomory (1958), (1960), (1963) who developed a cutting plane al-
gorithm for general integer linear programming, and showed that the integer programming

problem minfcx subject to x 2 Sg can be solved by solving a �nite sequence of linear pro-

grams. Chv�atal (1973) proved that all inequalities necessary to describe the convex hull of

integer solutions can be obtained by taking linear combinations of the original and previ-

ously generated linear inequalities and then applying a certain rounding scheme, provided

that the integer solutions are bounded. Schrijver (1980) proved the more general result that

it is possible to generate the convex hull of integer solutions by applying a �nite set of op-

erations on the polyhedron describing the integer solutions, if this polyhedron is rational,

but not necessarily bounded. The results by Gomory, Chv�atal, and Schrijver are discussed in

Section 1. Here we will also address the following two questions: When can we expect to have

a concise description of the convex hull of feasible solutions? How di�cult is it to identify a

violated inequality? These questions are strongly related to the computational complexity of

the considered problem, i.e. the hardness of a problem type will catch up with us at some

point, but we shall also see that certain aspects of the answers make it possible to hope that

a bad situation can be turned into a rather promising one.

The results of Gomory, Chv�atal and Schrijver were very important theoretically, but they

did not provide direct tools for solving realistic instances within reasonable time. Researchers

therefore began to develop problem speci�c classes of inequalities that contain inequalities

that can be proved to be necessary in the description of the convex hull of feasible solutions.

Based on the various classes of valid inequalities it is then necessary to develop separation
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algorithms, i.e. algorithms for identifying violated inequalities given the current solution x�.

In Section 2 we begin by describing families of valid inequalities for some basic combinatorial

optimization problems, and the corresponding separation problems. These inequalities are

important as they are often useful when solving more complex problems aswell, either directly,

or as a starting point for developing new, more general families of inequalities. Moreover, they

represent di�erent arguments that can be used when developing valid inequalities. We shall

also give a partial survey of polyhedral results for combinatorial optimization problems.

Next to the theoretical work of developing good classes of valid inequalities and algorithms

for identifying violated inequalities, there is a whole range of implementation issues that have

to be considered in order to make polyhedral methods work well. One such issue is prepro-

cessing. Important elements of preprocessing are to reduce the size of the initial formulation
by deleting unnecessary variables and constraints, and to reduce the size of the constraint

coe�cients to make the instance numerically more attractive. In the course of strengthening

the relaxation by adding valid inequalities we may also want to delete some of the previously

added inequalities to avoid the formulation growing too much. We may also want to work

with a partial set of variables to speed up computations. Dantzig, Fulkerson and Johnson

were able to �nd the optimal solution by adding valid inequalities only. In general however we

end up in the situation where the current solution x� is not feasible and where we are unable

to identify an inequality violated by x�.We then have to start a branch-and-bound phase. For

the branch-and-bound algorithm we must decide precisely how to create new subproblems,

or nodes, in the search tree, as well as a suitable search strategy. It is also possible to add

inequalities in every node of the tree, in which case we need to keep track of where in the

tree the various inequalities are valid. All these issues are discussed in Section 3. To illustrate

the computational possibilities of polyhedral techniques we present computational results for

some selected problem types in Section 4.

Even though polyhedral combinatorics has been the foremost tool for computing large

instances of a vast collection of combinatorial optimization problems it is not the only tech-

nique available, and depending on the problem type it may be preferable to choose a di�erent

method. We conclude our article by briey mentioning alternative approaches to solving

integer and combinatorial optimization problems.

Dutch Results

1 Theoretical background

The integer linear programming problem (ILP) is de�ned as

minfcx : x 2 Sg (3)

where S = P \ ZZn and P = fx 2 IR
n
: Ax � bg. We call P the linear formulation of ILP.

A polyhedron P is rational if it can be determined by a rational system Ax � b of linear

inequalities, i.e., if all entries of A and b are rationals. The convex hull of the set S of feasible

solutions, denoted conv(S), is the smallest convex set containing S. A facet-de�ning valid
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inequality is a valid inequality that is necessary to describe conv(S), i.e. it is the \strongest

possible" valid inequality. In Figure 1 we give an example of sets P , S and conv(S).
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Figure 1: P , S, and conv(S).

If we know the linear description of conv(S) we can solve the linear programming problem

minfcx : x 2 conv(S)g which is computationally easy. In this section we shall primarily

address the issue of how di�cult it is to obtain conv(S). First we show that for rational

polyhedra, and for not necessarily rational bounded polyhedra, we can generate conv(S)

algorithmically in a �nite number of steps. In general however, there is no upper bound on the

number of steps in terms of the dimension ofS.Wealso demonstrate that it is very unlikely that

conv(S) of any NP-hard problem can be described by concise families of linear inequalities.

Finally, we relate the complexity of the problem of �nding a hyperplane separating a vector

x� from conv(S) or showing that x� belongs to conv(S), to the complexity of the optimization

problem given S. In general these two problems are equally hard, but if we restrict the search

of a separating hyperplane to a speci�c class, this problem might be polynomially solvable

even if the underlying optimization problem is NP-hard.

1.1 Solving Integer Programming Problems by Linear Programming

1.1.1 Gomory's Cutting Plane Algorithm

What was needed to transform the procedure of Dantzig, Fulkerson and Johnson (1954) into

an algorithm was a systematic procedure for generating valid inequalities that are violated by

the current solution. Assume thatwe want to solve the variant of ILP where the integer vectors

in S are bounded and where all entries of the constraint matrix A and the right-hand side

vector b are integers. Gomory (1958), (1960) and (1963) developed a cutting plane algorithm
based on the simplex method, for solving integer linear problems on this form. This was the

�rst algorithm developed for integer linear programming that could be proved to terminate in

a �nite number of iterations. The basic idea of Gomory's algorithm is similar to the approach

of Dantzig, Fulkerson and Johnson, i.e. instead of solving ILP directly we solve the linear

programming (LP) relaxationminfcx : x 2 Pg by the simplex method. If the optimal solution
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to LP is integral, then we are done, and otherwise we need to identify a valid inequality cutting

o� x�. Gomory developed a technique for automatically identifying a violated valid inequality

and proved that after adding a �nite number of inequalities, called Gomory cutting planes, the

optimal solution is obtained. We shall illustrate Gomory's technique by an example. Assume

we have solved the linear relaxation of an instance of ILP, as described above, by the simplex

method, and that one of the rows of the tableau reads

x1 �
1
11
x3 +

2
11
x4 =

36
11

where x1 is a basic variable and variables x3 and x4 are non-basic, i.e. at the current solution

x1 = 36=11 and x3 = x4 = 0. We now split each coe�cient in an integer and a fractional

part by rounding down all coe�cients. The integer terms are put in the left-hand side of the

equation and the fractional terms are put in the right-hand side. Since all coe�cients are

rounded down, the fractional part of the variable coe�cients in the right-hand side becomes

nonpositive,

x1 � x3 � 3 = �10
11
x3 �

2
11
x4 +

3
11
:

In any feasible solution to ILP, the left-hand side should be integral. Moreover, all variables are

nonnegative. Since the variables in the right-hand side appear with nonpositive coe�cients

we can conclude that

3
11 �

10
11x3 �

2
11x4 � 0; and integer: (4)

We have argued that the inequality (4) is valid, i.e. it is not violated by any feasible integer

solution. It is easy however to see that it does cut o� the current fractional solution as x3 =

x4 = 0. Let bxc denote the integer part of x.

Outline of Gomory's cutting plane algorithm.

1. Solve the linear relaxation of ILP with the simplex method. The current number of

variables is k. If the optimal solution x� is integral, stop.

2. Choose a source row i0 in the optimal tableau with a fractional basic variable. Row i0
reads �ai0;1x1 + �ai0;2x2 + : : :+ �ai0;kxk =

�bi0 . Let a
0

ij = �aij � b�aijc; and b0i =
�bi � b�bic.

3. Add the equation �a0i0;1x1 � a0i0;2x2 � : : : � a0i0;kxk + xk+1 = �b0i0 , where xk+1 is a

slack variable, to the current linear formulation, and reoptimize using the dual simplex

method. If the optimal solution x� is integral, stop, otherwise k  k + 1, go to 2.

In the outline above we have not speci�ed how to choose the source row. To be able to prove

that the algorithm terminates in a �nite number of steps we have to make sure that certain

technical conditions are satis�ed. The technical details are omitted here but can be found in

Gomory (1963) who gives two proofs of �niteness, and in Schrijver (1986), page 357.

Theorem 1 Gomory (1963). There exists an implementation of Gomory's cutting plane
algorithm such that after a �nite number of iterations either an optimal integer solution is

found, or it is proved that S = ;.
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A recent discussion on Gomory cutting planes can be found in Balas et al. (1994) who incor-

porate the cutting plane algorithm in a branch-and-bound procedure and report on compu-

tational experience.

1.1.2 Chv�atal's Rounding Procedure

Chv�atal (1973) studied the more general version of ILP, where the integer vectors of S are

bounded and where the entries ofA and b are real numbers. He showed that if one takes linear

combinations of the linear inequalities de�ning P and then applies rounding, and repeats the

procedure a �nite number of times, conv(S) is obtained. After each iteration of the procedure

we get a new linear formulation containing more inequalities. We again illustrate the procedure

by an example. Note that this example will be referred to frequently in the sequel. Let G =

(V;E) be an undirected graph where V is the set of vertices and E is the set of edges.. A

matching M in a graph is a subset of edges such that each vertex is incident to at most one

edge inM , see Figure ?. Let xe be equal to one if edge e belongs to the matchingM and zero

otherwise, and let �(v) = fe 2 E : e is incident to vg,. The maximum cardinality matching

problem can be formulated as the following integer linear programming problem.

max

X
e2E

xe (5)

s.t.

X
e2�(v)

xe � 1 for all v 2 V (6)

0 � xe � 1 for all e 2 E (7)

xe integer for all e 2 E (8)

Figure of matching plus mention possible applicationsLetU be any subset con-

sisting of k vertices, where k � 3 and odd, and let E(U) be the set of edges with both end-

vertices in U . By adding inequalities (6) for all v 2 U we obtain 2

P
e2E(U) xe � jU j, or

equivalently X
e2E(U)

xe �
jU j

2
: (9)

Since each xe is an integer, the left-hand side of (9) has to be integral. As jU j is odd, the
right-hand side of (9) is fractional, and hence we can round down the right-hand side of (9)

giving the valid inequality X
e2E(U)

xe �

�
jU j

2

�
(10)

which we call an odd-set constraint. It is easy to show that the odd-set constraints are necessary

to describe the convex hull of matchings in G.We also note that there are exponentially many

odd-set constraints as there are exponentially many ways of forming subsets U . We shall now

give a more formal description of Chv�atal's procedure.
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An inequality

Pn
j=1 ajxj � b is said to belong to the elementary closure of a set P of linear

inequalities, denoted e1(P ), if there are inequalities
Pn

j=1 aijxj � bi i = 1; : : : ; m in P and

nonnegative real numbers �1; �2; : : : ; �m such that

mX
i=1

�iaij = aj with aj integer; j = 1; : : : ; n;

and $
mX
i=1

�ibi

%
� b:

For integer values of k > 1, ek(P ) is de�ned recursively as ek(P ) = e(P [ ek�1(P )). The
closure of P is de�ned as c(P ) = [1k=1e

k
(P ).

Theorem 2 Chv�atal (1973). If S is a bounded polyhedron, then conv (S) can be obtained
after a �nite number k of closure operations.

An interesting question is if k can be bounded from above by a function of the dimension of

S. Chv�atal called the minimum number of closure operations k required to obtain conv(S),

given a linear formulation P , the rank of P . If we return to the matching problem (6){(8), it

was proved by Edmonds (1965) that the convex hull of the matching polytope is determined

by inequalities (6), (7) and (10). As the odd-set constraints (10) can be obtained by applying

one closure operation on the linear formulation, the rank of the set of inequalities (6) and (7)

is one. In general however, there is no upper bound on k in terms of the dimension of S as the

following two-dimensional problem illustrates.

max x2
x1 � 1

x1 � 0

�tx1 + x2 � 1

tx1 + x2 � t + 1

x2 � 0

x1; x2 integer

Explain the outcome of the exampleOnly if S = ; does there exists an upper bound
on k that is a function of the dimension of P . This was proved by Cook et al. (1987).

There is a clear relation betweenChv�atal's closure operations andGomory's cutting planes

in the sense that every Gomory cutting plane can be obtained by a series of closure operations

and every inequality belonging to the elementary closure can be obtained as a Gomory cutting

plane. It would be possible to prove Theorem 2 using Gomory's algorithm, but then one would

�rst need to get rid of the inequalities xj � 0; j; : : : ; n and the assumption that the entries of

A and b have to be integer. For further details, see Chv�atal (1973).

1.1.3 Schrijver's Rounding Procedure

Schrijver (1980) studied the version of ILP where S is not necessarily bounded, and where P is

de�ned by a rational system of linear inequalities. The operations carried out on P to obtain
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the convex hull of feasible solutions is quite di�erent fromthe linear combination and rounding

schemes developed by Gomory and Chv�atal. The key component of Schrijver's procedure is

the formulation of a totally dual integral (TDI) system of inequalities. A rational system

Ax � b of linear inequalities is TDI if for all integer vectors c such that maxfcx : Ax � bg is
�nite, the dual, minfyb : yA = c; y � 0g, has an integer optimal solution. Note that if Ax � b

is TDI, and if b is integral, then P = fx : Ax � bg is an integral polyhedron, i.e. all extreme
points of P are integral. TDI systems were introduced by Edmonds and Giles (1977).

Each iteration of Schrijver's procedure consists of the following two steps.

1. Given a rational polyhedron P , �nd a TDI system Ax � b de�ning P , with A integral.

2. Round down the right-hand side b.

It has been proved by Giles and Pulleyblank (1979) and Schrijver (1981) that there exists

a TDI system as in 1. for every rational polyhedron P , and that the TDI system is unique

if P is full-dimensional. Finding such a TDI system can be done in �nite time. After one

iteration of the above procedure we get a polyhedron P (1)
strictly contained in P unless P is

integral. Given the polyhedron P (1)
we repeat the steps 1. and 2. This continues until conv(S)

is obtained.

Theorem 3 Schrijver (1980). For each rational polyhedron P , there exists a number k, such
that after k iterations of Schrijver's procedure conv (S) is obtained.

The results presented above are of signi�cant theoretical importance as they give algorith-

mic ways of generating the convex hull of feasible solutions. All three approaches are �nite,

but from a practical point of view �nite in most cases does not imply that computations can

be done within reasonable time. One apparent question is whether for some problem classes it

is possible to write down the linear description of the convex hull in terms of concise families

of linear inequalities. If that is possible we could apply linear programming directly. This is

the topic of the following subsection.

1.2 Concise Linear Descriptions

We mentioned in the previous subsection that the convex hull of matchings in a general

undirected graph G is given by the de�ning inequalities (6), (7) and the exponential class of

inequalities (10).Assume now thatG is bipartite, i.e. that we can partition the setV of vertices

into two sets V1; V2 such that all edges have one endvertex in V1 and the other endvertex in

V2. For bipartite graphs the convex hull of matchings is described by the de�ning inequalities

(6) and (7) only, which is a polynomial system of linear inequalities. This means that for

bipartite graphs the integrality condition (8) is redundant. In contrast, there is no concise

linear description known for the traveling salesman problem, even if we allow for exponential

families of inequalities. The reason why the bipartite matching problem is so easy is that the

constraint matrix is totally unimodular (TU). A matrix A is TU if each subdeterminant of A

is equal to 0,1 or -1.
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Theorem 4 If A is a TU matrix the polyhedron P = fx : Ax � bg is integral for all integer
vectors b for which P is not empty.

Seymour (1980) provided a complete characterization of TU matrices yielding a polynomial

algorithm for testing whether a matrix is TU. For a thorough discussion on TU matrices we

refer to Schrijver (1986), and Nemhauser and Wolsey (1988).

An observation that is interesting to make in this context is that the bipartite matching

problem is polynomially solvable as its linear description is polynomial in the dimension of

the problem. For the matching problem in general undirected graphs there is a polynomial

combinatorial algorithmdue to Edmonds (1965),but the traveling salesman problem is known

to be NP-hard. The following theorem con�rms that there is a natural link between the

computational complexity of a class of problems and the possibility of providing concise

linear descriptions of the convex hull of feasible solutions. Before stating the result we need

to introduce the following decision problems:

The lower-bound feasibility problem. An instance is given by integers m;n, anm � n matrix

A, vectors b and c, and a scalar �. The question is: 9 x 2 ZZn : Ax � b; cx > �?

The facet validity problem. An instance is given by the same input as for the lower-bound

feasibility problem. The question is: Does cx � � de�ne a facet of conv(fx 2 ZZn : Ax � bg)?

Note that if the lower-bound feasibility problem for a family of polyhedra is NP-complete

then optimizing over the same family of polyhedra is NP-hard.

Lemma 5 If any NP-complete problem belongs to co-NP, then NP=co-NP.

Theorem 6 Karp and Papadimitriou (1980). If lower-bound feasibility is NP-complete, and

facet validity belongs to NP then NP=co-NP.

The way to prove Theorem 6 is to show that if facet validity belongs to NP, then lower-bound

feasibility belongs to co-NP. If lower-bound feasibility is NP-complete we can through Lemma

5 conclude that NP=co-NP. It is extremely unlikely that NP=co-NP, as this implies that all

NP-complete problems have a compact certi�cate for the no-answer. Hence, if we believe that

NP6=co-NP, and if minfcx : x 2 Sg is NP-hard, then there are classes of facets of conv(S) for
which there is no short proof that they are facets.

1.3 Equivalence Between Optimization and Separation

We have seen that if a problem is NP-hard we cannot expect to have a concise linear descrip-

tion of the convex hull of feasible solutions. Moreover, for the matching problem, which is

polynomially solvable and which has a concise linear description of the convex hull of feasible

solutions, this description is exponential in the dimension of the problem. These observations

do not necessarily have to be negative since what we primarily need is a good description of

the area around the optimal solution. The question then is whether it is possible to identify

a violated inequality whenever needed, i.e. if we can �nd a hyperplane separating a given

fractional solution from the convex hull, or prove that no such hyperplane exists.
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The separation problem for a family FP of polyhedra. Given a polyhedron P 2 FP , and a

solution x�, �nd an inequality cx � �, valid for P , satisfying cx� > �, or prove that x� 2 P .

The optimization problem for a family FP of polyhedra. Given is a polyhedron P 2 FP .

Assume that P 6= ; and that P is bounded. Given a vector c 2 IR
n
, �nd a solution x0 such

that cx0 � cx for all x 2 P .

Theorem 7 Gr�otschel, Lov�asz and Schrijver (1981). There exists a polynomial time algo-
rithm for the separation problem for a family FP of polyhedra, if and only if there exists a

polynomial time algorithm for the optimization problem for FP .

The theorem says that separation in general is equally hard as optimization but, as we shall

see in the next section, when applying the polyhedral approach we develop speci�c families

of valid inequalities for a given problem type, such as the odd-set constraints (10) developed

for the matching problem.

The separation problem based on a family FI of valid inequalities. Given a solution x�, �nd
an inequality cx � � belonging to FI , satisfying cx� > �, or prove that no such inequality in

FI exists.

The separation problem based on a family of valid inequalities may be polynomially solvable

even if the underlying optimization problem is NP-hard. Moreover, even if a family of inequal-

ities is NP-hard to separate we may still be able to separate it e�ectively using a heuristic.

Good separation heuristics together with a good implementation of a preprocessing routine

and a branch-and-bound scheme, form the basis for the success of the polyhedral approach.

2 Polyhedral Results for Selected Combinatorial Structures

The results presented in the previous section did provide very important theoretical answers,

but no e�cient computational tools. In the early seventies there was a renewed interest in

developing general purpose integer programming solvers. Instead of Gomory's cutting plane

method, which tended to be very time consuming, one developed facet de�ning inequalities

and separation algorithms for various problem types and embedded the separation algorithms

in a branch-and-bound framework. B&C flowchart here? Since the added inequalities could

be proved to be necessary to describe the convex hull of feasible solutions one could expect

that they would be more e�ective than the Gomory cutting planes. Moreover, by developing

facet de�ning inequalities and associated separation algorithms for some basic combinatorial

structures that occur frequently in more general combinatorial optimization problems, and

by implementing these algorithms in commercial software, it would possibly be very useful

when solving a wide range of combinatorial problems. In the late seventies and in the eighties

remarkable computational progress was made. Here we shall describe some classes of facet

de�ning valid inequalities developed for a few basic, important, combinatorial optimization

problems. The main purpose is to give an impression of how inequalities and separation

algorithms are developed, and how they can be used, not only for the problem for which they

are developed, but also for more general structures. We conclude the section by giving a list
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of di�erent problem types for which polyhedral results are known, together with references.

Since the space provided here is not enough for a complete survey, we recommend the following

literature to the interested reader. The books by Schrijver (1986), and Nemhauser andWolsey

(1988) provide a broad theoretical foundation aswell as many examples. The article by J�unger

et al. (1994) contains a comprehensive survey of computational results obtained by using

polyhedral techniques. The latest developments on solving large traveling salesman problems

is found in the article by Applegate et al. (1994).

2.1 Preliminaries

Here we introduce basic de�nitions that are needed to understand the terminology used in

subsequent sections.

The set of linear combinations of a set of vectors x1 : : :xK � IR
n
is the linear space

LS = f
PK

k=1 �kx
k
: � 2 IRKg. If x1 : : : xK form a minimal system, i.e., none of the vectors is

a linear combination of the others, then the vectors x1 : : : xK are called linearly independent.
Equivalently, the vectorsx1 : : : xK are linearly independent if �k = 0; 8k is the unique solution
to the system

PK
k=1 �kx

k
= 0. The dimension of a linear space LS, denoted by dim(LS) is

de�ned as the minimum number of linearly independent points in the space.

The set of a�ne combinations of the K + 1 points x0; x1 : : :xK � IR
n
is called an a�ne

space AS = f
PK

k=0 �kx
k
: � 2 IR

K+1
;

PK
k=0 �k = 1g. Thus, an a�ne space can be viewed

as a linear space translated over a vector x0: AS = fx0 +
PK

k=1 �k(x
k � x0) : � 2 IR

Kg.
Hyperplanes in IR

n
are a�ne spaces. If the set of points x0 : : : xK is a minimal system, i.e.,

none of the points is an a�ne combination of the others, then the points x0 : : :xK are called

a�nely independent. Equivalently, the points x0 : : :xK are a�nely independent if �k = 0; 8k
is the unique solution to the system

PK
k=0 �kx

k
= 0;

PK
k=0 �k = 0. The dimension of an a�ne

space, denoted by dim(AS), is the number of a�nely independent points minus 1. Thus, if

the points x0 : : : xK are a�nely independent, the a�ne space de�ned by these points has

dimension K.

A polyhedron P is the set of points satisfying a system of �nitely many linear inequalities,

i.e., P = fx 2 IR
n
: Ax � bg. The dimension of P , denoted dim(P ), is the dimension of the

smallest a�ne space containing P . A bounded polyhedron is called a polytope.

An inequality �x � �0 is called valid for P if each point in P satis�es the inequality. The

set F = fx 2 P : �x = �0g is called a face of P and the valid inequality �x � �0 is said to

de�ne the face F . A face is said to be proper if it is not empty and if it is properly contained

in P , i.e. if ; 6= F 6= P . The dimension of a proper face F , dim(F ), is strictly smaller than the

dimension of P . If dim(F ) = dim(P ) � 1, i.e., if F is maximal, then F is called a facet. The

facet de�ning inequalities are important since they are precisely the inequalities needed to

de�ne the convex hull of feasible solution in addition to the set of inequalities that are satis�ed

with equality by every feasible point.

11



2.2 The Vertex Packing Problem

maybe skipA vertex packing is a subsetV 0 � V of vertices in an undirected graphG = (V;E),

such that no two vertices in V 0
are adjacent. Let xv = 1 if v 2 V 0

and let xv = 0 otherwise.

The integer programming formulation of the maximum cardinality vertex packing problem is

given below.

max

X
v2V

xv (11)

s.t. xv + xw � 1 for all fv; wg 2 E (12)

xv 2 f0; 1g for all v 2 V (13)

possible application The vertex packing problem is sometimes referred to as the in-
dependent set problem or as the stable set problem. Let XV PG be the set of feasible solutions

to the vertex packing problem in the graph G and let �(G) be the maximum cardinality of

a vertex packing in G. An edge is called critical if its removal from G produces a graph G0

with �(G0
) > �(G). Chv�atal (1975) derived the following general su�cient condition for an

inequality to de�ne a facet of conv(XV PG).

Theorem 8 Chv�atal (1975). Let E� be the set of critical edges of G. If the graph G�
=

(V;E�
) is connected, then the inequality

P
j2V xj � �(G) de�nes a facet of conv (XV PG).

A clique in a graph G is a complete subgraph of G, see Figure 2a). Since no two vertices
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Figure 2: a) A clique. b) An odd-hole.

in V 0
are allowed to be adjacent we could take any clique C in G and require that at most one

vertex belonging to C should belong to the vertex packing V 0
giving the valid inequalityX

j2C

xj � 1: (14)

Theorem 9 Padberg (1973). Let C be a clique in the graph G. The inequality (14) de�nes

a facet of conv (XV PG) if and only if C is maximal.
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Proof. Su�ciency: The dimension of the vertex packing polytope is jV j. Hence, to prove
that (14) de�nes a facet of conv(XV PG) we need to �nd jV j a�nely independent points that
are tight for (14). Let C be a maximal clique. For every v 2 C we take the vertex packing

that contains only v. For v =2 C we �rst choose a node w 2 C that is not adjacent to v. Since

C is maximal such a node exists. We then take the vertex packing that contains both nodes v

and w. The jV j points given above are feasible and satisfy the clique inequality with equality.
Thus, the inequality is facet-de�ning.

Necessity: IfC is not maximal then there is a clique C0
such thatC � C0

. The clique inequality

de�ned by C0
dominates the inequality de�ned by C.

Another class of valid inequalities for the vertex packing problem is the family of odd-hole

inequalities. An odd hole H in a graph G is a chordless cycle consisting of an odd number of

vertices, i.e. there are no edges of G connecting any nonconsecutive vertices in H , see Figure

2b). Since the number of vertices in H is odd, at most bjH j=2c = (jH j � 1)=2 vertices in H

can belong to any vertex packing. Hence the following odd-hole inequality is valid,

X
j2H

xj �
jH j � 1

2
: (15)

Padberg showed that (15) de�nes a facet of conv(XVPG\fxj = 0 for all j 62 Hg), i.e. in general
(15) de�nes a face of conv(XV PG) of dimension less than dim(XV PG) � 1. The question is

whether it is possible to increase the dimension of (15) such that (15) becomes a facet for

conv(XV PG). One way of increasing the dimension of a face is through sequential lifting

(Padberg (1973) and Wolsey (1976)), which is illustrated in the following example. Consider
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Figure 3: A wheel.

the graph in Figure 3. Such a graph is called a wheel. The inequality x1+x2+x3+x4+x5 � 2

de�nes a facet of conv(XV PG \ fx6 = 0g). The question is whether there exists a constant

� � 0 such that x1+x2+x3+x4+x5+�x6 � 2 de�nes a facet of conv(XV PG). If x6 = 0,� can

take any value, hence assume that x6 = 1. If x6 = 1 we must have xj = 0; j = 1; : : : ; 5, since

x6 is adjacent to all other vertices. The maximal value of �, such that the inequality remains

valid, is � = 2. In this example we had only one variable set to a �xed value, but in general

we include one variable at the time, with a nonnegative coe�cient, in the inequality. The

following two theorems imply that if the inequality is facet de�ning in the reduced space, and

if we \lift" in all variables sequentially with maximal coe�cients, then the resulting inequality

de�nes a facet in the full space.
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Theorem 10 Wolsey (1976). Let S � f0; 1gn. Suppose

nX
j=2

�jxj � �0 (16)

is valid for S0 = S \ fx 2 f0; 1gn : x1 = 0g. If S \ fx 2 f0; 1gn : x1 = 1g 6= ;, then

�x1 +

nX
j=2

�jxj � �0 (17)

is valid for S for any � � �0�maxS\fx:x1=1gf
Pn

j=2 �jxjg. If (16) de�nes a face of conv (S
0
)

of dimension k, and if � is chosen maximal, then (17) de�nes a face of conv (S) of dimension
k + 1.

Theorem 11 Wolsey (1976). Let S � f0; 1gn. Suppose

nX
j=2

�jxj � �0 (18)

is valid for S1 = S \ fx 2 f0; 1gn : x1 = 1g. If S \ fx 2 f0; 1gn : x1 = 0g 6= ;, then

�x1 +

nX
j=2

�jxj � �0 + �1 (19)

is valid for S for any � � maxS\fx:x1=0g

Pn
j=2 �jxj��0. If (18) de�nes a face of conv (S

1
) of

dimension k, and if � is chosen minimal, then (19) de�nes a face of conv (S) of dimension

k + 1.

Sequential lifting is sequence dependent, i.e. di�erent lifting sequences give rise to di�erent

inequalities. Zemel (1978) proposed an alternative lifting procedure, called simultaneous lift-

ing. As the name indicates, the coe�cients of all variables that are to be lifted are considered
simultaneously, yielding inequalities that cannot be obtained in general by sequential lifting.

For more details on lifting procedures, see Nemhauser and Wolsey (1988).

The separation problem for clique inequalities consists of �nding amaximumweight clique

in a graph. This problem is NP-hard, and therefore we usually turn to heuristics for �nding

violated clique inequalities. The separation problem for odd-hole inequalities can be solved

in polynomial time by applying a shortest path algorithm to a slightly adapted graph, see

Ho�man and Padberg (1993).

2.3 The Traveling Salesman Problem

Consider an undirected complete graph G = (V;E) with n = jV j. In the traveling salesman

problem (TSP) we want to �nd a minimum length Hamiltonian cycle, i.e. a minimum length

cycle containing each vertex exactly once. Let xe = 1 if edge e is belongs to the Hamiltonian
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cycle, and let xe = 0 otherwise. Moreover, let de denote the length of edge e 2 E. Usually, the
vertices of the graph are called cities, and the Hamiltonian cycle is called a tour.

min

X
e2E

dexe (20)

s.t.

X
e:v2e

xe = 2 for all v 2 V (21)

X
e�S

xe � jSj � 1 for all S : ; 6= S 6= V (22)

xe 2 f0; 1g for all e 2 E (23)

The formulation restricted to the constraints (21) and (23) is called the 2-matching relax-
ation of TSP and its solutions are referred to as 2-matchings. Such solutions may constitute

disjoint cycles, or subtours. Constraints (22), introduced by Dantzig et al. (1954), prevent

subtours, and are therefore called subtour elimination constraints. Edmonds (1965) studied
the polyhedral structure of the 2-matching problem, and obtained a complete linear descrip-

tion of the convex hull of feasible solutions by adding so-called 2-matching inequalities to
constraints (21) and 0 � xe � 1 for all e 2 E . Since the 2-matching problem is a relaxation

of TSP, the 2-matching inequalities are also valid for TSP. We illustrate these inequalities

in the following example. Consider the fractional solution illustrated in Figure 4. The thick

���

���

���

���
���

���
@
@
@
@@

�
�
�
�� @

@
@
@@

�
�
�
��

3

1

2

6

5

4

Figure 4: A fractional solution violating a 2-matching constraint.

lines correspond to variables that have value 1 and the thin lines correspond to variables with

value 0.5. Clearly, this solution satis�es the degree constraints (21). To separate this solution

from the convex hull of 2-matchings we introduce the following inequality. Consider the set

of vertices H = f1; 2; 3g. Let E(H) be the set of edges with both endvertices in H , and let

E0
= ff1; 4g; f2; 5g; f3; 6gg, i.e, each edge in E0

has exactly one endvertex inH . Furthermore,

let x(F ) =
P

e2F xe. From the set of edges E(H)[E0
at most four can belong to a 2-matching

since otherwise at least one of the vertices in H will have degree 3, which violates constraints

(21). The cumulative value of the variables corresponding to edges in E(H)[E0
is 4.5. Hence,
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we can conclude that the inequality x(E(H))+x(E0
) � 4 is violated by the solution described

above. In general, a 2-matching constraint has the form

x(E(H))+ x(E0
) � jH j+

�
1

2
jE0j

�

where H � V and where the edges in E0
have precisely one endvertex in H . Note that only

2-matching constraints with an odd number of edges in E0
, can be facet-de�ning, since the

inequalities otherwise are implied by the degree constraints.

Comb inequalitieswere introduced byChv�atal (1975) as a generalization of the 2-matching

constraints. In the comb inequalities the edges inE0
are replaced by anodd number s of disjoint

vertex sets T1; : : : ; Ts, called teeth, each having one vertex in common with the handle H .

The comb inequality is written as

x(E(H))+

sX
j=1

x(E(Tj)) � jH j+
sX

j=1

(jTjj � 1)�
1

2
(s + 1): (24)

The fractional solution illustrated in Figure 5 satis�es the 2-matching constraints and the

subtour elimination constraints, but not the comb inequality de�ned by H = f1; 5; 6; 7g, and
T1 = f1; 2g,T2 = f3; 4; 5; 6g,T3 = f7; 8g.Again, thick lines correspond to variables with value
1 and thin lines to variables with value 0.5. Chv�atal's comb inequalities were generalized by
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Figure 5: Fractional solution violating a comb inequality.

Gr�otschel andPadberg (1979)who introduced structures where each tooth can havemore than

one vertex in common with the handle. The clique tree inequalities introduced by Gr�otschel

and Pulleyblank (1986) are further generalization of combs in the sense that clique trees

contain multiple handles, which are connected through the teeth. Many more exotic classes

of inequalities have been derived to date, but the search for new classes is still vivid. A good

overview of the current state-of-the-art is provided by Applegate et al. (1994). Goemans

(1993) considers the quality of various classes of inequalities with respect to their induced

relaxations.
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The separation problem based on the subtour elimination constraints can be viewed as a

minimum cut problem, which is polynomially solvable using max-ow algorithms. Separation

of the 2-matching constraints is also polynomial, which was showed by Padberg andGr�otschel

(1985). Violated 2-matching constraints are however usually identi�ed using a heuristic, since

this is still e�ective and faster in practice. No exact polynomial time algorithm is known to

date for solving the separation problem based on the comb inequalities, but there are fast

heuristic methods available that perform quite well. For clique tree inequalities, not even

good heuristics are known that will perform well in general. To illustrate the e�ectiveness of

the polyhedral approach to solve TSP we provide detailed computational results in sections

3 and 4.

2.4 The Knapsack Problem

Let N = f1; : : : ; ng. The knapsack problem is formulated as

max

X
j2N

cjxj (25)

s.t.

X
j2N

ajxj � b (26)

xj 2 f0; 1g for all j 2 N: (27)

Assume that the vectors c; a and the right-hand side b are rational, and letXK denote the set

of feasible solutions to the knapsack problem. We call a set C a cover or a dependent set with
respect toN if

P
j2C aj > b. A cover is minimal if

P
j2S aj � b for all S � C. If we choose all

elements from the cover C, it is clear that the right-hand side of (26) is exceeded. Hence, the

following knapsack cover inequality (Balas (1975), Hammer et al. (1975) and Wolsey (1975))X
j2C

xj � jCj � 1 (28)

is valid. A generalization of (28) is given by the family of (1; k)-con�guration inequalities
(Padberg (1980)). Let �C � N , and t 2 N n �C be such that

P
j2 �C aj � b and such thatQ[ftg

is a minimal cover for allQ � �C with jQj = k. Let T (r) � �C vary over all subsets of cardinality

r of �C, where r is an integer satisfying k � r � j �Cj. The (1; k)-con�guration inequality

(r � k + 1)xt +
X

j2T (r)

xj � r (29)

is valid for conv(XK), and if k = j �Cj the cover inequalities (28) are obtained. The (1; k)-
con�guration inequalities are primarily designed to deal with elements j of the knapsack

having a large coe�cient aj .

In general (28) is not facet de�ning, but as with the odd-hole inequalities (15) they can be

lifted to become facets. One special case of a lifted cover inequality, where all lifting coe�cients

are equal to zero or one, is obtained by considering the extension E(C) of a minimal cover C,
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where E(C) = fk 2 N n C : ak � aj ; for all j 2 Cg. The inequality
P

j2E(C) xj � jCj � 1 is

valid for conv(XK) and under certain conditions it also de�nes a facet of conv(XK). The most

general form of the knapsack cover inequality is obtained by partitioning the set N into the

sets (N 0; N nN 0
). Let xj = 0 for all j 2 N nN 0

, and let C0
be a minimal cover with respect to

N 0
. Moreover, let xj = 1 for all j 2 N 0 nC0

. By using the lifting results presented in Theorems

10 and 11, we can conclude that conv(XK) has a facet of the following formX
j2NnN 0

�jxj +
X

j2N 0

nC0

�jxj +
X
j2C0

xj � jC
0j � 1 +

X
j2N 0

nC0

�j; (30)

where �j � 0 for all j 2 N nN 0
and �j � 0 for all j 2 N 0 nC0

. Balas (1975) characterized the

lifting coe�cients �j in the case where N
0 n C0

= ;.

The separation problem based on the cover inequalities can again be viewed as a knapsack

problem as we show below. Assume we are given the point x�. To �nd a cover inequality (28)

violated by x� we need to �nd a set C such that

P
j2C x

�

j > jCj � 1 and

P
j2C aj > b. Let

zj = 1 if j 2 C, and let zj = 0 otherwise and assume without loss of generality that aj ; j 2 N
and b are integral. For (28) to be violated the zj-variables have to satisfy the constraints

X
j2N

x�jzj >

0
@X
j2N

zj

1
A� 1 and

X
j2N

ajzj � b+ 1:

The �rst of the above constraints can be rewritten as

P
j2N(1 � x�j )zj < 1, leading to the

following formulation of the problem of �nding the most violated cover inequality (28).

min � =
X
j2N

(1� x�j )zj (31)

s.t.

X
j2N

ajzj � b+ 1 (32)

zj 2 f0; 1g for all j 2 N (33)

A violated cover inequality is identi�ed if and only if � < 1. To see that the separation problem

(31)-(33) is equivalent to a knapsack problem we only need to complement the zj�variables,
i.e. substitute zj by 1�zj . Problem (31)-(33) is however often easier to solve than the original

knapsack problem since, at a typical fractional solution x�, many variables take value zero

or one. If x�j = 1 the coe�cient of zj in (31) is equal to zero and we can set zj equal to one.

Analogously, if x�j = 0 we set zj is equal to zero. Therefore, typically few variables remain

in the separation problem. Crowder et al. (1983) developed a heuristic for the separation

problem and for choosing the sets N 0
and C0

. Once a minimal cover C0
is generated it is also

used in a heuristic for �nding a violated (1; k)-con�guration inequality. They implemented the

algorithms and solved large 0-1 integer programming problems by automatically generating

knapsack cover inequalities. Recent work on the knapsack polytope is done by Weismantel

(1994).
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2.5 The Single-Node Flow Problem

Consider a single node in a directed graph, and let N be the set of arcs entering the node.

The outow from the node is equal to b. Let xj be a continuous variable denoting the ow on

arc j, and let mj be the capacity of arc j. If arc j is open, then yj = 1, otherwise yj = 0. The

following �xed charge single-node ow structure is a relaxation of many combinatorial ow

models, X
j2N

xj = b (34)

0 � xj � mjyj for all j 2 N (35)

yj 2 f0; 1g for all j 2 N: (36)

Let XFC denote the set of feasible solutions to (34){(36). A subset J � N is called a ow

cover if
P

j2J mj = b+ � with � > 0. If we have a cover J and if we close one arc k 2 J then

maxfxj : j 2 J n kg = minfb;
P

j2Jnkmjg = minfb; b� (mk � �)g = b� (mk � �)+ yielding

the valid inequality X
j2J

xj � b�
X
j2J

(mj � �)+(1� yj): (37)

Theorem 12 Padberg, Van Roy and Wolsey (1985). The ow cover inequality (37) de�nes

a facet of conv (XFC) if and only if maxj2Jfmjg > �.

Let zj = 1 if j 2 J and let zj = 0 otherwise, and let (x�; y�) denote a fractional point. For

a given value of �, the separation problem based on the family of ow cover inequalities (37)

is formulated as follows.

max

X
j2N

[x�j + (mj � �)+(1� y�j )]zj (38)

s.t.

X
j2N

mjzj = b+ � (39)

zj 2 f0; 1g for all j 2 N: (40)

Once we have a set J satisfying the condition of Theorem 12 we can extend the ow cover

inequality by including ow from the arcs belonging to the set L � (N n J).

Let �ml = maxfmaxj2Jfmjg; mlg for all l 2 L. The following extended ow cover inequality
is valid for conv(XFC),X

j2J[L

xj � b�
X
j2J

(mj � �)+(1� yj) +
X
j2L

( �mj � �)yj: (41)

Padberg et al. (1985) gave su�cient conditions for the extended ow cover inequality to de�ne

a facet of conv(XFC). Aardal et al. (1993) showed that the separation problem based on the

family of extended ow cover inequalities can be solved in polynomial time if mj = m for all

j 2 N .
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Figure 6: Single-node �xed charge ow.

Van Roy andWolsey (1986) also studied the single-node owmodel with both �xed charge

inow and outow arcs as well as general uncapacitated �xed charge structures, for which

they developed various families of facet de�ning valid inequalities. Separation heuristics for

these inequalities are also discussed by Van Roy and Wolsey (1987).

2.6 An Application: The Facility Location Problem

Here we shall discuss how some of the inequalities presented above can be used, and extended,

to solve facility location problems. The facility location problem is de�ned as follows. Let

M = f1; : : : ; mg be the set of facilities, and let N = f1; : : : ; ng be the set of clients. Facility
j has capacity mj , and client k has demand dk. The total demand of the clients in the set

S � N is denoted by d(S). The �xed cost of opening facility j is equal to fj and the cost of

transporting one unit of goods from facility j to client k is equal to cjk. Let yj = 1 if facility

j is open and let yj = 0 otherwise. The ow from facility j to client k is denoted by vjk . We

want to determine which facility should be opened and how the ow should be distributed

between the open facilities and the clients such that the sum of the �xed costs of opening the

facilities, and the transportation costs is minimized, and such that all clients are served, and

all capacity restrictions are satis�ed. The mathematical formulation is given below.

min

X
j2M

fjyj +
X
j2M

X
k2N

cjkvjk (42)

s.t.

X
j2M

vjk = dk for all k 2 N (43)

P
k2N vjk � mjyj for all j 2M (44)

0 � vjk � dkyj for all j 2M; k 2 N (45)

yj 2 f0; 1g for all j 2M (46)

2.6.1 The Uncapacitated Case

In the uncapacitated facility location (UFL) problem we havemj = d(N) for all j 2M . It is

convenient to scale the ow by substituting the variables vjk by the variables xjk = vjk=dk.
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The set of feasible solutions to UFL, XUFL, is given by the following sets of constraints.X
j2M

xjk = 1 for all k 2 N (47)

0 � xjk � yj for all j 2M; k 2 N (48)

yj 2 f0; 1g for all j 2M (49)

It is possible to require explicitly that xjk 2 f0; 1g since there is at least one optimal solution
of UFL having this property. Moreover, we can change the equality sign in constraint set (47)

to a less-than-or-equal-to sign if we make an appropriate change in the objective function

(for more details see Cho et al. (1983)). Finally, by complementing the yj-variables, i.e. by

introducing y0j = 1� yj , we obtain the following vertex packing formulation of UFL.

X
j2M

xjk � 1 for all k 2 N (50)

xjk + y0j � 1 for all j 2M; k 2 N (51)

y0j ; xjk 2 f0; 1g for all j 2M; k 2 N (52)

LetXUFLV P be the set of feasible solutions to (50){(52). Given a vertex packing formulation

of UFL, we can construct an associated undirected graph, called the intersection graph by

introducing a vertex for every variable and an edge for every pair of nonorthogonal columns.

To determine conv(XUFLV P ) is equivalent to determining the convex hull of vertex packings

in the associated intersection graph. Hence, we can use all results described in Section 2.2 to

derive valid inequalities for UFL. Due to the construction of the intersection graph all cliques

in this graph are described by inequalities (50) and (51), and all odd holes are cycles where

every third vertex is a y0j -vertex. Both Cornu�ejols and Thizy (1982) and Cho et al. (1983) used

the result by Chva�tal given in Theorem 8 to �nd more general inequalities than the odd-hole

inequalities. All theses inequalities have a regular cyclic structure and all coe�cients are equal

to one for all variables except one example of a simultaneously lifted odd-hole inequality given

by Cornu�ejols and Thizy. Aardal and Van Hoesel (1995) discuss further use of simultaneous

lifting to get new facets having di�erent coe�cients.

2.6.2 The Capacitated Case

By aggregating the ow from each depot we can easily see that a version of the knapsack

as well as the single node ow structure form relaxations of the capacitated facility location

(CFL) problem. Let vj =
P

k2N vjk. By using the aggregate ow variable vj we can obtain

the aggregate capacity and demand constraints

0 � vj � mjyj for all j 2M (53)

X
j2M

vj = d(N): (54)
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If we combine constraints (53) and (54) with constraint (46) we obtain a single-node ow

polytope and a so-called surrogate knapsack polytope XSK = fy 2 f0; 1g :
P

j2M mjyj �
d(N)g. Complementing the yj -variables, i.e. letting y0j = 1 � yj for all j 2 M gives the

knapsack polytope fy0 2 f0; 1g :
P

j2M mjy
0

j �
P

j2M mj � d(N)g. Hence we can use both

the knapsack cover inequalities as well as the ow cover inequalities when solving CFL. Both

classes of inequalities can also be derived for subsets K � N of clients. Especially the cover

inequalities have proved very useful computationally, as is illustrated further in Section 3.1.3.

One way of generalizing the ow cover inequalities is by considering a subset of clients as well

as subsets of arcs yielding the family of e�ective capacity inequalities (Aardal et al. (1993)).
Let Kj � K for all j 2M and let �mj = minfmj ; d(Kj)g. Let J de�ne a cover with respect to

K, i.e.

P
j2J �mj = d(K) + � with � > 0. The e�ective capacity (EC) inequality

X
j2J

X
k2Kj

vjk � d(K)�
X
j2J

( �mj � �)+(1� yj) (55)

is valid for conv(XCFL). The facet de�ning EC inequalities were completely characterized

by Aardal et al. (1993). To further generalize the EC inequalities consider the function f(J)

which is the maximum feasible ow from the depots in J to the clients in K on the arcs

f(j; k) : j 2 J; k 2 Kjg. By using maximum ow arguments we can show that f(J)�
f(J n fjg) � ( �mj � �)+. Hence the valid inequality

X
j2J

X
k2Kj

vjk � f(J)�
X
j2J

(f(J)� f(J n fjg))(1� yj) (56)

is at least as strong as the EC inequality (55). Inequalities (56) are called submodular inequal-

ities since the function f(J) is a submodular set function. Submodular inequalities were �rst

considered byWolsey (1989) and further developed for CFL byAardal et al. (1993). Since there

is no closed-form expression of f(J) in general, it is hard to characterize the submodular facets.

Aardal et al. completely characterized two subclasses for which f(J)�f(J nfjg) � ( �mj��)
+

for at least one j 2 J , namely the single-depot and the multi-depot inequalities. The separa-
tion problem based on the EC inequalities and the submodular inequalities are discussed by

Aardal (1994).

2.7 A List of Polyhedral Results for Combinatorial Problems

Here we provide a list of polyhedral results that are known for combinatorial optimization

problems. If a recent survey of results for a speci�c problem class is known, we refer to the

survey and not to the individual articles. Surveys are marked with an asterisk. Due to the

vast literature, we do not claim the list to be complete.

Airline crew scheduling: Ho�man and Padberg (1993).Boolean quadratic polytope:

Padberg (1989), Lee and Leung (1993a). Clique problems: Pulleyblank and Shepherd

(1993), Balas et al. (1994b). Clustering: Gr�otschel and Wakabayashi (1989). Coloring:

Lee and Leung (1993b), Nemhauser and Park (1991).Covering, packing and partition:
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Balas and Padberg (1972), Padberg (1973,1977,1980), Nemhauser and Trotter (1974), Trot-

ter (1975), Wolsey (1976b), Balas and Zemel (1977), Balas and Ho (1980), Balas and Ng

(1989a,b), Cornu�ejols and Sassano (1989), Laurent (1989), Nobili and Sassano (1989), Sas-

sano (1989), Gr�otschel and Wakabayashi (1990), Chopra and Rao (1993). Cut polytopes:

Barahona andMahjoub (1986),Barahona et al. (1988),Conforti et al. (1990/91a,b),De Sousa

and Laurent (1991), Deza et al. (1992), Deza and Laurent (1992a,b). Frequency assign-

ment: Aardal et al. (1995).General integer and mixed 0-1 structures:Wolsey (1976a),

Peled (1977), Zemel (1978),Crowder et al. (1983),Padberg et al. (1985), Van Roy andWolsey

(1985,1986,1987), Goemans (1989), Nemhauser and Wolsey (1990).Knapsack problems:

Balas (1975a),Hammer et al. (1975),Wolsey (1975),Balas and Zemel (1978),Padberg (1980),

Nemhauser and Vance (1994), Weismantel (1994). Layout design: Leung (1994). Linear

ordering: Gr�otschel et al. (1984,1985), Reinelt (1985), Mitchell and Borchers (1992,1993).

Location: Cornu�ejols et al. (1977), Cornu�ejols and Thizy (1982), Cho et al. (1983a,b), Le-

ung and Magnanti (1989), Aardal et al. (1993,1994), Aardal (1994), Aardal and Van Hoesel

(1995). Lot sizing: Pochet and Wolsey (1994)
�
. Matching: Edmonds (1965), Gr�otschel

and Holland (1985). Network and VLSI design: Pochet and Wolsey (1992), Gr�otschel

et al. (1992b,1993,1995). Postman problems: Gr�otschel and Win (1992). Scheduling:

Queyranne and Schulz (1994)
�
. Subgraph polytopes: Balas and Pulleyblank (1983), Bara-

hona et al. (1985), Barahona and Mahjoub (1989,1992), Chopra (1992), J�unger and Mutzel

(1993). Tenary problems: Chopra (1989a). Traveling salesman problems: Dantzig et

al. (1954, 1959), Gr�otschel and Padberg (1979), Gr�otschel (1980), Padberg and Hong (1980),

Cornu�ejols and Pulleyblank (1982), Gr�otschel and Pulleyblank (1986), Padberg and Rinaldi

(1987,1990,1991), Fischetti (1991a,1992), Gr�otschel and Holland (1991), Naddef and Rinaldi

(1991,1992), Reinelt (1991), Naddef (1992), Clochard and Naddef (1993), Goemans (1993),

Applegate et al. (1994),Balas et al. (1995).Trees, forests and arborecences: Gamble and

Pulleyblank (1989), Chopra (1989b), Fischetti (1991b), Balas and Fischetti (1992), Chopra

et al. (1992), Goemans (1992), Gr�otschel et al. (1992a), Hall and Magnanti (1992), Chopra

and Rao (1994a,b).Vehicle routing: Araque (1989,1990), Araque et al. (1990), Cornu�ejols

and Harche (1993).

3 Computational Aspects

Once speci�c classes of valid inequalities for a certain version of ILP have been developed we

can implement the separation algorithms for these inequalities in the following cutting plane

algorithm.

Outline of the cutting plane algorithm.

1. Initialize the linear programming relaxation LP of ILP.

2. Solve LP and let x� be the optimal solution. If x� is integral, stop, otherwise go to step

3.
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3. Separation algorithms are run to identify inequalities violated by x�. If one or more

inequalities, or cuts, have been found add them to LP and go to step 2. If no violated

inequality is found, stop.

initialize LP - solve LP - x� optimal for LP -
�� �x� integral? -yes

stop

?

no

separate x��
�� �any cuts found?

?
no

�

stop

yes
add cuts to LP

6

Figure 7: Basic cutting plane algorithm.

If the algorithm terminates by �nding an integral solution x�, then x� is provably optimal.

Otherwise, the �nal fractional solution provides a lower bound on the optimal value, if we

assume that ILP is a minimization problem. Contrary to Gomory's cutting plane algorithm

we cannot guarantee that the algorithm terminates with the optimal solution to ILP since

we in general consider only a subset of all classes of facet de�ning inequalities, and since the

separation problems are often solved heuristically. Nevertheless, this technique has proved

very e�ective for �nding at least very strong lower bounds. A good lower bound decreases

the expected size of a branch-and-bound tree if we need to obtain the optimal solution. To

illustrate how the lower bound develops if we add valid inequalities sequentially, we consider

a TSP instance of 120 cities from Gr�otschel (1980), which was solved to optimality after

adding cutting planes only. The optimal solution was found after 13 calls to the LP-solver.

The value of the LP relaxation, zLP , and the number of added cuts at each iteration, are

given in Table 1. In total 36 subtour elimination constraints, 25 2-matching constraints, and

35 comb constraints were added. As can be concluded from the table, it is good practice to

generate and add many violated inequalities at each iteration, since in general the computing

time needed to solve the linear programs increase modestly, but the lower bound converges

to the optimal value much quicker.

In the remainder of this section we shall discuss how the basic cutting plane algorithm

can be extended and embedded in a branch-and-bound framework. We also discuss several

implementation issues. Each extension is illustrated by an example or by tables showing

computational results. In the tables we use the following notation: zLP denotes the value of

the LP-relaxation, and zIP and zMIP denote the optimal value of the integer and the mixed-

integer optimization problems respectively. By % gap we mean the percentage duality gap,

i.e. (zIP � zLP )=zIP . The percentage duality gap closed, denoted % gap closed is calculated
as (zrootLP � zLP )=(zIP � zLP ), where z

root
LP is the value of the LP-relaxation after all violated

inequalities that have been identi�ed in the root node of the branch-and-bound tree have been
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iteration zLP inequalities

1 6,662.5 13

2 6,883.5 15

3 6,912.5 7

4 6,918.8 9

5 6,928.0 6

6 6,935.3 9

7 6,937.2 8

8 6,939.5 5

9 6,940.4 4

10 6,940.8 12

11 6,941.2 5

12 6,941.5 3

13 6,942.0

Table 1: A cutting plane algorithm applied to a 120-city TSP.

added. The number of branch-and-bound nodes needed to verify the optimal solution is given

in the column B&B nodes.

3.1 Extending the Cutting Plane Algorithm

There are several ways to extend the basic cutting plane algorithm. We will describe the

major additional techniques in the order in which they appear in an extended cutting plane

algorithm.

3.1.1 Preprocessing

Preprocessing integer linear programs involves removing redundant constraints, tightening

the constraint coe�cients and right-hand sides of the constraints, and �xing variables to

certain values. This leads not only to better lower bounds provided by the linear relaxation, but

also to a signi�cant reduction in the size of the formulation, both with respect to the number

of constraints and number of variables. An important factor is also that the instance becomes

numerically more tractable if large coe�cients are reduced. There are many preprocessing

techniques described in the literature. For each technique, or combination of techniques, one

needs to �nd the right balance between e�ectiveness and computing time.Herewe shall present

some simple methods that strengthen a linear program quickly. These methods are described

by Savelsbergh (1994), and originally developed by Crowder et al. (1983) and Ho�man and

Padberg (1991).

Consider the following subset of constraints from a mixed integer program, where N+
is

the subset of variables with positive coe�cients, N�
is the subset of variables with negative

coe�cients, and N = N+ [N�
.X
j2N+

ajxj �
X
j2N�

ajxj � b (57)
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lj � xj � uj for all j 2 N (58)

A lower bound on the left-hand side of (57) isLB =

P
j2N+ ajlj�

P
j2N� ajuj . IfLB > b, then

the problem is infeasible. An upper bound on the left-hand side of (57) is UB =

P
j2N+ ajuj�P

j2N� ajlj . If UB � b, then the constraint is redundant. It is also possible to tighten the

bounds (58) on the variables by considering one variable at the time. Consider variable xk,

k 2 N+
, and letLBk =

P
j2N+

nfkg ajlj�
P

j2N� ajuj . Clearly, every feasible solution satis�es

xk � (b � LBk)=ak. Hence, the upper bound uk can be decreased if uk > (b � LBk)=ak.

Analogous results can be obtained for the lower bound lk.

An elegant preprocessing technique is \probing" on the variables, which means �xing vari-

ables temporarily. Probing techniques were introduced by Guignard and Spielberg (1981). By

�xing a variable we may detect logical relations between variables that can be used to tighten,

and reduce the size of the formulation as is demonstrated in the following example. Consider

the following set of constraints with two binary variables x1 and x2, and two nonnegative real

variables y1 and y2.

y1 + 3 y2 � 12

2 y1 + y2 � 15

y1 � 10 x1
y2 � 20 x2

We probe on x1 by setting x1 equal to zero. Then, by the third constraint, y1 has to be equal

to zero as well, which, due to the second and fourth constraints, implies that y2 � 15 and

x2 = 1. If we consider the �rst constraint we see that if x1 = 0 then we can increase the

right-hand side to 45. If however x1 = 1 then the right-hand side has to be equal to 12. Hence,

it is possible to add the term (45� 12)(1� x1) to the right-hand side of the �rst constraint

that now becomes

y1 + 3y2 � 12 + 33(1� x1):

Implication inequalities derived from binary variables can also be used to obtain clique

constraints. In the previous example we saw that x1 = 0 implies x2 = 1. Thus, we have

x01 + x02 � 1, where x0i, i = 1; 2 denotes the complement of the variable of xi. To �nd such

clique inequalities we can construct an auxiliary graph that has one vertex for every variable

and its complement. Two vertices are connected by an edge if the corresponding variables

cannot both have value one. Consider the auxiliary graph shown in Figure 8.

From the structure of the graph we conclude that x02 has to be equal to zero. To see that this

is true note that x02 = 1 implies x2 = 0. If x2 = 0 then either x3 = 0 or x3 = 1. If x3 = 0,

then x03 = 1, which implies x01 = 0, which in turn implies that x1 = 1. This is however not

feasible since x1 is adjacent to x
0

2. A similar contradiction is obtained if we choose x3 = 1.This

example shows that by investigating logical implication we may be able to �x variables and

thereby reduce the problem size. Moreover, the cliques in the auxiliary graph do in general

induce inequalities that are stronger than the inequalities in the original formulation.

The e�ectiveness of the various preprocessing techniques has been tested by Savelsbergh

(1994) on a set of 10 mixed integer programming problems from the literature. Table 2 shows
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Figure 8: Auxiliary vertex packing graph.

the improvement of the lower bound after preprocessing as well as in the number of branch-

and-bound nodes needed to verify the optimal solution. Observe that the linear programming

bound increases substantially for all problems, and that the size of the branch-and-bound tree

decreases quite a lot for most instances. For two instances however, the number of branch-

and-bound nodes of the preprocessed problem is larger than for the original problem. This

phenomenon is not really well understood. For more details regarding preprocessing we refer

to Crowder et al. (1983), Ho�man and Padberg (1991) and Dietrich and Escudero (1990).

zLP without zLP with B&B nodes B&B nodes

problem preproc. preproc zMIP without prepr. with prepr.

egout 149.5 562.1 568.1 553 3

�xnet3 40717.0 50414.2 51973.0 131 5

�xnet4 4257.9 7703.4 8936.0 2561 1031

�xnet6 1200.8 3192.5 3983.0 4795 4305

khb05250 95919464.0 106750366.0 106940226.0 11483 13

gen 112130.0 112271.0 112313.0 11 15

att 125.9 149.1 160.2 6459 127

sample2 247.0 290.4 375.0 336 51

p0033 2520.8 2838.5 3089.0 15 7

lseu 834.6 947.9 1120.0 297 464

Table 2: E�ect of preprocessing techniques.

3.1.2 Postprocessing the Linear Program

After the linear program is solved, either the optimal solution is found, or, more usually, a

fractional solution x� is obtained, which provides a lower bound zLP on the optimal value

zIP . Suppose we know a feasible solution with value zF . The value zF is an upper bound on

zIP , thus zIP is guaranteed to lie in the interval [zLP ; zF ]. Heuristics that use the fractional

solution x� to create a feasible solution are known as primal heuristics. One example of a
simple primal heuristic is rounding the fractional variables to feasible integer values. Besides

providing a worst case distance between the lower bound and the optimal value, an upper
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B&B cover % gap B&B

problem % gap nodes time (s) ineq. closed nodes time (s)

25081 5.9 23 8 4 100.0 1 3

25082 10.3 125 34 10 74.3 7 7

25083 7.5 79 25 6 85.5 5 8

25084 2.2 9 6 1 100.0 1 4

25085 5.2 19 7 5 86.6 3 7

50331 1.5 399 686 13 86.0 31 125

50332 1.2 691 1560 58 54.3 51 450

50333 1.5 259 556 122 54.1 89 769

50334 0.7 239 493 42 76.6 23 213

50335 1.3 685 1232 25 78.3 49 248

Table 3: Result of adding knapsack cover inequalities to CFL.

bound can also be used to �x variables by reduced cost �xing, or more involved, by parametric

analysis on a single variable.

3.1.3 Generating Generic Inequalities

Besides the problem speci�c classes of valid inequalities, we can try to �nd violated generic

inequalities. Many capacitated problems contain knapsack type constraints, in which case we

may try to �nd violated extended knapsack cover inequalities (30). Other generic classes of

valid inequalities are clique inequalities (14), obtained from the auxiliary graph of the binary

variables as shown in Figure 8, and ow cover inequalities (41), obtained from variable upper

bound constraints. The capacitated facility location problem provides a good insight in what

these generic inequalities might o�er. Table 3 shows the improvement obtained by adding

extended cover inequalities to the formulation given in Section 2.6. The �rst �ve instances

have 8 facilities and 25 clients, whereas the last �ve instances have 33 facilities and 50 clients.

For more details, see Aardal (1994).

3.2 Embedding the Cutting Plane Algorithm in a Branch and Bound

Framework

3.2.1 The Algorithm

In the early days of polyhedral techniques problems were solved by applying a cutting plane

algorithm, followed by a straightforward branching process. In the mid-eighties Gr�otschel et

al. (1984) used a cutting plane algorithm in every node of the branch-and-bound tree to solve

the linear ordering problem. Padberg and Rinaldi (1987) called this idea branch and cut.

Outline of the branch-and-cut algorithm.

1. Initialize a list L of subproblems of the original problem. Repeat steps 2 and 3, until L

is empty.
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2. Select a subproblem S from L.

3. Consider the linear relaxation ofS and apply a cutting plane algorithm to the relaxation.

If S is not solved, create new subproblems by branching. Put the new subproblems in

L.

initialize L

?�� �is L empty? -no

?

yes

stop

select subproblem - process subproblem -
�� �subproblem solved?

���������

yes

?

no

branch�add subproblems to L

6

Figure 9: Branch-and-cut algorithm.

Every subproblem inL corresponds to a node in the branch-and-cut tree. The subproblems

that still need to be investigated are called active. In order to avoid complete enumeration

the search tree is pruned at subproblem j, i.e. no further subproblems are created at node j,

if one of the following conditions hold: a) subproblem j is infeasible, b) the optimal solution
to the linear relaxation of subproblem j is integral, or c) zjLP � �z, where �z is the best known

upper bound.

In the branch-and-cut algorithm we need to specify a search strategy and a branching
strategy, i.e. how to select a subproblem from the list L, and how to create new subproblems.

The most commonly used search strategies are depth-�rst search and breadth-�rst search. In
depth-�rst search one of the subproblems created at the current node is investigated if the

current node is not pruned, whereas in breadth-�rst search all nodes at the current level of the

tree are investigated before any node at the level below. The most frequently used branching

rules are to branch on a variable according to one, or a mix, of the following four criteria. Here

we assume that the variables are binary.

1. Select the variable with value closest to 0.5.

2. Select the variable with value closest to 1.

3. Select the variable with highest objective coe�cient.

4. Select a set P of \promising" variables and compute for each variable in P the lower

bound that is obtained at the corresponding subproblem. Select the variable that yields

the smallest lower bound.
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Padberg and Rinaldi (1991) suggest a combination of 1. and 3. for the traveling salesman

problem. Rule 2. is surprisingly e�ective in combination with a depth-�rst strategy. Rule 4.,

introduced by Applegate et al. (1994), has similarities with the \steepest-edge" idea used in

the simplex method for linear programming when choosing the variable to enter the basis.

Other strategies have been proposed by Balas and Toth (1985). J�unger et al. (1992) report

on computational experience with some combinations of these rules. When branching on a

constraint, usually a clique constraint, a new branch is created for each value that the left-

hand side of the constraint can obtain. Clochard and Naddef (1993) suggest such a rule for

the traveling salesman problem.

3.2.2 Implementation Issues

The various components of the extended cutting plane algorithm may not be very e�ective

in each node of the branch-and-cut tree. Preprocessing for instance has much e�ect in the

root node of the tree since the original formulation of a problem usually contains a lot of

redundancy. Similarly, it may be hard to �nd e�ective cutting planes in the subproblems

further down in the tree. Hence, the major e�ort on separation is usually put in the root node.

In an implementation of a branch-and-cut algorithm we can therefore introduce selection

mechanisms for where in the tree certain components should be performed. E�ectiveness

versus computational e�ort should then be weighed against each other.

As mentioned above, the search tree can be pruned at a certain node if the lower bound

obtained at that node exceeds the best known upper bound. In order to decrease the expected

size of the search tree it is therefore crucial to compute a good upper bound by a primal

heuristic before entering the branching phase.

Branch pausing, introduced by Padberg and Rinaldi (1991), is a strategy where subprob-
lems with high lower bounds are temporarily ignored if the lower bounds are greater than a

certain threshold value. The threshold value is an estimate of the optimal value of the problem.

The advantage with branch pausing is that the expected size of the search tree gets smaller.

If we choose to consider subproblems in the order of increasing value of the lower bounds the

implementation however gets quite complicated since subsequently chosen subproblems are

not necessarily related.

Maintaining the cutting planes is a rather di�cult implementation issue. In early versions

of branch-and-cut packages, one was only allowed to generate globally valid inequalities,

i.e., inequalities that are valid for the original problem instance. These inequalities were

maintained in a central pool, from which one could select violated inequalities for the current

subproblem. The global cuts usually workwell, but to use the full power of the branch-and-cut

algorithm, one should also be able to generate inequalities that are locally valid. Balas et al.

(1994) report on very good results using branch and cut with locally valid Gomory cuts.When

solving large instances it becomes important to work with a formulation that is as small as

possible. One important feature is therefore to be able to delete inequalities from the active

formulation and store them in a pool. A detailed overview of general implementation ideas can

be found in J�unger et al. (1994). Data structures and other implementation details speci�c
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for the traveling salesman problem can be found in Applegate et al. (1994). To conclude this

section we show in Figure 10 the branch-and-cut tree of a 532-city traveling salesman problem

solved by Padberg and Rinaldi (1987). This tree gives an indication of the development of the

lower bound at di�erent levels of the tree.

4 Computational Results for Selected Problems

To give an idea of how polyhedral techniques perform, and how large instances can be solved,

we have selected a number of problem types for which computational results are reported in

the literature. For a more extensive survey we refer to J�unger et al. (1994).

4.1 The Vertex Packing Problem

Nemhauser and Sigismondi (1992) report on solving randomly generated instances of the

maximum cardinality vertex packing problem. The sizes of the instances vary between 40 and

120 vertices, and for every size they consider di�erent densities by changing the probability

that an edge is in the graph between 0.1 and 0.9. The code used by the authors was limited

in the sense that the cutting plane algorithm was run only in the root node, and that only

primitive branching rules were available. In Table 4 we report the results for the 0.2 density

instances.

clique odd-hole % gap B&B LP-

vertices % gap ineq. ineq. closed nodes iterations

40 7 86 0 100.0 1 41

60 13 203 36 92.3 16 1439

80 21 369 33 80.9 97 13352

90 15 222 13 86.7 58 3649

100 29 181 19 93.1 108 6631

110 35 781 5 77.1 394 84115

120 40 903 5 72.5 251 35194

Table 4: Results for the vertex packing problem.

In general the clique inequalities closed most of the duality gap, but for low-density graphs

lifted odd-holes were also important. The test instances with medium density graphs were the

most di�cult ones to solve. For instance, some of the medium-density 120-vertex problems

were not solved within 100000 LP iterations. It seems from this study that random vertex

packing problems are di�cult to solve by the polyhedral approach. If we consider structured

vertex packing problems however, much larger instances can be tackled as the following two

applications show.
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�� ��26,620.5
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�� �� �� �� �� �� �� ��655.0 649.1 671.3 648.4

�� �� �� �� �� �� �� �� �� �� �� �� �� �� �� ��662.6 679.4 666.9 659.8 693.9 674.8 658.5 656.7

�� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� ��677.8 683.8 687.3 686.0 686.7 683.2 687.4 665.7 694.2 683.8 663.7 675.8 664.2 670.2

�� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ��687.7 687.6 682.2 684.1 688.5 686.7 686.7 687.8 685.1 685.5 677.3 676.7 684.9 685.0 705.0 673.2 686.3 685.5

�� ��686.5

�
�

�
�OPTIMAL TOUR

27,686.0

�� ���� ��686.0 687.7
�� ���� ���� ���� ���� ���� ��695.0 679.7 678.3 680.3 686.5 686.1

�� ���� ��683.6 680.8
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�� ���� ���� ���� ���� ���� ���� ���� ��686.6 687.0 686.1 681.7 696.0 685.2 686.3 682.0
�� ���� ��687.1 683.0

�� ���� ��687.1 688.7
�� ���� ��687.0 689.0

�� ���� ��687.0 686.5

Figure 10: Branch-and-cut tree for the 532-city TSP.
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4.1.1 Frequency Assignment

The frequency assignment problem is the problem of assigning frequencies to transmission

links such that no interference occurs and such that the number of used frequencies is mini-

mized. The frequency assigned to a speci�c link has to be chosen from a set depending on the

link. To avoid interference we have restrictions on every pair (i; j) of links that the frequencies

assigned to these links should di�er by at least a certain prespeci�ed amount. The problem

is modeled as a vertex packing problem using a binary variable for each feasible combination

of a link and a frequency. In Table 5 we present computational results as reported by Aardal

et al. (1995). The number of variables is approximately equal to forty times the number of

links giving instances of between approximately 4000 and 18000 variables. By making heavily

use of preprocessing, the number of variables is reduced by at least �fty percent. The \lower

bound by branch and bound" reported in the table is obtained by partial branching, and the

time reported is the time needed to verify optimum, or, in the case of the last instance, the

time needed to �nd the feasible solution of value 16. The computations were carried out on a

HP90000/720 work station.

lower bound lower bound best known

links by clique ineq. by B&B feasible value time (s)

100 14 14 14 46

200 14 14 14 1925

340 20 22 22 6167

458 14 14 16 400

Table 5: Results for the frequency assignment problem.

4.1.2 The Set Partitioning Problem: Airline Crew Scheduling

Ho�manandPadberg (1993) report on solving huge set partitioning problems arising in airline

crew scheduling problems. The cutting plane phase uses preprocessing techniques, and clique

and lifted odd-hole inequalities. In the branch-and-cut phase a variable branching rule is used.

From the reported results we have selected the instances with the largest number of variables

and constraints. These results are presented in Table 6. Of the total time needed to solve the

various problems, by far the longest time is spent on getting within the last percent of the

optimal value. In Table 7 we show for three instances how much time it takes to get within

one and two percent of the optimal value, as well as the time needed to verify optimality.

4.2 The Traveling Salesman Problem

The literature on computational results for the traveling salesman problem is vast, and some

of the results have already been shown in previous sections. To make the progress visual, we
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original preprocessed B&B

variables constr. variables constr. zrootLP ineq. nodes zIP
5198 531 3846 360 30494 0 1 30494

7292 646 5862 488 26977 74 1 27040

8308 801 6235 521 53736 345 5 53839

8627 825 6694 537 49616 37 1 49649

148633 139 138951 139 1181590 0 1 1181590

288507 71 202603 71 132878 0 1 132878

1053137 145 370642 90 9950 389 1 10022

Table 6: Results for the airline crew scheduling problem.

variables constraints time 2% (s) time 1% (s) time opt (s)

87482 36 225 298 2642

8904 823 375 375 14441

7195 426 868 7443 139337

Table 7: Time needed to get within certain percentages of the optimal value.

give in Table 8 a list of \world records" with respect to the size of the instances. It should

be noted that there are still some small instances unsolved, which indicates that small does

not necessarily imply easy, and that large is not synonymous with di�cult. The instances we

report on here are all Euclidean symmetric traveling salesman problems, and they arise from

applications such as �nding routes through actual cities, routing of drilling machines when

manufacturing printed circuit boards, and x-ray crystallography. The instances can be found

in the library NETLIB, see Reinelt (1991). Table 8 contains information on the number of

\cities" n of the instances. For all instances a complete graph is assumed which means that

the number of variables is equal to
1
2n(n� 1). The data is obtained from the original articles,

so later techniques may perform di�erently. For instance, for the 532-city instance we know

of three di�erent numbers reported for the total number of branch-and-cut nodes needed.

To give an idea of the solution times, the 2392-city problem was solved in approximately 6

hours on a CYBER. As can be seen from Table 8, the lower bounds in the root node are very

close to the optimal value which partly explains the success of cutting plane algorithms for

the symmetric traveling salesman problem. When solving large instances a very advanced

implementation is necessary, see Applegate et al. (1994).

4.3 General Zero-One Linear Programs

Crowder et al. (1983) present the �rst computational results for large-scale zero-one linear

programs. The test problems are real life instances without any apparent structure. On a set

of 10 instances they show the e�ects of simple preprocessing techniques, and knapsack cover

and (1; k)-con�guration inequalities generated and added in the root node of the branch-and-

bound tree. In the other nodes they use only reduced-cost �xing to eliminate variables. Their

computational results are shown in Table 9.
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B&B

cities xrootLP xIP nodes application year reported by:

49 12345 12345 1 map USA 1954 Dantzig et al.

120 6942 6942 1 map Germany 1980 Gr�otschel

318 ?? 41349 ?? drilling 1980 Crowder & Padberg

532 27628 27686 85 map USA 1987 Padberg & Rinaldi

666 294080 294358 21 worldmap 1991 Gr�otschel & Holland

1002 258860 259045 13 drilling 1990 Padberg & Rinaldi

2392 378027 378032 3 drilling 1990 Padberg & Rinaldi

3038 137660 137694 287 drilling 1992 Applegate et. al

4461 182528 182566 2092 ?? 1994 Applegate et. al

7397 23253123 23260728 2247 programmable 1994 Applegate et. al

logic arrays

Table 8: Results for the traveling salesman problem.

original problem preprocessing cutting plane B&B
vars constr. zLP vars. constr. zLP ineq. zLP nodes zIP

33 16 2520.6 33 16 2819.4 36 3065.3 113 3089.0

40 24 61796.5 40 24 61829.1 29 61862.8 11 62027.0

201 134 6875.0 195 134 7125.0 139 7125.0 1116 7615.0

282 242 176867.5 282 222 176867.5 462 255033.1 1862 258411.0

291 253 1705.1 290 206 1749.9 278 5022.7 87 5223.8

548 177 315.3 527 157 3125.9 296 8643.5 36 8691.0

1550 94 1706.5 1550 94 1706.5 94 1706.5 10 1708.0

1939 109 2051.1 1939 109 2051.1 110 2051.1 334 2066.0

2655 147 6532.1 2655 147 6532.1 149 6535.0 214 6548.0

2756 756 2688.7 2734 739 2701.1 1065 3115.3 2392 3124.0

Table 9: Results for general zero-one problems.
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5 Alternative Techniques

In the last two decades there has been a remarkable development in polyhedral techniques

leading to an increase in the size of many combinatorial problems that can be solved by a

factor hundred. Most of the computational successes have occurred for zero-one combinatorial

problems where the polytope is de�ned once the dimension is given, such as the traveling

salesman problem. For more complex combinatorial optimization problems, and for general

integer programming problems less progress has beenmade. Here we shall give a brief overview

of other available solution techniques.

If the number of variables is large compared to the number of constraints column gen-
eration may in many cases be a good alternative. It can be viewed as a dual approach to

polyhedral techniques in the sense that one aims at generating the extreme points of conv(S)

rather than its facets. Instead of solving a separation problem to generate a violated inequality

we need to solve the problem of �nding a column, i.e. a feasible solution, that can improve

the objective function. Column generation was introduced by Gilmore and Gomory (1961)

to solve the cutting stock problem. Recent applications are presented by Savelsbergh (1993)

and Vanderbeck and Wolsey (1994).

In Lagrangean relaxation we relax the problem by removing a subset of the constraints,

di�erent from the nonnegativity constraints. Violation of the relaxed constraints is penalized

by including these constraints, with a nonnegative multiplier, in the objective function. The

multipliers are then updated iteratively so as to maximize the lower bound obtained from the

relaxed problem.Toupdate the Lagrangeanmultipliers subgradient optimization is often used.
Lagrangean relaxation was used successfully by Held and Karp (1970,1971) to solve traveling

salesman problems. For further details we refer to Geo�rion (1974), Held et al. (1974) and

Fisher (1981).

Lov�asz and Schrijver (1991) considered 0-1 integer linear programming problems and

proposed a procedure of increasing| or lifting | the dimension of the problem by introducing

more variables and then projecting the extended formulation back onto the original space.

From the projection step strong valid inequalities are obtained for the original problem. They

showed that by repeating this procedure a number of times equal to the number of variables

in the original space, the convex hull of feasible solutions is obtained. At the lifting step the

number of variables involved are squared and the number of constraints is increased by a factor

two times the number of variables. Balas et al. (1993) developed this technique further and

proved that it is su�cient to double the number of variables and constraints at the lifting step.

They also related this technique to a convexi�cation technique introduced by Balas (1979)

and used this relation to develop a class of �nitely converging cutting plane algorithms, called

lift{and{project algorithms, for mixed 0-1 linear programming problems.

Cook et al. (1993) present an implementation of a generalized basis reduction algorithm

for solving general integer programming problems. This method is based on the important

theoretical result by H.W. Lenstra (1983) that the integer programming problem (3) is poly-

nomially solvable if the number of variables is �xed. A central part of his results is to show

that it is possible, in polynomial time, to �nd either an integral vector belonging to the
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bounded polyhedron P = fx 2 IR
n
: Ax � bg, or an integral direction d 2 ZZ

n n f0g such
that maxfdx : x 2 Pg � minfdx : x 2 Pg � n where n depends on the dimension of

P only. A direction d as described above is called at. Instead of branching on variables as

in conventional branch-and-bound techniques, the at directions are used to branch on hy-

perplanes dx = t; x 2 P , where t is an integer varying between dminfdx : x 2 Pge and
bmaxfdx : x 2 Pgc. Since the direction d is at the number of subproblems created at each

level of the search tree is limited by a constant depending only on n. Moreover, we have no

more than n levels in the tree. To �nd at directions Cook et al. use the generalized basis

reduction technique developed by Lov�asz and Scarf (1992).

One of the main drawbacks of polyhedral techniques, as described in Section 2, is that the

separation problem based on several facet de�ning inequalities is hard to solve, or sometimes

even hard to formulate. Boyd (1994) developed a cutting plane algorithm for general integer

programming that is based on so-called Fenchel duality. The basic idea of Boyd's method is
to prove that a certain point �x belongs to conv(S) or to �nd a separating hyperplane, that

is as far as possible from �x. Such a separating hyperplane is referred to as a Fenchel cut. To

�nd a Fenchel cut one needs to maximize a piecewise linear function on a nonlinear domain.

Boyd suggests di�erent relaxations of the nonlinear domain and reports on computational

experience using these relaxations to solve the test problems of Crowder et al. (1983).

Natraj et al. (1994) used the theory of Gr�obner bases to develop a solution method to

solve a di�cult scheduling problem. For a more general treatment of this technique we refer

to Thomas (1992) and Sturmfels and Thomas (1994). The idea behind the approach by

Natraj et al. is to walk from one integer solution to another in such a way that the objective

function improves at every step. The directions used in this walk are speci�ed by the Gr�obner

basis associated with the problem. A Gr�obner basis can be viewed as a so-called test set

of integral vectors x1; : : : ; xN , depending on the constraint matrix only. These vectors have

the property that a feasible solution x� is optimal if and only if c(x� + xk) � cx� whenever

x� + xk ; k = 1; : : : ; N is a feasible solution.

Acknowledgment

Wewould like to thankDavid Applegate for providing data on the traveling salesman problem

reported in Section 4.2.Large parts of this article waswrittenwhile the �rst authorwas visiting

University of California at Berkeley. Financial support provided by the late Gene Lawler, and

Umesh Vazirani through grant IRI-9120074 from NSF is greatly acknowledged.

References

K. Aardal (1994) \Capacitated facility location: separation algorithms and computational experi-
ence", CentER Discussion Paper 9480, Tilburg.

K. Aardal, A. Hipolito, C.P.M. van Hoesel, B. Jansen, C. Roos, and T. Terl�ky (1995)

37



\A branch-and-cut algorithm for the frequency allocation problem", Working Paper, Tilburg Uni-
versity, Tilburg.

K. Aardal and C.P.M. van Hoesel (1995) \Uncapacitated facility location: lifting, separation
and computations" (in preparation).

K. Aardal, M. Labb�e, J. Leung and M. Queyranne (1994) \On the two-level uncapacitated
facility location problem", CentER Discussion Paper 9486, Tilburg.

K. Aardal, Y. Pochet and L.A. Wolsey (1993) \Capacitated facility location: valid inequal-
ities and facets", CORE Discussion Paper 9323, Louvain-la-Neuve, (to appear in Mathematics of
Operations Research).

J.M. van den Akker, C.P.M. van Hoesel and M.W.P. Savelsbergh (1993) \Facet induc-
ing inequalities for single-machine scheduling problems", Memorandum COSOR 93-27, Eindhoven
University of Technology, Eindhoven.

D. Applegate, R.E. Bixby, V. Chv�atal and W. Cook (1994) \Finding cuts in the TSP",
Preliminary report, available through anonymous ftp from netlib.att.com in the directory netlib/att/
math/applegate/TSP.

J.R. Araque (1989) \Solution of a 48-city vehicle routing problem by branch-and-cut", Working
Paper, Department of Applied Mathematics and Statistics, State University of New York, Stony
Brook.

J.R. Araque (1990) \Lots of combs of di�erent sizes for vehicle routing", CORE Discussion Paper
9074, Louvain-la-Neuve.

J.R. Araque, L.A. Hall and T.L. Magnanti (1990) \Capacitated trees, capacitated routing
and associated polyhedra", CORE Discussion Paper 9061, Louvain-la-Neuve.

E. Balas (1975a) \Facets of the knapsack polytope", Mathematical Programming 8 146{164.

E. Balas (1975b) \Disjunctive programming", Annals of Discrete Mathematics 5 3{51.

E. Balas, S. Ceria and G. Cornu�ejols (1993) \A lift-and-project cutting plane algorithm for
mixed 0-1 programs", Mathematical Programming 58 295{324.

E. Balas, S. Ceria, G. Cornu�ejols and Natraj (1994a) \Gomory cuts revisited", Work-
ing Paper No. 1994{16, Carnegie Mellon University, Graduate School of Industrial Administration,
Pittsburg.

E. Balas, S. Ceria, G. Cornu�ejols and G. Pataki (1994b) \Polyhedral methods for the
maximum clique problem", Management Science Research Report Number 602, Graduate School of
Industrial Administration, Carnegie Mellon University, Pittsburgh.

E. Balas and M. Fischetti (1992) \The �xed-outdegree 1-arborescence polytope", Mathematics
of Operations Research 17 1001{1018.

E. Balas, M. Fischetti and W.R. Pulleyblank (1995) \The precedence-constrained asym-
metric traveling salesman polytope", Mathematical Programming 68 241{265.

E. Balas and A.C. Ho (1980) \Set covering algorithms using cutting planes, heuristics and sub-
gradient optimization"Mathematical Programming Study 12 37{60.

E. Balas and S.M. Ng (1989a) \On the set covering polytope: I. All the facets with coe�cients
in f0; 1; 2g",Mathematical Programming 43 57{69.

E. Balas and S.M. Ng (1989b) \On the set covering polytope: II. Lifting the facets with coe�cients
in f0; 1; 2g",Mathematical Programming 45 1{20.

E. Balas and M.W. Padberg (1972) \On the set covering problem", Operations Research 20

1152{1161.

E. Balas and W.R. Pulleyblank (1983) \The perfectly matchable subgraph polytope of a
bipartite graph", Networks 13 486{516.

38



E. Balas and P. Toth (1985) \Branch and bound methods", in: Traveling Salesman Problem:
A Guided Tour of Combinatorial Optimization (E. Lawler, J.K. Lenstra, A.H.G. Rinnooy Kan end
D.B. Shmoys, eds.), Wiley and Sons.

E. Balas and E. Zemel (1977) \Critical cutsets and of graphs and canonical facets of set-packing
polytopes", Mathematics of Operations Research 2 15{19.

E. Balas and E. Zemel (1978) \Facets of the knapsack polytope from minimal covers", SIAM
Journal on Applied Mathematics 34 119{148.

F. Barahona, M. Gr�otschel and A.R. Mahjoub (1985) \Facets of the bipartite subgraph
polytope", Mathematics of Operations Research 10 340{358.

F. Barahona, M. Gr�otschel, M. J�unger and G. Reinelt (1988) \An application of com-
binatorial optimization to statistical physics and circuits layout design", Operations Research 36

493{513.

F. Barahona and A.R. Mahjoub (1986) \On the cut polytope", Mathematical Programming 36
157{173.

F. Barahona and A.R. Mahjoub (1989) \Facets of the balanced (acyclic) induced subgraph
polytope", Mathematical Programming 45 21{33.

F. Barahona and A.R. Mahjoub (1992) \On 2-connected subgraph polytopes", in: Proceedings
of the Second Conference on Integer Programming and Combinatorial Optimization (E. Balas, G.
Cornu�ejols and R. Kannan, eds.)

E.A. Boyd \Fenchel cutting planes for integer programs", Operations Research 42 53{64.

D.C. Cho, E.L. Johnson, M.W. Padberg and M.R. Rao (1983a) \On the uncapacitated plant
location problem. I: valid inequalities and facets", Mathematics of Operations Research 8 579{589.

D.C. Cho, M.W. Padberg and M.R. Rao (1983b) \On the uncapacitated plant location problem.
II: facets and lifting theorems", Mathematics of Operations Research 8 590{612.

S. Chopra (1989a) \On tenary problems", Mathematical Programming 45 35{47.

S. Chopra (1989b) \On the spanning tree polyhedron", Operations Research Letters 8 25{29.

S. Chopra (1992) \The k-edge connected spanning subgraph polytope" in: Proceedings of the Second
Conference on Integer Programming and Combinatorial Optimization (E. Balas, G. Cornu�ejols and
R. Kannan, eds.)

S. Chopra, E.R. Gorres and M.R. Rao (1992) \Solving the Steiner tree problem on a graph
using branch and cut", ORSA Journal on Computing 3 149{156.

S. Chopra and M.R. Rao (1993) \The partition problem",Mathematical Programming 59 87{115.

S. Chopra and M.R. Rao (1994a) \The Steiner tree problem I: formulations, compositions and
extensions of facets", Mathematical Programming 64 209{229.

S. Chopra and M.R. Rao (1994b) \The Steiner tree problem II: properties and classes of facets",
Mathematical Programming 64 231{246.

V. Chv�atal (1973) \Edmonds polytopes and a hierarchy of combinatorial problems", Discrete
Mathematics 4 185{224.

V. Chv�atal (1975) \On certain polytopes associated with praphs" Journal of Combinatorial Theory
B 18 138{154.

J.M. Clochard anf D. Naddef (1993) \Using path inequalities in a branch and cut code for
the symmetric traveling salesman problem", in: Proceedings of the Third Conference on Integer
Programming and Combinatorial Optimization (G. Rinaldi and L.A. Wolsey, eds.)

M. Conforti, M.R. Rao and A. Sassano (1990/91a) \The equipartition polytope I", Mathe-
matical Programming 49 49{70.

39



M. Conforti, M.R. Rao and A. Sassano (1990/91b) \The equipartition polytope II", Mathe-
matical Programming 49 71{90.

W. Cook, C. Coullard and Gy. Tur�an (1987) \On the complexity of cutting-plane proofs",
Discrete Applied Mathematics 18 25{38.

W. Cook, T. Rutherford, H.E. Scarf and D. Shallcross (1993) \An implementation of
the generalized basis reduction algorithm for integer programming" ORSA Journal on Computing
5 206{212.

G. Cornu�ejols, M.L. Fisher and G.L. Nemhauser (1977) \On the uncapacitated location
problem", Annals of Discrete Mathematics 1 163{177.

G. Cornu�ejols and F. Harche (1993) \Polyhedral study of the capacitated vehicle routing
problem", Mathematical Programming 60 21{52.

G. Cornu�ejols and W.R. Pulleyblank (1982) \The traveling salesman polytope and f0; 2g-
matchings", Annals of Discrete Mathematics 16 25{55.

G. Cornu�ejols and A. Sassano (1989) \On the 0,1 facets of the set covering polytope", Mathe-
matical Programming 43 45{56.

G. Cornu�ejols and J.-M. Thizy (1982) \Some facets of the simple plant location polytope",
Mathematical Programming 23 (1982) 50{74.

H.P. Crowder, E.L. Johnson and M.W. Padberg (1983) \Solving large-scale zero-one linear
programming problems", Operations Research 31 803{934.

H. Crowder and M.W. Padberg (1980) \Solving large-scale symmetric traveling salesman prob-
lems to optimality",Management Science 26 459{509.

G.B. Dantzig, D.R. Fulkerson and S.M. Johnson (1954) \Solution of a large-scale traveling-
salesman problem", Operations Research 2, 393{410.

G.B. Dantzig, D.R. Fulkerson and S.M. Johnson (1959) \On a linear-programming, combi-
natorial approach to the traveling-salesman problem", Operations Research 7 58{66.

C.C De Sousa and M. Laurent (1991) \Some new classes of facets for the equicut problem",
CORE Discussion Paper 9157, Louvain-la-Neuve.

M. Deza, M. Gr�otschel and M. Laurent (1992) \Clique-web facets for multicut polytopes",
Mathematics of Operations Research 17 981{1000.

M. Deza and M. Laurent (1992a) \Facets for the cut cone I", Mathematical Programming 56
121{160.

M. Deza and M. Laurent (1992b) \Facets for the cut cone II: clique-web inequalities", Mathe-
matical Programming 56 161{188.

B.L. Dietrich and L.F. Escudero (1990) \Coe�cient reduction for knapsack like constraints in
0-1 programs", Operations Research Letters 2 9{14.

J. Edmonds (1965) \Maximummatching and a polyhedron with 0,1-vertices", Journal of Research
of the National Bureau of Standards (B) 69 67{72.

J. Edmonds and R. Giles (1977) \A min-max relation for submodular functions on graphs", [in:
Studies in Integer Programming (P.L. Hammer, E.L. Johnson, B.H. Korte and G.L. Nemhauser,
eds.)] Annals of Discrete Mathematics 1 185{204.

M Fischetti (1991a) \Facets of the asymmetric traveling salesman polytope", Mathematics of
Operations Research 16 42{56.

M. Fischetti (1991b) \Facets of two Steiner arborescence polyhedra",Mathematical Programming
51 401{419.

M. Fischetti (1992) \Three facet-lifting theorems for the asymmetric traveling salesman polytope",
in: Proceedings of the Second Conference on Integer Programming and Combinatorial Optimization
(E. Balas, G. Cornu�ejols and R. Kannan, eds.)

40



M.L. Fisher (1981) \The Lagrangean relaxation method for solving integer programming prob-
lems", Managament Science 27 1{18.

A.B. Gamble and W.R. Pulleyblank (1989) \Forest covers and a polyhedral intersection the-
orem" Mathematical Programming 45 49{58.

M.R. Garey and D.S. Johnson (1979) Computers and Intractability: A Guide to the Theory of
NP-completeness, Freeman, San Francisco.

A.M. Geoffrion (1974) \Lagrangean Relaxation for Integer Programming", Mathematical Pro-
gramming Study 2 82{114.

R. Giles and W.R. Pulleyblank (1979) \Total dual integrality and integer polyhedra", Linear
Algebra and Its Applications 25 191{196.

P.C. Gilmore and R.E. Gomory (1961) \A linear programming approach to the cutting-stock
problem", Operations Research 9 849{859.

M.X. Goemans (1989) \Valid inequalities and separation for mixed 0-1 constraints with variable
upper bounds", Operations Research Letters 8 315{322.

M.X. Goemans (1992) \Polyhedral description of trees and arborescences", in: Proceedings of
the Second Conference on Integer Programming and Combinatorial Optimization (E. Balas, G.
Cornu�ejols and R. Kannan, eds.)

M.X. Goemans (1993) \Worst-case comparison of valid inequalities for the TSP", Working paper,
Department of Mathematics, Massachusetts Institute of Technology.

R.E. Gomory (1958) \Outline of an algorithm for integer solutions to linear programs", Bulletin
of the American Mathematical Society 64, 275{278.

R.E. Gomory (1960) \Solving linear programming problems in integers", in: Combinatorial Anal-
ysis (R. Bellman and M. Hall, Jr., eds.), Proceedings of Symposia in Applied Mathematics X,
American Mathematical Society, Providence, pp. 211{215.

R.E. Gomory (1963) \An algorithm for integer solutions to linear programs", in: Recent Advances
in Mathematical Programming (R.L. Graves and P. Wolfe, eds.), McGraw-Hill, New York, pp. 269{
302.

M. Gr�otschel (1980) \On the symmetric traveling salesman problem: solution of a 120 city prob-
lem", Mathematical Programming Studies 12 61{77.

M. Gr�otschel and O. Holland (1985) \Solving matching problems with linear programming",
Mathematical Programming 33 243{259.

M. Gr�otschel and O. Holland (1991) \Solution of large-scale symmetric traveling salesman
problems", Mathematical Programming 51 141{202.

M. Gr�otschel, M. J�unger and G. Reinelt (1984) \A cutting plane algorithm for the linear
ordering problem", Operations Research 32 1195{1220.

M. Gr�otschel, M. J�unger and G. Reinelt (1985) \Facets of the linear ordering problem",
Mathematical Programming 33 43{60.

M. Gr�otschel, L. Lov�asz and A. Schrijver (1981) \The ellipsoid method and its consequences
in combinatorial optimization", Combinatorica 1 169{197 [corrigendum: 4 291{295].

M. Gr�otschel, A. Martin and R. Weismantel (1992a) \Packing steiner trees: polyhedral
investigations", Preprint SC 92-8, Kondrad-Zuse-Zentrum f�ur Informationstechnik, Berlin.

M. Gr�otschel, A. Martin and R. Weismantel (1993) \Routing in grid graphs by cutting
planes", in: Proceedings of the Third Conference on Integer Programming and Combinatorial Opti-
mization (G. Rinaldi and L.A. Wolsey, eds.)

M. Gr�otschel, C.L. Monma and M. Stoer (1992b) \Computational results with a cutting
plane algorithm for designing communication networks with low-connectivity constraints" Operations
Research 40 309{ 330.

41



M. Gr�otschel, C.L. Monma and M. Stoer (1995) \Design of survivable networks", in: M. Ball,
T.L. Magnanti, C.L. Monma and G.L. Nemhauser (eds.) Handbooks in Operations Research and
Management Science: Networks (to appear) , North-Holland, Amsterdam.

M. Gr�otschel and M.W. Padberg (1979) \On the symmetric traveling salesman problem
I:inequalities", Mathematical Programming 16 265{280.

M. Gr�otschel and W.R. Pulleyblank (1986) \Clique tree inequalities and the symmetric
traveling salesman problem",Mathematics of Operations Research 11 537{569.

M.Gr�otschel and Y. Wakabayashi (1989) \A cutting plane algorithm for a clustering problem",
Mathematical Programming 45 59{96.

M. Gr�otschel and Y. Wakabayashi (1990) \Facets of the clique-partitioning polytope", Math-
ematical Programming 47 367{387.

M. Gr�otschel and Z. Win (1992) \A cutting plane algorithm for the windy postman problem",
Mathematical Programming 55 339{358.

M. Guignard and K. Spielberg (1981) \Logical reduction methods in zero-one programming",
Operations Research 29, 49{74.

L.A. Hall and T.L. Magnanti (1992) \A polyhedral intersection theorem for capacitated span-
ning trees", Mathematics of Operations Research 17 390{410.

P.L. Hammer, E.L Johnson and U.N. Peled (1975) \Facets of regular 0-1 polytopes", Mathe-
matical Programming 8 179{206.

M. Held and R.M. Karp (1970) \The traveling-salesman problem and minimum spanning trees",
Operations Research 18 1138{1162.

M. Held and R.M. Karp (1971) \The traveling-salesman problem and minimum spanning trees:
part II", Mathematical Programming 1 6{25.

M. Held P. Wolfe and H.P. Crowder (1974) \Validation of subgradient optimization",Math-
ematical Programming 6 62{88.

K.L. Hoffman and M.W. Padberg (1991) \Improving LP-representation of zero-one linear pro-
grams for branch-and-cut", ORSA Journal on Computing 3 121{134.

K.L. Hoffman and M.W. Padberg (1993) \Solving airline crew scheduling problems by branch
and cut", Management Science 39 657{682.

M. J�unger and P. Mutzel (1993) \Solving the maximumweight planar subgraph", in:Proceedings
of the Third Conference on Integer Programming and Combinatorial Optimization (G. Rinaldi and
L.A. Wolsey, eds.)

M. J�unger, G. Reinelt and S. Thienel (1992) \Provably good solutions for the traveling sales-
man problem", Report No. 92.114, Angewandte Mathematik und Informatik, Universit�at zu K�oln.

M. J�unger, G. Reinelt and S. Thienel (1994) \Practical problem solving with cutting plane
algorithms in combinatorial optimization", Report No. 94.156, Angewandte Mathematik und Infor-
matik, Universit�at zu K�oln.

R.M. Karp (1972) \Reducibility among combinatorial problems", in: Complexity of Computer
Computations (R.E. Miller and J.W. Thatcher, eds.), Plenum Press, New York, pp. 85{103.

R.M. Karp and C.H. Papadimitriou (1980) \On linear characterizations of combinatorial opti-
mization problems", Proceedings of the 21st Annual Symposium on Foundation of Computer Science,
IEEE, New York, pp. 1{9.

M. Laurent (1989) \A generalization of antiwebs to independence systems and their canonical
facets", Mathematical Programming 45 97{108.

J. Lee and J. Leung (1993a) \On the boolean quadratic forest polytope", Working Paper. De-
partment of Management Information Systems, University of Arizona, Tucson.

42



J. Lee and J. Leung (1993b) \A comparison between two edge-coloring formulations",Operations
Research Leters 13 215{223.

J. Leung (1994) \Polyhedral structure and properties of a model for layout design", European
Journal on Operational Research 77 195{207.

H.W. Lenstra, Jr. (1983) \Integer programming with a �xed number of variables", Mathematics
of Operations Research 8 538{548.

J.M.Y Leung and T.L. Magnanti (1989) \Valid inequalities and facets of the capacitated plant
location problem" Mathematical Programming 44 271{291.

J.M.Y. Leung (1994) \Polyhedral structure and properties of a model for layout design", European
Journal of Operational Research 77 195{207.

L. Lov�asz and H.E. Scarf (1992) \The generalized basis reduction algorithm",Mathematics of
Operations Research 17 751{764.

L. Lov�asz and A. Schrijver (1991) \Cones of matrices and set-functions and 0-1 optimization",
SIAM Journal on Optimization 1 166{190.

J.E. Mitchell and B. Borchers (1992) \A primal-dual interior point cutting plane method for
the linear ordering problem", Report No. 204, Rensselaer Polytechnic Institute.

J.E. Mitchell and B. Borchers (1993) \Solving real-world linear ordering problems using a
primal-dual interior point cutting cutting plane method", Report No. 207, Rensselaer Polytechnic
Institute.

D. Naddef (1992) \The binested inequalities for the symmetric traveling salesman polytope",
Mathematics of Operations Research 17 882{900.

D. Naddef and G. Rinaldi (1991) \The symmetric traveling salesman polytope and its graphical
relaxation: composition of valid inequalities", Mathematical Programming 51 359{400.

D. Naddef and G. Rinaldi (1992) \The crown inequalities for the symmetric traveling salesman
polytope", Mathematics of Operations Research 17 308{326.

N.R. Natraj, R.R. Thomas and S.R. Tayur (1994) \An algebraic geometry algorithm for
scheduling in presence of setups and correlated demands", Mathematical Programming (to appear).

G.L. Nemhauser and S. Park (1991) \A polyhedral approach to edge coloring", Operations
Research Letters 10 315-322.

G.L. Nemhauser and G. Sigismondi (1992) \A strong cutting plane/branch-and-bound algorithm
for node packing", Journal of the Operational Research Society 43 443{457.

G.L. Nemhauser and L.E. Trotter (1974) \Properties of vertex packings and independence
system polyhedra", Mathematical Programming 6 48{61.

G.L. Nemhauser and P.H. Vance (1994) \Lifted cover facets of the 0-1 knapsack polytope with
GUB constraints", Operations Research Letters 16 255-263.

G.L. Nemhauser and L.A. Wolsey (1988) Integer and Combinatorial Optimization, Wiley, New
York.

G.L. Nemhauser and L.A. Wolsey (1990) \A recursive procedure to generate all cuts for 0-1
mixed integer programs", Mathematical Programming 46 379{390.

P. Nobili and A. Sassano (1989) \Facets and lifting procedures for the set covering polytope",
Mathematical Programming 45 111-147.

M.W. Padberg (1973) \On the facial structure of set packing polyhedra", Mathematical Program-
ming 5 199{215.

M.W. Padberg (1977) \On the complexity of set packing polyhedra", [in: Studies in Integer Pro-
gramming (P.L. Hammer, E.L. Johnson, B.H. Korte and G.L. Nemhauser, eds.)] Annals of Discrete
Mathematics 1 421{434.

43



M.W. Padberg (1980) \(1; k)-con�gurations and facets for packing problems",Mathematical Pro-
gramming 18 94{99.

M.W. Padberg (1989) \The boolean quadratic polytope: some characteristics, facets and relatives",
Mathematical Programming 45 139{172.

M.W. Padberg and M. Gr�otschel (1985) \Polyhedral computations" in: Traveling Salesman
Problem: A Guided Tour of Combinatorial Optimization (E. Lawler, J.K. Lenstra, A.H.G. Rinnooy
Kan end D.B. Shmoys, eds.), Wiley and Sons.

M.W. Padberg and S. Hong (1980) \On the symmetric traveling salesman problem",Mathemat-
ical Programming Studies 12 78{107.

M.W. Padberg and G. Rinaldi (1987) \Optimization of a 532-city symmetric traveling salesman
polytope by branch and cut", Operations Research Letters 6 1{7. [Addendum 9 (1990) 353.]

M.W. Padberg and G. Rinaldi (1990) \Facet identi�cation for the symmetric traveling salesman
problem", Mathematical Programming 47 219{257.

M.W. Padberg and G. Rinaldi (1991) \A branch-and-cut algorithm for the resolution of large-
scale symmetric traveling salesman problems", Siam Review 33 60{100.

M.W. Padberg, T.J. Van Roy and L.A. Wolsey (1985) \Valid inequalities for �xed charge
problems", Operations Research 33 842{861.

U.N. Peled (1977) \Properties of facets of binary polytopes", Annals of Discrete Mathematics 1
435-455.

Y. Pochet and L.A. Wolsey (1992) \Network design with divisible capacities: aggregated ow
and knapsack subproblems", in: Proceedings of the Second Conference on Integer Programming and
Combinatorial Optimization (E. Balas, G. Cornu�ejols and R. Kannan, eds.)

Y. Pochet and L.A. Wolsey (1994) \Algorithms and reformulations for lot sizing problems",
CORE Discussion Paper 9427, Louvain-la-Neuve.

W.R. Pulleyblank and F.B. Shepherd (1993) \Formulations for the stable set polytope of a
claw-free graph", in:Proceedings of the Third Conference on Integer Programming and Combinatorial
Optimization (G. RInaldi and L.A. Wolsey, eds.)

M. Queyranne and A. Schulz (1994) \Polyhedral approaches to machine scehduling", Working
Paper No. 408/1994, Fachbereich 3 Mathematik, Technische Universit�at Berlin, Berlin.

G. Reinelt (1985) The Linear Ordering Problem: Algorithms and Applications, Helderman, Berlin.

G. Reinelt (1991) \TSPLIB{A traveling salesman library", ORSA Journal on Computing 3 376{
384.

T.J. Van Roy and L.A. Wolsey (1985) \Valid inequalities and separation for uncapacitated �xed
charge networks", Operations Research Letters 4 105{112.

T.J. Van Roy and L.A. Wolsey (1986) \Valid inequalities for mixed 0-1 programs", Discrete
Applied Mathematics 14 199{213.

T.J. Van Roy and L.A. Wolsey (1987) \Solving mixed integer programming problems using
automatic reformulation", Operations Research 35 45{57.

A. Sassano (1989) \On the facial structure of the set covering problem", Mathematical Program-
ming 44 181{202.

M.W.P. Savelsbergh (1993) \A branch-and-price algorithm for the generalized assignment prob-
lem", Report COC-93-02, Computational Optimization Center, Georgia Institute of Technology,
Atlanta.

M.W.P. Savelsbergh (1994) \Preprocessing and probing techniques for mixed integer program-
ming", ORSA Journal on Computing 6 445{454.

A. Schrijver (1980) \On cutting planes", [in: Combinatorics 79 Part II (M. Deza and I.G. Rosen-
berg, eds.)] Annals of Discrete Mathematics 9 291{296.

44



A. Schrijver (1981) \On total dual integrality", Linear Algebra and Its Applications 38 27{32.

A. Schrijver (1986) Theory of Linear and Integer Programming, Wiley, Chichester.

P.D. Seymour (1980) \Decomposition of regular matroids", Journal of Combinatorial Theory (B)
28 305{359.

B. Sturmfels and R.R. Thomas (1994) \Variation of cost functions in integer programming",
Manuscript, Cornell University, Ithaca.

R.R. Thomas (1992) \A geometric Buchberger algorithm for integer programming", Manuscript,
Cornell University, Ithaca.

L. Trotter (1975) \A class of facet-producing graphs for vertex packing polytopes", Discrete
Mathematics 12 373{388.

F. Vanderbeck and L.A. Wolsey (1994) \An exact algorithm for IP column generation", CORE
Discussion Paper 9419, Louvain-la-Neuve.

R. Weismantel (1994) \On the 0/1 knapsack polytope", prepint SC 94-1, Kondrad-Zuse-Zentrum
f�ur Informationstechnik, Berlin.

L.A. Wolsey (1975) \Faces for a linear inequality in 0-1 variables", Mathematical Programming 8
165{178.

L.A. Wolsey (1976a) \Facets and strong valid inequalities for integer programs", Operations Re-
search 24 367{372.

L.A. Wolsey (1976b) \Further facet generating procedures for vertex packing polytopes", Mathe-
matical Programming 11 158{163.

E. Zemel (1978) \Lifting the facets of zero-one polytopes"Mathematical Programming 15 268{277.

45


