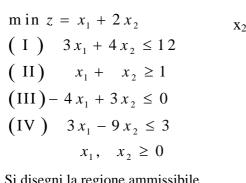
FONDAMENTI DI RICERCA OPERATIVA Prof. M.Trubian a.a. 2010/11

Appello 12/01/11

Nome studente:				Matricola:				
Esercizio	1	2	3	4	5	6		
Punteggio massimo	7	4	5	5	6	5		
Valutazione								

[1] E' dato il seguente problema di Programmazione Lineare:



1.1 Si disegni la regione ammissibile del problema. Si evidenzi il vertice ottimo per via grafica e si riporti il valore di *z* e di tutte le variabili del modello, comprese quelle di scarto o surplus, in corrispondenza della soluzione ottima.

z =____; $x_1 =$ ___; $x_2 =$ ___; $x_3 =$ ___; $x_4 =$ ___; $x_5 =$ ___; $x_6 =$ __; (Le variabili da x_3 a x_6 sono quelle di scarto o surplus)

1.2 Si evidenzi nel disegno una base degenere.

1.3 Si ricavi, per via grafica, per quali valori di b_3 (ora pari a 0) la **composizione** della base ottima non cambia. $___$ \le b_3 \le $__$

[4] Si risolva mediante un algoritmo di Branch & Bound il problema di zaino definito dai seguenti dati

Profitti, $(p_j) = (5, 16, 9,8,3)$

Pesi, $(w_i) = (2,6,5,4,2)$

Capacità, b = 13

Si utilizzi come rilassamento quello lineare, risolto mediante un opportuno algoritmo. Si rinominino gli indici delle variabili in base all'ordinamento ricavato. Si adotti una strategia di esplorazione "Depth First " e si esplori per primo, ad ogni livello, il ramo dell'albero di "branching" associato al vincolo xi = 0, dove la variabile di branching xi è quella che assume un valore frazionario nel rilassamento lineare. Si noti inoltre che una variabile libera può venir fissata a zero qualora la capacità residua dello zaino sia strettamente minore del suo peso.

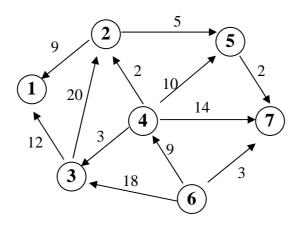
Si riporti a fianco l'albero di branching. Per ogni nodo si riportino: il suo numero progressivo, i (partendo dal valore 0 del nodo radice), il valore UB $_i$ ed il vettore con il corrispondente valore delle variabili.

[5] Si risolva mediante il metodo dei tagli di Gomory il seguente modello di PLI. Si disegni la regione ammissibile del problema e si riportino i tagli generati.

max
$$z = x_1 + 2x_2$$

(I) $x_1 + x_2 \le 5$
(II) $-x_1 + x_2 \le 0$
 $x_1, x_2 \ge 0$ e intere

[6] Si risolva mediante l'algoritmo di Dijkstra il problema di determinare i cammini minimi dal nodo 6 a tutti gli altri nodi nel grafo riportato:



6.1 Si riportino i valori delle etichette L(i) nella tabella sottostante.

	Nodo 1	Nodo 2	Nodo 3	Nodo 4	Nodo 5	Nodo 6	Nodo 7
Iterazione 1							
Iterazione 2							
Iterazione 3							
Iterazione 4							
Iterazione 5							
Iterazione 6							
Iterazione 7							

6.2 Si mettano in evidenza gli archi che formano i cammini minimi.