E
TA

Aibo programming using OPEN-R SDK

Tutorial

Francois Serra
Jean-Christophe Baillie
http://www.ensta.fr/ baillie

June 2003

URBI Notice

We have recently (2004) created and released a new interface to program and control Aibos, called
URBI (Universal Robotic Body Interface). URBI is an interface language based on a client/server
architecture and can work together with C++, Java and Matlab (more languages to come) on
any operating system. URBI is robot independent, working with Aibo but also with humanoid
robots or with the Webots4 simulator. Changing from the real robot to a simulation is just about
changing an IP address.

URBI is considerably simpler to use and understand than OPENR. For example, the ball track-
ing example described in this tutorial is only 3 lines long in URBI... URBI is simpler to use for
beginners but comes with many features for advanced programmers, especially useful for robotic
applications: simple access to the motors and sensors, parallel processing of complex script com-
mands, event driven programming, complex motor trajectory, extended mutex policies, integrated
behavior description,...

For more details about URBI and to download it: http://www.urbiforge.com

The URBI Team.

www.urbiforge.com

Foreword

The Sony Aibo robot is currently a very interesting (and relatively cheap) plateform to conduct
research in Robotics and Artificial Intelligence. Aside the numerous captors and actuators, the
most important element is that Aibo is programmable. The Aibo programming language, built on
top of C++, is provided by Sony as the OPEN-R SDK. This tutorial is intended to ease the use
of this SDK.

The official documentation given by Sony on the www.aibo.com web page is not currently
covering all aspects of OPEN-R. Some tutorials on the OPEN-R website explain in detail specific
things but do not cover other important issues. Besides, the "official" OPEN-R Programming Book
is only available in japanese for now.

Probably the best advice would be to study the examples given on the Sony web site. Unfor-
tunately some of these examples, especially the BallTrackingHead example, are provided without
any inline comment and require a reverse engineering effort to be understood.

For all these reasons, we decided at ENSTA to start an in depth study of these examples, as a
base for a complete and efficient OPEN-R Programming Tutorial.

This document begins by describing the OPEN-R, architecture and specificities. To ease un-
derstanding, we introduce a graphical formalism to represent OPEN-R programs. This formalism
could also be used to help designing programs. Afterwards we go into coding details step by step
for several specific actions (moving the joints, getting information from sensors) and we translate
the graphical formalism into practical OPEN-R/C++ code. At the end of this tutorial, we added
a miscellaneous section containing useful programming information that we found disparate on the
web.

This tutorial is supposed to be self contained and bring the novice reader to a reasonable
understanding of the OPEN-R architecture and programming, from low level details up to high
level design advices. We hope this work can prove useful for the research community.

Jean-Christophe Baillie
Frangois Serra
http://uei.ensta.fr/baillie

Contents

Foreword 2
1 The general structure of an OPEN-R program 5
1.1 Modular programs 5
1.1.1 An example: BallTrackingHead, 5

1.1.2 Inter-object communication oo 6

1.1.3 Why modular programs 7 6

1.2 Design of an object 7
1.2.1 Finite states automatons L L Lo 7

1.2.2 The LostFoundSound object from the BallTrackingHead sample 7

1.3 The full BallTrackingHead example 9
1.3. 1 Overview e 9

1.3.2 The different objects 9

1.3.3 The progress of the program 11

2 Implementation with the OPEN-R SDK 16
2.1 Basic knowledge 16
2.1.1 Objects that interface with the hardware 16

2.1.2 Frameso e 17

2.2 The basic C++ class layer of an OPEN-R object 17
2.3 Setting and using Inter-object communication 21
2.3.1 Thefile stub.cfg 21

2.3.2 The file connect.cfg Lo 21

2.3.3 Sending and receiving messages i e e e e 23

3 Getting information from the robot 25
3.1 Getting information from sensorso oL 25
3.1.1 The OSensorFrameVectorData data format 25

3.1.2 Getting the right sensor oo oo 26

3.2 Getting information from the camera Lo 28
3.2.1 The OFbkImageVectorData data format 28

3.2.2 Retrieving the Y, Cr, Cb or color detection band 29

4 Sending commands to the robot 31
4.1 Sending commands to joints 31
4.1.1 The OCommandVectorData data format 31

4.1.2 Initialization steps 32

4.1.3 Using the shared memory with the RCRegion class 34

4.1.4 Setting a joint value 35

4.1.5 Controlling the pace of commands sending 36

4.2 Playing soundo 36
4.2.1 The OSoundVectorData format 36

422 Playinga .wavfile oo o 37

4.3 Sending commands to the camera oL Lo 41

4.3.1 Setting the gain, color balance and shutter speed 41

4.3.2 Setting a color detection table. oL 42

5 Miscellaneous 45
5.1 Printing to the wireless console oL 45
5.2 How to compile and execute an OPEN-R program 45
5.2.1 Compilation 45

5.2.2 Execution on Aibo 47

5.3 Using the FTP protocol to transfer file into Aibo 48
5.4 data structures oL 48
5.4.1 Sensors e e e 48

5.4.2 effectors e 50
Bibliography 50

Chapter 1

The general structure of an OPEN-R
program

In this chapter we will present the overall structure of an OPEN-R program without going into the
coding details. The aim is to understand the philosophy of programming with OPEN-R and the
general architecture of the SDK.

1.1 Modular programs

OPEN-R programs are built as a collection of concurrently running OPEN-R objects. An OPEN-R
object is implemented using a C+-+ object but these are two different concepts and should not be
confused. In this tutorial object will always mean “OPEN-R object” and not “C+- object”. Each
so-called object runs concurrently with the others and objects are able to communicate with each
other by message passing. We will illustrate this structure with an example.

1.1.1 An example: BallTrackingHead

BalltrackingHead is a sample program available on Sony’s OPEN-R SDK website!. This program
has the following behaviour: Aibo first moves his legs and his head to an initial posture and then
starts to move his head around looking for the pink ball and tracks it once found. He also plays a
sound when he has found or lost the ball in his vision field. The figure 1.1, shows the architecture of
the program. Each box represents one object of the BallTrackingHead program (in this particular
example, there is one object which has the same name than the program: balltrackinghead). The
arrows represent the communication axis between objects. Bold faced objects are internal objects
that the programmer do not have to code since they are provided by Sony.
FEach object plays a specific role :

e BallTrackingHead: is the main module that coordinates the others. Manages the “seeking”
and “tracking” behaviour.

e MovingLegs: moves the legs to the dog’s sleeping position.

e MovingHead: moves the head up looking ahead.

e LostFoundSound: handles a sound playing queue.

e OVirtualRobotComm: interfaces the program with Aibo’s joints, sensors and camera.
e OVirtualRobotAudioComm: interfaces the program with Aibo’s audio device.

e PowerMonitor: monitors the battery state and manages the shutdown action.

Thttp://openr.aibo.com, in the member area.

MovingHead PowerMonitor

OVirtualRobotComm [€—)» BallTrackingHead (¢ LostFoundSound

\ 4

\ 4
OVirtualRobotAudioComm

MovingLegs

Figure 1.1: The basic structure of BallTrackingHead sample

In this example the BallTrackingHead object is leading the BallTrackingHead program but having
such a leader is not always necessary. It depends on the hierarchy the programmer wishes to set
between his objects.

Objects can be inter-connected. As we said the arrows symbolize communication axis, which
can be seen as a pipe through which messages are sent. The next section will explain further how
inter-object communication is done.

1.1.2 Inter-object communication
Synchronization

An OPEN-R object is an independant thread that can communicate with other OPEN-R objects
using message passing. In the communication protocol the sender is called the subject and the
receiver the observer. There is a synchronization protocol that can be used to let the observer
notify the subject that he is ready to receive and process a message. To do so, the observer sends
a special message called ASSERT READY (AR). This is usually done after he has finished to
process the last message. The subject can start a specific action when he receives an AR. Another
option for the subject to know that the observer is ready for receiving is simply to ask directly the
observer. We will see later how this can be done when it will come to code writing.

Message definition

A message can be a C++ primary type (int, float,...), an array, a structure, a class or a pointer. In
the communication protocol, we introduced the notion of communication axis. A communication
axis is composed by unidirectional communication channels. Each channel has one fixed subject and
one fixed observer. So two channels are required at least to make a bidirectional communication
axis. Only one type of message can go through a channel. Thus it is necessary to have two
channels to send messages of two different types. The figure 1.2 shows an example of bidirectional
communication axis able to carry messages of type A and B in one way and messages of type C in
the other way.

The AR message is specific to each channel. If an object is an observer for two or more channels
sending an AR message through one channel will not send it in the others.

In the OPEN-R SDK, only channels exist, there is no implementation of the notion of commu-
nication axis, which has been presented for sake of clarity in the previous section. In the following,
we will always use the channels detail level.

1.1.3 Why modular programs ?
The main advantages of a modular program are:

e Parallel processing.

type A

v

type B

v

type C

A

Figure 1.2: An example of a bidirectional channel.

e Clarity of the design: each object handles a set of specific behaviours. For example an object
could handle all the head behaviours like “looking ahead” , “looking down” and “swinging
the head” while an other could handle the legs behaviours like “raising to standing position”,
“walking forward” and “stop”.

e Easiness of reusing pre-existing objects: they do not have to be compiled again since they
communicate with message passing.

1.2 Design of an object

1.2.1 Finite states automatons

All examples provided by Sony use a formalism close to finite state automatons to describe the
working cycle of an object. Objects have different states and at least the starting state IDLE which
is a no-operation state and is essential for the system coherence.

As a general design rule, an object cannot be in two different states at the same time.

The automaton changes from a state to another using transitions. A transition is activated by
a message and can have multiple paths leading to others states in a tree-like way. Each branch
of the tree have a condition. Conditions of the branches descended from the same node must
be exclusives (otherwise the automaton could reach two different states at the same time.) The
automaton gets over a transition when this transition has been activated by the proper message
and the conditions of the path leading to the target state have been satisfied. There is a particular
case: the automaton always go trough a transition which have a single path and a condition equal
to 1.

1.2.2 The LostFoundSound object from the BallTrackingHead sample

The aim of this section is to present a graphic representation of the formalism presented previously.
We will take the example of the LostFoundSound object which appears in the figure 1.3 and is part
of the BallTrackingHead program.

The different states of the object are represented by circled text. As a convention, the IDLE
state is always the beginning state.

Messages are represented by dotted arrows. They come in and get out the object through
gates. The arrow-like shapes representing these gates indicate if they are incoming or outgoing
gates. Next to the gates, three labels provide additional information: the first one (bold faced)
is the name of the gate (which is usually the name of the observer) and the second (bold faced
and italic shape) is the type of the message exchanged. When it exists the third line is the name
of a function. In the case of an incoming gate this function will be called each time a message is

received, in the case of an outgoing message the function will be called each time an AR is received.
This is a basic event driven kind of programming, which is a classic way of handling action-reaction
binding in an object oriented framework.

The transition between two states, which is represented by a full line arrow with a black square
in the middle, has two requirements:

e The transistion must be activated by an event (receiving a message or an AR)

e The condition on top of the black square must be satisfied.

Going through the transition can possibly trigger one or two of the following actions :
e Process the code which is under the black square.

e Send an outgoing message (represented by a dotted arrow starting from a black dot located
on the transition arrow, after the black box).

As we said already, there can be multiple paths for one transition and each of these paths has one
or several mutually exclusive conditions attached to.

The box labelled OVRAC AR represents an AR message incoming from the OVirtualRobotAudio-
Comm (short: OVRAC) object indicating that it’s ready to receive. Since the AR messages often
activate several transitions in the same object they have been represented by these small labelled
boxes to prevent overloading of the diagrams.

LostFoundSound Qw
‘OSoundVectorData
- | treagypiayo)

IsAlIRegionFree() R ——
false H
Result
BalltrackingResult

CopyWAVTo()

WAV_SUCCESS

................ CopWAYTa0 IsAIRegionFree(
! -
WAV_SUCCESS i

= >
AR " starT

PLAYING

Command
BallTrackingHeadCommand

[NotifyCommand()]

I:: > Play)

Figure 1.3: The LostFoundSound object from the BallTrackingHead sample

We can now explain step by step the working of the LostFoundSound object :

1. the object is in the IDLE state and changes to the START state immediatly calling the
DoStart () function (we will explain what this function does in section 2.2).

2. the object waits for an incoming message to move to the PLAYING state.

3. the object remains in the PLAYING state each time a OVirtualRobotAudioComm AR messages
arrives, until the two conditions on the path leading to the START state are satisfied (the object
returns to step 1). If the first condition is not satisfyed, the paths leading back to the PLAYING
state will trigger a message through the "play" gate.

Looking close to the working cycle of this simple objects shows that, as it will often be the case,
the "heart beat" of the object is given by the incoming AR/OVRAC messages. Without these
messages, the object would remain inerte in the PLAYING state.

1.3 The full BallTrackingHead example

In the previous sections we have described the basic bricks required to build a complete OPEN-R
program and seen in details how an object is designed. Now we will see how all this works when
they are combined. This section entirely rely on the BallTrackingHead sample, but prior reading
of the source code is not necessary.

1.3.1 Overview

Most Sony example programs begin by bringing Aibo to a standing or sleeping position. In the
"BallTrackingHead" program, this action is performed by the objects MovingHead and Mowvin-
gLegs. The object BallTrackingHead manages the whole program and handles the “searching” and
“tracking” behaviours. LostFoundSound is a sound playing queue manager, OVirtualRobotComm
and OVirtualRobotAudioComm are special objects which interface with the hardware (cf. section
2.1.1)

Figure 1.4 is the diagram of the whole program including every objects and connections. Dia-
grams of objects alone, with a higher level of detail, are available in the next section. Nevertheless
the whole program could nearly be completely understood with this global diagram.

One of the important things to look at when one tries to understand the global diagram is the
set of dotted lines representing the message channels and making a kind of “wiring plan” between
the objects.

1.3.2 The different objects
BallTrackingHead

The figure 1.5 shows the object BallTrackingHead. This object moves directly to the START state
calling DoStart() (the aim of this function will be explained in section 2.2) and sending two
messages, one for the "MovingHead" object and one for the "MovingLegs" objects. The purpose of
these messages is to put Aibo’s legs and head in the staring position. Once in the START state, the
BallTrackingHead object can either go to the HEAD ZERQ POS state (which means that Aibo’s head
has reached the desired position but not the legs) or to the LEGS SLEEPING state (which means
that Aibo’s legs have reached the desired position but not the head), which depends on which of
MovingHead or MovingLegs replied first and activated the corresponding transition to their IDLE
state. Then the slowest object replies and BallTrackingHead’s state changes to SEARCHING BALL
and the function SearchBall() is called, plus a message is sent. This set of four states (START,
HEAD ZERQ P0OS,LEGS SLEEPING, SEARCHING BALL) can be seen as a synchronization unit between
the "MovingHead", "MovingLegs" and "BallTrackingHead" objects.

The transition going from the SEARCHING BALL state to the TRACKING BALL state is activated
when a message is received from the Image incoming gate. The type of data is OFbkImageVec-
torData which is a type of image. Then the transition has a branchement: if the color frequency
(here, the pink color) of the image is greater than the threshold B_THR, the ball was present in the
image and the counter found is incremented, else the counter found is reset to zero, commands for
swinging the head are sent and the object stays in the SEARCHING BALL state. When the counter
found reaches the found threshold F_THR (which means the ball has been found in F_THR con-
secutive images) the object gives LostFoundSound the order to play a sound, sends a message to
move the head toward the ball and moves to the TRACKING BALL state. The two thresholds B_THR
and F_THR produce an hysteresis kind of transition. In fact the ball has to be found in F_THR
consecutive images for the robot to consider the ball as really present in the view of the robot. The
hysteresis phenomenon compensates the noise effects in the image.

Once the object is in the TRACKING BALL state, a similar behaviour happends, much like in the
SEARCHING BALL state. In fact BallTrackingHead swaps between the searching and tracking states
as it finds the ball or loses it.

The state named * is a wildcard state meaning “all states”.

Here messages coming from Sensor or LostFoundSound gates do not actually change any state
but only perform actions (visible only in the detailed diagram of the BallTrackingHead object,
figure 1.5).

LostFoundSound

The figure 1.3 shows the diagram of the LostFoundSound. It has one incoming gate and two
outgoing ones. As LostFoundSound starts in the IDLE state it moves to the START one where it
waits for a message incoming from the Command gate in order to move to the PLAYING state, calls
the play() function (which initializes the playing) and sends a message. The ASSERT READY
message activates the transition starting from the PLAYING state: when the observer is ready
LostFoundSound copies some WAV information in the shared memory (function CopyWAVTo())
and sends message until there is anything to play and the shared memory has been released. Then
LostFoundSound returns to the START state and waits until it receives a new message. Section 4.2
gives a much more detailed description on how to play sound with Aibo, and this is the method
used here.

MovingHead

The aim of MovingHead is to bring Aibo’s head to zero position. This object is a useful example
because it shows the basic steps for initializing and moving joints. However, those mechanisms will
only be outlined here, since further detailed explanations follow.

The object starts in the IDLE state but unlike the previous ones, it stays in this state. It’s
only when an incoming message arrives from the command gate that the object starts moving to
an other state (see the * state). First if the Move gate (OVirtualRobotComm, observer) is ready,
the function AdjustDiffJointValue is called, a message is sent and the object moves to the ADJ
DIFF JOINT VALUE state. If the observer was not ready, MovingHead moves to the START state and
waits for it. Once again, when OVirtualRobotComm is ready (AR/OVRAC received), the function
AdjustDiffJointValue is called, a message is sent and the object moves to the ADJ DIFF JOINT
VALUE state.

The aim of the AdjustDiffJointValue function is to calibrate the difference between the joints
sensors and motors: the function reads the position of each joint first. This position can differ from
the actual position of the joint because of uncalibrated sensor values. Then, a command is sent
to each joint to actually reach the previously read position, making sure that both read and real
positions will be the same.

Once this job is done, the object set the PID gains for each joint (tech. details on PIDs later).
SetJointGain () does this PID setting when the object changes to the MOVING TO ZERQO POS state.
Then the object makes the head move to the zero position. This is done in ZP_MAX_COUNTER equal
steps because of a inner mechanisms used by Sony to control the speed of motor movements. At
each step the object sends commands to OVirtualRobotComm using a buffering method explained
in the section 4.1.4. This will all be detailed later on.

Then, after the ZP_MAX_COUNTER steps, the object returns to the IDLE state.

There is an isolated state SWING HEAD which is a forgotten remains from the other program
sample called "MovingHead" on top of which BallTrackingHead was built. It should be ignored.

One important thing here is to notice that an object have to do initialisation sequences before
moving Aibo’s joints (the AdjustDiffJointValue’s business).

MovingLegs

MowingLegs is nearly the same as the MovingHead object except that there is one more step after
having moved Aibo’s legs to broadbase (as if the dog was stretching): the legs moves to a sleeping
position.

10

The detailed instructions on how to move the robot to a given position are all stored in an array
of joint’s values that are associated to "stand", "sleep", "rest",... Some programs are available that
record the set of all Aibo’s joints values in a given position (set by hand, for example) in order to
bring the robot back to this position later. Here, the same method is used to move the robot to

the "broadbase" position.

1.3.3 The progress of the program

When Aibo boots, the objects of the BallTrackingHead program are loaded by the operating system
and are in the IDLE state. The objects BallTrackingHead and lostFoundSound move directly to their
START state. At this time BalltrackingHead has sent a message to MovingHead and MowvingLegs.
Each of them starts and Aibo moves the head to look ahead while his legs move to the sleeping
position. When they have finished each one sends a message to BallTrackingHead which is waiting
for their reply. Then BallTrackingHead moves to the SEARCHING BALL state. The behaviour has
already been described previously. When the ball is found or lost BallTrackingHead sends a message
to LostFoundSound. If the latter is in the START state the sound is played as soon as possible. A
result message is sent back to BallTrackingHead when LostFoundSound returns to the START state.
This message does not affect the BallTrackingHead state. The BallTrackingHead program keeps
searching and tracking the ball until the power is shut down.

11

Josuasabew gy Sid
©]edl0108/A\pUNoSoO :dASO
©lei0)09A3BRWING40 :dINAO
eleqioaApuewWWoDO :dADO
puewwopeaHbupdell|eg :OH19
JnsaypesaHbuyoel]|eg :¥H1g

WwwoQ01pNYI0qoH[BNUIAQ :DVHAO
wwod10qoyenuiAO :0d4AO
puUNOSpUNO41S0T 1S4
peaHBuIno (HIN

sba1buinoN TN

suonelnalqae

XYW IS

JaWN0d

ann

(Apedtsi<—
J¥NO

asfe)

Ofpednsi<—
2uA0

»|

4 H
2 Y3LINNOD i
g XIS 43INNOD
W R
2 J21n0 X ea
5 >
— J3unod
/.
\

OHlgpuewwod | sBabuinon

OHLE W

H

OH18'sH1

g |
|
o
8
3
3
5
]
o
]
]
I
o

(oLAVMAdOD ol
20NS AVM

(oLAVMAdoD

HH1gunsay
yH1g'sd1

asfey

ommicou,mmm__(m_

AAdSOI0sUsS

anso'keid

uHL g
H
bauolon

ONIHOYV3S

YHL8
2
baidioj0o

uHLE
bai410/0D

AnSOeads

AAI4O-abeuw|

V

QADOWIor OHLEHWN | pesHbunioe.L|eg

WwoDoIpNy10qoy[enUIAO H

n_>u_mo.am=mmm u ﬁ umzu_o.m_u_

AAD0 101343

AAD0 10843

wwod10qoyEenUIAO

AAD0 10343

OHLE PUBWILIOD

F+121UN0d

43LNNOD

TXYWdz 0\ i | QUAO ey == ==

> OApeadsi<— ()Apesysi<—
18unod 2JdA0

any asre

¥3LNNOD

TXVW dZ

121un0d

AAD0O'8n0N

peaHbuinon

lagram

The entire BallTrackingHead sample d

Figure 1.4

12

[OunsaysbaBuinonAnoN |

1nsaypesHbuoeILfeg

puewwoppeaHbunioel]|eg
punospuno41so

<

)ireguoress <—
)punosAe|d <—

++150|

OegpioeiL < YHL@>baigiopg EHLT

11vd Oaibuyeiea . 11vd
ONIMOVHL ‘ ONIHOHV3S

HHL 8

Dileguyoress <—
0=punoy

2
baii0100

YHL g

>
baiqi0j00

Aressagau)i
ojur Bngap uud

[Qunsaxpunospunoiso1AnoN |

)nsaypesHbupoeILIfeg
punospuno41so

suoifayiosuas arepdn

[(10suashynon]

©1QJ0109\3WEI4I0SUSSO
J0suas

[OsbewifyioN]

ele@I0199A86RWINA40
abew|

[OunsaxpesHBunowAmoN 1

B1eJI0}08ApPUBWIWOD0O JInsaypesHbujoRll|Rg
or pesHBuIno

puewwogpesHBbupoen|Eg

sBaBuinon sBa1Buinon

A

(Owersoq <-

puewwodpeaHBudelL|jeg
peaHBuinop

pesHbuiyoelL|eg

t

jec

The BallTrackingHead ob

Figure 1.5

13

JInsaypeaHbunioel] |feg puewwoypesHBuiyoeiL|eg
JInsay puewwod

Y3LNNOD "XV dzZ

>
Jaunod

++19]UN0d

YILNNOD "XV dZ

Jajunod

dv

j02=VA\®;

SOd
0437z oL

24dNO

()Apeaysi<—
wwod10qodenuIAO

(Apeaysi<-
wwodio0qodening

()sodoiazo oo <—
(ureoulorIes <~
0=12)un0od (enreAwiioryiqisnipy <—

ONINOIN

INIOC 441d
rav

2dNO

[OanowApeay]

BleglI0laApuBWWODO

anon peaHBulnop

Figure 1.6: The MovingHead object

14

[OanonApeay]

©1EQI01I9APUBLIWODO
anow

—l

H¥3LINNOD
TXYNTTS

J8)un0d

(anreautor
ﬂ wasnipy <-

¥3INNOD

J18unod

++18]un0d
++18]unN0d

d3INNOD Y2INNOD
TXVYNTIS ==
> “XvW 88 Ofpeaysi<-
18)unod > JdAO
131unod

[OpuewwooAmoN |

JInsaypesHbunoen|eg puewwodpeaHBbunioelL|eg

nsay puewwod wmml_ Bu INOIN

Figure 1.7: The MovingLegs object

Chapter 2

Implementation with the OPEN-R
SDK

In the previous chapter we saw the logical structure of an OPEN-R program. In the current chapter,
we will study the specificities of the OPEN-R SDK and how to translate this logical structure into
C++.

First we need some basic knowledge on how Aibo is working. Then we will explain the skeleton
of the C++ class underlying an OPEN-R object. This chapter will end with how to set up the
gates of an object and how to configure the inter-connection between the objects.

2.1 Basic knowledge

2.1.1 Objects that interface with the hardware

We have already mentioned that the BallTrackingHead program contains two specific objects pro-
vided by Sony: OVirtualRobotComm and OVirtualRobotAudioComm. These objects are the inter-
face with Aibo’s hardware. OVirtualRobotComm interfaces with the dog’s joints, sensors, LEDs
and camera. OVirtualRobotAudioComm interfaces with Aibo’s audio device (playing or recording
sound).

Like any other OPEN-R objects, OVirtualRobotComm and OVirtualRobotAudioComm com-
municate with the other objects by message passing. The following types are used in messages to
communicate with OVirtualRobotComm:

e OCommandVectorData: data structure that holds joint and LED commands.
e OSensorVectorData: data structure that holds sensor information.
e OFbkImageVectorData: data structure that holds image data.
The following types are used to communicate with OVirtualRobotAudioComm:
e OSoundVectorData: data strucutre that holds sound data (input and output).

All theses data structures will be explained in the next chapters.

The objects that interface with Aibo’s hardware have the same behaviour than all OPEN-R ob-
jects: they can be subjects and/or observers. When they are observers they send AR message when
they are ready to receive a new message. OVirtualRobotComm is an observer receiving messages of
the OCommandVectorData type, and has two gates sending messages of OSensorVectorData and
OFbkImageVectorData types. Sound can be played or recorded by sending and receiving messages
of OSoundVectorData type to OVirtualRobotAudioComm.

16

2.1.2 Frames

Time in Aibo’s hardware is discrete. The base unit of the time is a frame, which represents 8 ms.
An incrementing counter tags frames so they have a unique number associated, between 0 and
oframeMAX_NUMBER (equals to 0xOffffff0). When the counter reaches oframeMAX_NUMBER it is
reset to O.

Interface objects give information from the sensor by block of n frames, so it shows the history
of the sensor (0 < n < osensorMAX_FRAMES = 16). Those n frames are necessary contiguous in
time but not necessarily synchronized with the current frame of the system. For example if the
current frame has the number 21, the frames of the block might have the numbers 16, 17 and 18,
which means that we could access to the state of the sensor 40, 32 and 24 ms ago. However, at
the same time, getting the values from an other sensor, we might get only two frames, starting at
frame 14. So, the numbering of frames is very important and allows the programmer to synchronize
sensors information by searching matching frame numbers.

As an example, some joint sensors may have a refresh rate which is quicker than the camera
refresh rate, so the OVirtualRobotComm may have sent two or three times sensors information
while it may have sent only one image. Finding the sensors information and image matching frame
number gives a “snapshot” of Aibo’s posture when the image was taken.

Commands are also sent to Aibo using a block structure. A set of commands is sent for each
of the next n frames (where 0 < n < ocommandMAX_FRAMES = 16.) Since motors are commanded
by a set of positions to reach, subdividing the desired path into points to reach gives us somehow
a control on the velocity of the motors. For example if a motor is in the 0° postion and the
programmer asks it to be in the 4+0.8° and 40.16° position the two next frames, the motor will
move from the 0° postion to the +0.16° position with an angular speed of +0.1° /ms.

An other way of implementing the control of motors’ velocity would have been to take the
starting and the final position plus the desired velocity as input data, what would have induced
the duration of the movement. For example a movement from the position p; to the position ps at a
speed of v lasts 2—P% seconds. The programming technique used in OPEN-R is more complicated
than this but on the other hand, it makes it possible to move joints with non-linear speeds in an
easy way. It is easy to create functions that take the starting and the ending position as inputs and
calculate the intermediate points to reach. Such functions are indeed used in the BallTrackingHead
example.

2.2 The basic C++ class layer of an OPEN-R object

An OPEN-R object is compiled from a C++ class. This class must inheritate from the 00bject
base class. The constructor of the class should set the state of the object to IDLE, if you want to
comply with the Sony’s examples standards.

On top of that four virtual functions must be implemented:

e OStatus DoInit (const OSystemEvent& event)

e (OStatus DoStart (const OSystemEvent& event)

e (OStatus DoStop (const OSystemEvent& event)

e OStatus DoDestroy (const OSystemEvent& event)

Here is OObject.h

//

// OObject.h

/7

// Copyright 1997,1998,1999,2000 Sony Corporation

#ifndef _OObject_h_ DEFINED
#define _OObject_h DEFINED

#include <OPENR/OPENR.h>

17

s

#include <OPENR/OPENREvent.h>

class OObjectManagerProxy ;
class OServiceManagerProxy ;

class OObject {
public:

protected:

private:

#endif /« _OObject h DEFINED /

OObject ();
virtual ~OObject ();

void Init (const OSystemEvent& event);
void Start (const OSystemEvent& event);
void Stop (const OSystemEvent& event);
void Destroy (const OSystemEvent& event);

virtual OStatus Dolnit (const OSystemEvent& event);
virtual OStatus DoStart (const OSystemEvent& event);
virtual OStatus DoStop (const OSystemEvent& event);
virtual OStatus DoDestroy (const OSystemEvent& event);

OID myOID_;
OStatus RegisterServiceEntry (const OServiceEntry& entry ,const chars* name);

static OObjectManagerProxy objectManager ;
static OServiceManagerProxy serviceManager ;

// These method are forbidden.
OObject (const OObject&);
OObject& operator=(const OObject&);

Dolnit()

DoInit() is called when the object is loaded by the system. It initializes the gates and registers
subjects and observers the object will communicate with. Macros are predefined in the OPEN-R
SDK and simplify the description of the working of DoInit().

The skeleton of DoInit() is:

OStatus MyObjectClass :: Dolnit (const OSystemEvent& event)
{
NEW ALL SUBJECT AND OBSERVER;
REGISTER_ ALL_ENTRY
SET ALL_READY AND NOTIFY ENTRY;
/+ here the programmer can add his own code */
return oSUCCESS;
}
DoStart()

DoStart () is called after DoInit () is executed in all objects. Here the object usually sends an AR
message to all its observers. In the Sony’s examples, if the object has to move by himself from the
IDLE state to an other, it does it here. There are also predefined macros that simplify the code:

OStatus MyExampleClass:: DoStart (const OSystemEvent& event)

ENABLE ALL_ SUBJECT;
/* the programmer can add his code here.
* For example the object can move by himself to
* a state
*/
myExampleClassState = START;

ASSERT READY TO ALL_OBSERVER;

18

/* code can also be added here x/

return oSUCCESS;

Sometimes the object does not need to send an AR mesage to all its observers. In that case the
programmer sends AR messages manually (that is explained in the section 2.3.3) and does not use
the ASSERT_READY_TO_ALL_OBSERVER macro.

DoStop()

DoStop() is called at shutdown of the system. With the Sony’s conventions, the object must move
by himself to the IDLE state. The function stops the outgoing gates and sends a DEASSERT_READY
message to all his observers. DEASSERT_READY means that the object cannot receive a message
anymore. OPEN-R SDK once again provides macros:

OStatus MySampleClass:: DoStop (const OSystemEvent& event)
myExampleClassState = IDLE;
/% code can be added here x/

DISABLE_ALL SUBJECT;
DEASSERT READY TO_ALL_OBSERVER;

/* and here x/

return oSUCCESS;

DoDestroy()

DoDestroy() is called at shutdown after DoStop() has been called on all objects. Usually this
function remains as is:

OStatus MyObjectSample:: DoDestroy (const OSystemEvent& event)

DELETE_ALL SUBJECT AND_ OBSERVER;
return oSUCCESS;

19

The complete skeleton of the C++ class
MySampleClass.h:

#ifndef MySampleClass h DEFINED
#define MySampleClass h DEFINED

#include <OPENR/OObject .h>
#include <OPENR/OSubject.h>
#include <OPENR/OObserver.h>
#include <OPENR/ODataFormats.h>
#include "def.h"

/x The different states of the object : x/
enum MySampleClassDifferentStates {

IDLE,
/+ add here the different states of the object */

}s
class MySampleClass : public OObject {
public:
MySampleClas () ;
virtual “MySampleClas () {}
OSubject* subject [numOfSubject |;
OObserver* observer [numOfObserver |;
virtual OStatus Dolnit (const OSystemEvent& event);
virtual OStatus DoStart (const OSystemEvent& event);
virtual OStatus DoStop (const OSystemEvent& event);
virtual OStatus DoDestroy (const OSystemEvent& event);
private:
MySampleClassDifferentStates mySampleClassState;
b

#endif // MySampleClass h DEFINED

During the compilation the file def .h is created by the OPENR-SDK tool stubgen2. num0fSubject
and num0fObserver are defined in this file. MySampleClass.cc:

MySampleClass :: MySampleClass ()

mySampleClassState = IDLE;

}
OStatus MyObjectClass :: Dolnit (const OSystemEvent& event)
{

NEW_ALL SUBJECT AND OBSERVER;

REGISTER_ALL ENTRY;

SET ALL_READY AND NOTIFY ENTRY;

/% here the programmer can add his own code %/

return oSUCCESS;
}
OStatus MyExampleClass:: DoStart (const OSystemEvent& event)
{

ENABLE_ALL_SUBJECT;
/* the programmer can add his code here.
* For example the object can move by himself to
* a state
*/
myExampleClassState = START;
ASSERT READY TO ALL OBSERVER;

/+ code can also be added here x/

return oSUCCESS;

20

}

OStatus MySampleClass:: DoStop (const OSystemEvent& event)

{ myExampleClassState = IDLE;

/* code can be added here x/
DISABLE _ALL_SUBJECT;
DEASSERT READY TO ALL OBSERVER;

/x and here x/

) return oSUCCESS;

OStatus MyObjectSample:: DoDestroy (const OSystemEvent& event)

DELETE ALL SUBJECT AND_ OBSERVER;
return oSUCCESS;

2.3 Setting and using Inter-object communication

The next section explains how to set-up the inter-object configuration files. It also describes in
concrete terms how to send a message, an AR message, how to know if an observer is ready and
what to do when receiving a message.

2.3.1 The file stub.cfg

Subjects and Observers are services in the OPEN-R SDK terminology. Services of an object are
declared in one separate file specific to each object: stub.cfg. This file is read by the OPEN-R
SDK tool named Stubgen2 just before calling gcc. This tool creates def .h, Name0OfObjectStub.cc
and Name0OfObjectStub.h files which define several macros and constants.

stub.cfg begins by a line describing the name of the object. The next two lines declare how
many subjects and observers the object have. Then each service is described on a line. Here is the
example of the stub.cfg of the LostFoundSound object:

ObjectName : LostFoundSound

NumOfOSubject : 2

NumOfOObserver 1

Service : "LostFoundSound.Play.OSoundVectorData.S" , null , ReadyPlay ()

Service : "LostFoundSound.Command. BallTrackingHeadCommand.O" , null , NotifyCommand ()
Service : "LostFoundSound.Result.BallTrackingHeadResult.S" , null, null

Actually, each line describing a service holds the same information as gate labels in the graphic
formalism: in LostFoundSound.Play.0SoundVectorData.S, LostFoundSound is the name of the
current object, Play the name of the gate, 0SoundVectorData the type of the message exchanged
and S means it is a subject (outgoing gate). 0 will have meant that it was an observer. The 0 and
the S are represented by the orientation of the gates in the diagram.

The last two fields are the name of two functions: the first one is called when a connection
result is received (in almost every cases this function is unusefull so it is set to “null”) and the
second one is called when an AR or a message is received. Figure 2.1 shows an example of a gate
in the graphical formalism and the corresponding line in the stub.cfg file.

2.3.2 The file connect.cfg

In order to interconnect objects, we must assign each subject to one observer and each observer to a
subject. The config file doing this is the connect. cfg file which should be in the OPEN-R/MW/CONF/
directory of the Aibo Programming Memory Stick. When Aibo boots up, the system loads the
objects and interconnect them using connect.cfg. Here is connect.cfg for the BallTrackingHead
program:

21

LostFoundSound

Command
BallTrackingHeadCommand

[NotifyCommand()] Service :

: "LostFoundSound.Command.BallTrackingHeadCommand.O", null, NotifyCommand ()

Figure 2.1: Equivalence between the graphical formalism and the stub.cfg file

ballTrackingHead <—> movingHead?2

BallTrackingHead . MovingHead . BallTrackingHeadCommand .S MovingHead . Command. BallTrackingHead
Command .O

MovingHead . Result . BallTrackingHeadResult.S BallTrackingHead .MovingHead . BallTrackingHeadRe
sult .O

ballTrackingHead <—> movingLegs2

BallTrackingHead . MovingLegs . BallTrackingHeadCommand .S MovingLegs.Command. BallTrackingHead
Command . O

MovingLegs. Result . BallTrackingHeadResult.S BallTrackingHead.MovingLegs.BallTrackingHeadRe
sult.O

ballTrackingHead <—> lostFoundSound
#

BallTrackingHead . LostFoundSound . BallTrackingHeadCommand .S LostFoundSound.Command. BallTrac
kingHeadCommand .O

LostFoundSound . Result . BallTrackingHeadResult.S BallTrackingHead .LostFoundSound. BallTracki
ngHeadResult .O

ballTrackingHead <—> ovirtualRobotComm

OVirtualRobotComm . FbkImageSensor . OFbkImageVectorData.S BallTrackingHead .Image.OFbklImageVe
ctorData .O

OVirtualRobotComm . Sensor . OSensorFrameVectorData.S BallTrackingHead . Sensor.OSensorFrameVec
torData .O

BallTrackingHead . Joint . OCommandVectorData.S OVirtualRobotComm . Effector . OCommandVectorData
.0

#

movingHead2, movingLegs2 —> ovirtualRobotComm
#

MovingHead . Move. OCommandVectorData.S OVirtualRobotComm . Effector . OCommandVectorData.O
MovingLegs . Move. OCommandVectorData.S OVirtualRobotComm . Effector . OCommandVectorData.O

lostFoundSound —> ovirtualRobotAudioComm

LostFoundSound . Play . OSoundVectorData.S OVirtualRobotAudioComm . Speaker.OSoundVectorData.O

Each line of connect.cfg begins by the name a a subject, for example:
NameOfObject.NameOfSubject.MessageType.S
and ends by the corresponding observer, like:

NameOfObject .NameOfObserver.MessageType.O.

Note that the type of messages exchanged by the subject and the observer must be the same
at each side.

22

2.3.3 Sending and receiving messages

In each C++ class of an OPEN-R object, subjects are referred by the subject[] array and
observers by the observer[] array. To access this array convenient indexes are predefined by
the stubgen2 tool during the compiling process. The name of these indexes are the concatenation
of the type of the service (sbj for subject and obs for observer) and of name of the service
(the one declared in stub.cfg). For example subject [sbjPlay] refers to the Play gate of the
LostFoundSound example (see section 2.3.1 .) observer [obsCommand] refers to the Command
gate.

Sending a message

There are three steps to send a message:

1. initialize the message’s content:
BallTrackingHeadResult result;
result.status = BTH_SUCCESS;

Which can be rewritten shortly as:
BallTrackingHeadResult result(BTH_SUCCESS) ;

2. assign the message to the service:
subject [sbjResult] ->SetData(&result, sizeof (result));

3. notify the observers:
subject [sbjResult] ->NotifyObservers();

Here is a sample code from the LostFoundSound example showing how to send a message:

/x Somewhere where the programmer wants to send a message */

BallTrackingHeadResult result (BTH_SUCCESS);
subject [sbjResult]->SetData(&result , sizeof(result));
subject [sbjResult]->NotifyObservers ();

Receiving a message

In the service description done in the stub.cfg, the second function that appears at the end of the
line is the function that is called by the operating system when a message arrives. To react when
a message is received, this function must be implemented. For example, in the LostFoundSound
example an observer is declared in the stub.cfg with the following line:
Service:"LostFoundSound.Command.BallTrackingHeadCommand.0", null, NotifyCommand()
The NotifyCommand (const ONotifyEvent& event) is the function called when a message arrives
in the "Command" Gate of this object. This function proceeds with the following sequence:

1. retrieve the message’s content by casting it:
BallTrackingHeadCommand* cmd = (BallTrackingHeadCommand*)event.Data(0);

2. process the message.

3. send an AR message to the subject who sent the message:
observer [event.ObsIndex()]->AssertReady() ;

Note that the object’s observer index involved is conveyed by the message itself and the object
uses this to make an explicit reference to this observer: event.0ObsIndex ()
The code is:

23

void LostFoundSound :: NotifyCommand (const ONotifyEvent\& event)

/% retrieving the message content */
BallTrackingHeadCommand * cmd = (BallTrackingHeadCommand*)event.Data (0);

/* use the cmd variable x/

/% send an AR message to the subject who sent the message */
observer [event.ObsIndex()]—>AssertReady ();

24

Chapter 3

Getting information from the robot

The OVirtualRobotComm object has a subject that sends messages containing sensors information
and a subject that sends images coming from the camera. We explain in this chapter how to
retrieve this information.

3.1 Getting information from sensors

The outgoing gate (aka subject) of OVirtualRobotComm that sends informations from sensors

is named Sensor. It sends message of the OSensorFrameVectorData type. The subject can be

referred in connect.cfg using the following line:
OVirtualRobotComm.Sensor.0SensorFrameVectorData.S.

3.1.1 The OSensorFrameVectorData data format

The OSensorFrameVectorData data format is a structure that contains information from all Aibo’s
sensors. The figure 3.1 shows a diagram of the OSensorFrameVectorData structure.

—— OSensorFrameVectorData

ODataVectorinfo vectorinfo
/
size_t numData // ODataType type
size t maxNumData / OPrimitivelD primitivelD
T /’ longword frameNumber
’ size_t numframes
// .
e p———
access via GetInfo() LA -
OSensorFramelnfo| OSensorFramelnfo OSensorFramelnfo
|
access via GetData()
OSensorFrameData| OSensorFrameData OSensorFrameData
‘,—"/" /// \\\ “‘\\‘»‘s
access via field "frame"
OSensorValue OSensorValue OSensorValue

Figure 3.1: A diagram of the OSensorFrameVectorData data format.

25

The OSensorFrameVectorData structure contains three members: vectorInfo which is an
ODataVectorInfo, an array of OSensorFramelnfo and an array of OSensorFrameData. The two
arrays have an allocated memory which corresponds to a number of vectorInfo.maxNumData cells
but their actual size is equal to vectorInfo.numData cells. Each cell of the OSensorFramelnfo
array has a corresponding paired cell in the OSensorFrameData array (same index). These two
cells contain the information and data for one given sensor during the last frames (a frame rep-
resents time in Aibo’s hardware, see 2.1.2). The OSensorFrameData is a structure with a unique
member which is an array of OSensorValue. The size of the OsensorValue array is the constant
osensorframeMAX_FRAMES. Each cell of this array contains the value of the sensor for a frame, but
the cells which contain valid data are the first numframes ones (numframes is a field of the OSensor-
Framelnfo paired with the current OSensorFrameData). The first cell of the OSensorValue array
is tagged with the frame number frameNumber (field of the OSensorFramelnfo), the second one is
tagged with frameNumber+1, etc. The OSensorFramelnfo structure has two members describing
the type of the sensor and its ID (primitiveID. See next section), and two members describing
the number of the first frame (frameNumber) and the number of valid frames (numframes).

Cells of the OSensorFramelnfo array are accessible using the GetInfo(int index) function,
and those of the OSensorFrameData array are accessible using the GetData(int index) function.
These two access functions are members of the OSensorFrameVectorData structure. GetData()
has a return type of OSensorValue which is a generic data structure for sensor value. In fact the
OSensorValue type is meant to be casted into one of the various types of sensor data that are
described in the section 5.4.1, for example OJointValue for joints, OSwitchStatus for switches, etc.

3.1.2 Getting the right sensor

To access a sensor value we need to know the corresponding index of the OSensorFramelnfo and
OSensorFrameData arrays. Let’s first say few words about sensors in Aibo. Sensors and joints
are also called primitives in the Sony’s official documentation. In Aibo’s design, each primitive
can be referred using a primitive locator supplied in the Sony’s model information document.
The primitive locator provides the "address" of the primitive and the OPENR: :OpenPrimitive
static function convert this adress to an ID. In OPEN-R SDK the type OprimitivelD holds 1D
information.

Note that it is necessary to call the OPENR: : OpenPrimitive function once in the program before
accessing to a sensor, since it is also doing some initialization job.

Once we have the ID of the sensor, we have to iterate the OSensorFramelnfo array of the
OSensorFrameVectorData structure and compare the member primitiveID of the cells with our
ID to find the correct index. It is a good idea to store the index of sensors in a user array, so this
is done only once.

To sum up, there are three steps to get the index of a sensor in the OSensorFramelnfo and
OSensorFrameData arrays:

e Get the address of the sensor using the primitive locator.
e Get the primitive ID with OPENR::OpenPrimitive().

e Compare this primitive ID with the ones of the OSensorFramelnfo array to get the right
index.

e Store this index in a user array.

Such an apparent complexity makes objects portable between different Aibo models (the same
sensor can have a different index within two different models). That is why we do not recommend
the use of the correspondance table between the index number and primitive locator provided in
the Sony’s model information document. Here is a sample code showing how to get the sensor
index: In MySampleClass.h

26

// HEAD TILT JOINT SENSOR
static const charx const SENSOR LOCATION = "PRM:/rl/cl—Joint2:j1"

class MySampleClass : public OObject {
public:

private:

OPrimitivelD sensorlID;
int sensorIndex;

bool sensorlndexInitialised;

In MySampleClass.cc

MySampleClass : : MySampleClass ()

sensorIndex = —1;
sensorlndexInitialised = false;

}

OStatus MySampleClass:: Dolnit (const OSystemEvent& event)

{

/x At the stating of the object, call OpenPrimitive () */
OpenPrimitive ();

void MySampleClass:: OpenPrimitive ()

{

/% Open the sensor primitive and get the sensor ID x/
OStatus result = OPENR:: OpenPrimitive (SENSOR_LOCATION, & sensorlID);
}

void MySampleClass:: NotifySensor (const ONotifyEvent& event)
OSensorFrameVectorDatax sensorVec=(OSensorFrameVectorDatax)event.Data (0);

/% we need to know what is the sensor index in the OSensorFrameVectorData.
* This is done once at the first time

*/

if (sensorIndexInitialised == false)

InitSensorIndex (sensorVec);
sensorlndexInitialised = true;

}

void MySampleClass:: InitSensorIndex (OSensorFrameVectorDatax sensorVec)

{

/* iterate the wvector to find the matching ID x/

for (int j = 0 ; j < sensorVec—>vectorInfo.numData ; j++)
OSensorFramelnfox info = sensorVec—>GetInfo(j);
if (info—>primitivelD == sensorlD)
{
sensorIndex = j;
break;

27

3.2 Getting information from the camera

Aibo supplies information from the camera through four different layers. Three layers are color
images with a different resolution, the fourth is the color detection image (Aibo has an embedded
parametrizable color detection algorithm, we will detail it later). Color images are in the YCrCb
format, which means they are coded using 3 bands: Y luminance, Cr (= Red component - Y) and
Cb (=blue component - Y). The color detection image has only the color detection band which is
a simple index. OPEN-R provides access to a pixel value in the Y band, the Cr band, the Cb band
or the color detection band separately, but not to the pixel value coded as a whole in the YCrCb
format. In other words, color images are treated as three monochromatic images. So to write a
color image to the disk we have to retrieve the Y, Cr and Cb bands separatly and merge them.
The outgoing gate (aka subject) of OVirtualRobotComm that sends informations from the
camera is named FbkImageSensor. It sends message of the OFbkImageVectorData type. The
subject can be referred in connect.cfg using the following line:
OVirtualRobotComm.FbkImageSensor.OFbkImageVectorData.S.

3.2.1 The OFbkImageVectorData data format

The OFbkImageVectorData data format is a structure containing several images. Figure 3.2 shows
a diagram of this format. It contains three members: vectorInfo which is an ODataVectorInfo, an

—— OFbkimageVectorData

ODataVectorinfo vectorinfo
/
size_t numData ,/ | ODataType type
ﬁ?ze_t maxNumData) OPrimitivelD primitivelD
,/ longword frameNumber
K |-
e -
access via GetInfo() /i//_/— -7
OFbkIimagelnfo OFbkIimagelnfo OFbkIimagelnfo OFbkIimagelnfo
I
access via GetData()
byte byte byte byte

Figure 3.2: A diagram of the OFbkImageVectorData data format.

array of OFbkImagelnfo and an array of bytes. The two arrays of the OFbkImageVectorData have
a size of four, like the four layers we have presented in the previous paragraph. Each cell of the OF-
bkImagelnfo array has a corresponding cell in the byte array. OFbkImagelnfo contains information
about the corresponding layer and the byte associated is a pointer to the image data for that layer.
The index of the layer can be one of the following predefined constant: ofbkimageLAYER_H (color -
high resolution), ofbkimageLAYER_M (color - medium resolution), ofbkimageLAYER_L (color - low
resolution) and ofbkimageLAYER_C (color detection image).

Access to OFbkImagelnfo cell is done via the GetInfo() function and access to the byte cell is
done via the GetData () function. These function are members of the OFbkImageVectorData struc-
ture. For example to access to the medium resolution image layer use GetInfo (ofbkimageLAYER_M)
and to access the layer data GetData(ofbkimageLAYER_M). The next section explains how to access
the different bands of the image once the image layer has been chosen.

28

3.2.2 Retrieving the Y, Cr, Cb or color detection band
Basic knowledge

The OPEN-R SDK provides a C+-+ class that handles image data: OFbklmage. Creating an
instance of the OFbkImage class is necessary to get an access to one band of a layer. To create
an OFbkImage, we need a pointer to the layer information and a pointer to the layer data. These
pointers are retrieved using the GetInfo() and the GetData() functions of an OFbkImageVector-
Data, as we said previously. The constructor of the OFbkImage also needs an argument specifying
the band (Y, Cr, Cb or color detection) that the OFbkImage will handle. For a color layer,
to access the Y, Cr or Cb band, we will use respectively ofbkimageBAND_Y, ofbkimageBAND_Cr,
ofbkimageBAND_Cb. For a color detection layer it will be ofbkimageBAND_CDT.

For example, if £bkIVD is of type OFbkImageVectorData, then 0FbkImage (fbkIVD->GetInfo (o
fbkimageLAYER_M), fbkIVD->GetData(ofbkimageLAYER_M),
ofbkimageBAND_Y) will create an OFbkImage referring to the Y band of a medium resolution
image layer.

OFbkImage (fbkIVD->GetInfo (ofbkimageLAYER_C), fbkIVD->GetData(ofbkimageLAYER_C),
ofbkimageBAND_CDT) refers to the unique band of the color detection image layer.

Retrieving the three Y, Cr and Cb bands and merging them in a standard image format (like
the BMP format) is needed to get a color image. The OPEN-R SDK does not provide any functions
or class that handles standard image formats. However, there is BMP class available in the Sony’s
examples but we will not detail it here.

The OFbkImage class comes with some useful functions:

e bool IsValid(): returns true if OFbkImage is valid, else returns false if the pointers in
arguments of the constructor are wrong.

e bytex Pointer(): returns a pointer to the beginning of an image data.
e int Width(): returns the width of an image.
e int Height(): returns the height of an image.

e byte Pixel(int x, int y): returns the band value of the (x,y) pixel of an image. Which
band depends on the parameter used in the OFbklImage constructor.

e intSkip(): returns the number of bytes to skip an entire line of an image.

e byte ColorFrequency(0CdtChannel chan): returns the number of pixels (divided by 16)
detected in the chan color detection band of a color detection image layer. (Color detection
is explained next)

The following sample code shows the retrieving of a band in the function handling new image
arrivals:

void Image:: Notifylmage (const ONotifyEvent& event)
{
/% first retrieve message information x/
OFbkImageVectorData* imageVec = (OFbkImageVectorDatax*)event.Data(0);

/+ then get the desired layer x/
OFbkImagelnfo* info = imageVec—>GetInfo (ofbkimageLAYER C);
bytex data = imageVec—>GetData (ofbkimageLAYER C);

/* mow get the desired band x/
OFbkImage cdtImage (info , data, ofbkimageBAND CDT);

/% do mot forget to send back an AR x/
observer [event.ObsIndex()]—>AssertReady ();

29

Color detection

Aibo has a color detection algorithm built in. This algorithm is hardware encoded and is very fast.
The color detection algorithm is explained in the section 4.3.2. For now, we just need to know that

the color detection results are stored in the color detection layer.

Importantly, this fast color detection algorithm is programmable and can basically recognize up
to 8 different colors. To do so, there are 8 different color detection channels programmable by the
user: ocdtCHANNELO, ocdtCHANNEL1, ..., ocdtCHANNEL7. The section 4.3.2 explains how to define
a color. The color detection band contains information for the eight channels simultaneously, one
per bit. A & operator with a bytemask can be used to check if a pixel is “on” in a color channel,
that is if this pixel has been recognized as one of the corresponding color. The table 3.3 shows the

different bytemasks for the color detection channels.

Channel number | bytemask | bytemask in hexadecimal
1 00000001 0x01
2 00000010 0x02
3 00000100 0x04
4 00001000 0x08
5 00010000 0x10
6 00100000 0x20
7 01000000 0x80
8 10000000 0x100

Figure 3.3: Table of color detection channel bytemasks.

For example, to know if the (10,10) pixel is “on” in the 5th color detection channel, use:

Jxxx fokIVD is a OFbkImageVectorData xx/

// retrieve the color detection band of the color detection image layer.
OFbkImage channel (fbkIVD—>GetInfo (ofbkimageLAYER_C),
fbkIVD—>GetData (ofbkimageLAYER C),
ofbkimageBAND CDT));

// test is the (10,10) pizel is "on" or not in the channel 5
if ((channel—>Pixel(10,10) & 0x10) == 0x01)

"

// pizel is "on

30

Chapter 4

Sending commands to the robot

In this chapter we will explain in detail how to send commands to Aibo. Commands can be sent
to the robot to control the joints, the audio device and the camera.

4.1 Sending commands to joints

The incoming gate of OVirtualRobotComm that receives joints or LEDs commands is named
Effector. It receives messages of the 0CommandVectorData type. The observer can be referred in
connect.cfg using the following line:

OVirtualRobotComm.Effector.0CommandVectorData.O.

4.1.1 The OCommandVectorData data format

The OCommandVectorData data format is a structure that contains commands for several Aibo’s
effectors (joints or LEDs). The figure 4.1 shows a diagram of the OCommandVectorData structure.

—— OCommandVectorData

ODataVectorinfo vectorinfo

=
size_t numData s | ODataType type

ﬁ!ze_t maxNumData / OPrimitivelD primitivelD

’ size_t numframes

/
access via GetInfo() /_z

OCommandiInfo OCommandInfo OCommandInfo

|
access via GetData()

OCommandData OCommandData OCommandData

access via field "value"

OCommandValue [OCommandValue OCommandValue

Figure 4.1: A diagram of the OCommandVectorData data format.

The OCommandVectorData structure contains three members: vectorInfo which is an OData-
VectorInfo, an array of OCommandInfo and an array of OCommandData. These two arrays have

31

an allocated memory size of vectorInfo.maxNumData cells. Each cell of the OCommandlInfo array
has a corresponding cell in the OCommandData array. These two cells contain the information and
data for one effector command for the next frames (a frame represents time in Aibo’s hardware,
see 2.1.2). Since it is possible to send several frames for one effector, commands are somehow
grouped. The OCommandInfo structure has two members describing the type of the effector and its
primitiveID, and a member describing the number of frames passed in the command (numframes).
The OCommandData is a structure with a unique member which is an array of OCommandValue.
OCommandValue is a general type for sending a command for one frame to one effector. In fact
OCommandValue must be cast to a type which is specific to the targeted effector. For example,
OCommandValue2 is the type used to send a command to joints. The section 5.4.2 describes the
different types used to send a command for a frame.

The size of the memory allocated for the OCommandValue array is ocommandMAX_FRAMES cells.
As we said each cell of type OCommandValue contains the value of the effector for one frame.
Only the first numframes (field of the corresponding OCommandInfo cell) cells will be read by the
robot (the next ones will be ignored).

Cells of the OCommandInfo array are accessible using the GetInfo(int index) function, and
those of the OCommandData array using the GetData(int index) function. These functions are
members of the OCommandVectorData structure. The next section explains the common method
used to send joint commands to OVirtualRobotComm.

4.1.2 Initialization steps

The BallTrackingHead example showed that an initialization sequence is needed before moving
Aibo’s joints. Three steps are needed for each joint that the program will use (joints can be
initialized in any OPEN-R object):

1st step: getting the primitives ID

As sensors, each joint has an address in the primitive locator. This address must be converted to
an OPrimitivelD in order to be exploitable. The OPENR: :OpenPrimitive () does the conversion.
The sample code below shows how to open two joints: In MySampleClass.h:

static const charx const JOINT LOCATOR[] = {
"PRM: /11 /cl—Joint2:j1" // HEAD TILT
"PRM:/rl/cl/c2—Joint2:j2"} // HEAD PAN
class MySampleClass : public OObject{

private:
static const NUM JOINTS = 2;

OPrimitivelD jointID [NUM_JOINTS];

In MySampleClass.cc:

MySampleClass:: OpenPrimitives ()

for (int i — 0; i < NUM_JOINTS; i++) {
OStatus result = OPENR:: OpenPrimitive (JOINT LOCATOR]|i |,
&jointID [i]);
if (result != oSUCCESS)

/* error ! x/

32

2nd step: setting joint gains

For each joint the motor gains (P, I and D gains) and shifts (P, I and D shifts) must be set up.
In common programs these gains will be the standard one recommended by Sony (these values
can be found in the Sony’s model information document). Note that gain values are different for
each joint. The programmer must call the OPENR: :EnableJointGain function first so the gains
become effective. Then, he can set them using the OPENR: :SetJointGain() function which has
the following prototype:
OPENR: :SetJointGain(OPrimitiveID primitiveID, word pg, word ig, word dg, word ps,
word is, word ds).

pg, ig, dg are respectively the P, I and D gains, and ps, is, ds are respectively the P, I
and D shifts. Shifts are fixed values and should never be changed. The sample code below shows
how to set the differents gains:
in MySampleClass.h

static const int TILT INDEX = 03

static const int PAN_INDEX = 1;

static const word TILT _PGAIN = 0x000a;
static const word TILT IGAIN = 0x0008;
static const word TILT DGAIN = 0x000c;
static const word PAN_PGAIN = 0x000d ;
static const word PAN_IGAIN = 0x0008;
static const word PAN DGAIN = 0x000b;
static const word PSHIFT = 0x000e ;
static const word ISHIFT = 0x0002;
static const word DSHIFT = 0x000f;

in MySampleClass.cc

void MySampleClass:: SetJointGain ()

OPENR: : EnableJointGain (jointID [TILT INDEX]);
OPENR: : SetJointGain (jointID [TILT INDEX],
TILT _PGAIN,
TILT IGAIN,
TILT DGAIN,
PSHIFT, ISHIFT, DSHIFT);

OPENR:: EnableJointGain (jointID [PAN_INDEX]) ;
OPENR:: SetJointGain (jointID [PAN INDEX] ,
PAN_PGAIN,
PAN_IGAIN,
PAN DGAIN,
PSHIFT, ISHIFT, DSHIFT);

The P, I, D gains and shifts are hardware parameters for servo control. Since servo control knowl-
edge is required to understand the consequences of changing gains and shifts, we recommend to
use standard values. Failure to do so could result in damages for the robot.

3rd step: calibrating the joint

A gap between the real position and the position given by the sensor could exist when Aibo
starts. The program must adjust this difference before moving joints. Reading a joint value
with OPENR: :GetJointValue (OPrimitiveID primitiveID, *0JointValue value) then setting
the joint to this value by sending a command to the joint will correct the gap. Here is a sample
code that adjusts joint gaps (SetJointValue() is a user-defined function that is explained in the
example of the section 4.1.4.):

33

void MySampleClass:: AdjustDiffJointValue ()
OJointValue current [NUM_JOINTS];
for (int i = 0; i < NUM_JOINTS; i++)

OPENR:: GetJointValue (jointID [i], & current[i]); // get the current
joint value
SetJointValue (region [0], i, // set the joint walue
degrees (current[i].value/1000000.0),
degrees (current [i].value/1000000.0),
ocommandMAX FRAMES) ;

}

/% Send the commands */
subject [sbjMove]—>SetData(region [0]);
subject [sbjMove|—>NotifyObservers ();

4.1.3 Using the shared memory with the RCRegion class

In Sony’s examples, a buffer method is used to send commands to OVirtualRobotComm. Why using
a buffer? First a buffering method brings smoothness, but the main reason is that messages have
a max size which is lower than the size of OCommandVectorData. Instead of sending a message of
OCommandVectorData type, objects rather send a pointer to a cell of an OCommandVectorData
array allocated in the shared memory. This pointer is of course much smaller and fits in the limits
for an OCommandVectorData.

The OPEN-R SDK provides the RCRegion class that can access the shared memory segment
and gives a reference counter. This counter holds the number of objects that have a pointer to a
memory region allocated and behave as a mutex lock for this memory region.

In the particular case of sending commands to joints, it is the OPENR: : NewCommandVectorData ()
function that allocates memory plus a RCRegion pointing to this memory, which is used to hold
the reference counter. The OPENR: :NewCommandVectorData() creates a OCommandVectorData
and has three arguments:

e size_t numCommands: the number of cells in the OCommandData array.

e MemoryRegionID* memID: MemoryRegionlD of the shared memory for OCommandVector-
Data.

e OCommandVectorData** baseAddr: pointer to OCommandVectorData.

This function initializes the value of the MemoryRegionID and the OCommandVectorData*.
Once the OPENR: :NewCommandVectorData() function has been called, the RCRegion class can be
instanciated. The constructor that we will use is: RCRegion(MemoryRegionID memID, size_t
offset, void* baseAddr, size_t size). Several of the required arguments can be found in
the ODataVectorInfo structure of the OCommandVectorData previously allocated.

e memID is the memRegionID member of the ODataVectorInfo.

e offset is the offset member of the ODataVectorInfo.

e baseAddr is the pointer initialized by OPENR::NewCommandVectorData().
e size is the totalSize member of the ODataVectorInfo.

The programmer must initialize the OCommandVectorData by setting the number of joints that
will be controlled, the joints IDs, the number of frames for each joint. The sample code below shows
the implementation for creating one OCommandVectorData for sending commands to 2 joints with
the associated RCRegion class. In MySampleClass.h:

34

class MySampleClass : public OObject{

private:
RCRegion* region ;

In MySampleClass.cc:

void MySampleClass:: NewCommandVectorData ()
{
OStatus result;
MemoryRegionlD cmdVecDatalD ;
OCommandVectorData*x cmdVecData;
OCommandInfo * info;

/% call NewCommandVectorData () */

result = OPENR:: NewCommandVectorData (NUM_JOINTS,
&cmdVecDatalD ,
&cmdVecData) ;

if (result == oSUCCESS)
{

/* create a RCRegion pointing to the OCommandVectorData */
region = new RCRegion(cmdVecData—>vectorInfo.memRegionID,
cmdVecData—>vectorInfo.offset ,
(void *)cmdVecData ,
cmdVecData—>vectorInfo.totalSize);

/% mow initialize some of the OCommandVectorData members x/
cmdVecData—>SetNumData (NUM_JOINTS); // number of OCommandData cells

for (int j = 0; j < NUM_JOINTS; j++) // for each OCommandInfo set:

info = cmdVecData—>GetInfo (]);

info—>Set (odataJOINT COMMAND2, // — the data type
jointID [j], // — the ID of the joint to command
ocommandMAX FRAMES); // — the number of frames

4.1.4 Setting a joint value

Once a OCommandVectorData and its corresponding RCRegion have been created it is possible
to set joints values.

The first step is to be sure that no one else is reading the shared memory before writing it.
The RCRegion class has a function NumberOfReference() that returns the number of references
pointing to the allocated memory. If there is only one reference, it means that only the current
object reads the allocated memory and so it is available for writing.

Then, as we already explained it, in the Sony Open-R SDK we must define a set of positions
to reach for each frame and each joint included in the OCommandVectorData. The sample code
below has a user function named SetJointValue(): it is an interface command which fills a joints
values for a number of ocommandMAX_FRAMES frames in order to create a linear movement between a
starting and an ending position. rgn is a pointer to a free RCRegion (rgn->NumberO0fReference ()
== 1), idx is the index of the OCommandInfo and OCommandData arrays (thus idx points to a
specific joint), start and end are the starting and ending values in degrees.

void
MySampleClass :: SetJointValue (RCRegion* rgn,int idx,double start ,double end)

/% get a pointer to the OCommandVectorData from the RCRegionx/
OCommandVectorDatax cmdVecData = (OCommandVectorDatasx)rgn—>Base ();

/x set members of the OCommandInfo cell x/
OCommandInfo* info = cmdVecData—>GetInfo (idx);
info—>Set (odataJOINT COMMAND2, jointID [idx], ocommandMAX FRAMES);

35

/% set frame wvalues of the OCommandData cell */
OCommandDatax data = cmdVecData—>GetData(idx);
OJointCommandValue2x jval = (OJointCommandValue2x)data—>value;

double delta = end — start;

for (int i = 0; i < ocommandMAX FRAMES; i++) {
double dval = start + (delta = i) // (double)ocommandMAX FRAMES;
jval[i].value = oradians(dval); //value is converted in micro—radians

Now we can send the command-message, for example:

/x assume that rgn points to a free region x/

SetJointValue (rgn, TILT INDEX, 0.0, 10.0);
SetJointValue (rgn, PAN INDEX, 0.0, 10.0);

subject [sbjMove]—->SetData (rgn);
subject [sbjMove]—>NotifyObservers ();

When the object OVirtualRobotComm receives the message, the reference counter of the RCRegion
increase by one. The counter will decrease by one when OVirtualRobotComm processes the message
and the subject can write again in the shared memory.

4.1.5 Controlling the pace of commands sending

There are two methods to control the pace of commands sending. The first is to send a message
and wait for an AR message before sending another one. The second is faster and is useful in
programs that need to be reactive (like tracking the pink ball with Aibo’s head). This method uses
a buffer that is an array of OCommandVectorData with the corresponding array of RCRegion. As
the current move-command is processed by OVirtualRobotComm, the calling object tries to find a
new free region in the array, set the joints’ values for the next command in this region and send the
message. This creates an autoregulated message queue: if OVirtualRobotComm speed to process
commands is slower than the subject speed to send messages, soon none of the RCRegion will be
free when the subject tries to find one and it will be stalled. It is only when a RCRegion is freed
that the subject can send an other message. This ensures that no processing time will be lost in
synchronization tasks since OVirtualRobotComm is constantly fed in.

4.2 Playing sound

The incoming gate of OVirtualRobotAudioComm that receives sound data is named Speaker. It
receives message of the OSoundVectorData type. The observer can be referred in connect.cfg
using the following line:

OVirtualRobotAudioComm.Speaker.0SoundVectorData.O.

4.2.1 The OSoundVectorData format

The OSoundVectorData data format is a structure containing sound information and data. Fig-
ure 4.2 shows a diagram of this format. It contains three members: vectorInfo which is an
ODataVectorInfo, an array of OSoundInfo and an array of byte. The two arrays have a max size
of maxNumData. Each cell of the OSoundInfo array has a corresponding cell in the byte array.
These two cells contain the information and data for playing sound. The OSoundInfo structure
has members describing the sound format and the primitive ID. The primitivelD is the speaker ID
returned by OPENR: :OpenPrimitive(). frameNumber is the frame number when the sound starts
playing, dataSize is the size of the block containing the sound data. format is the sound format (it
is always osoundformatPCM), channel is the number of channel in the sound data, samplingRate

36

—— OSoundVectorData

ODataVectorinfo vectorinfo

T
size_t numData / ODétaType tyPe. .
L / OPrimitivelD primitivelD
size_t maxNumData ’
. ’ longword frameNumber
// size_t dataSize
K OSoundFormat format
’ _ ~| OSoundChannel channel
access via Getinfo() e word samplingRate
::: =1 word bitsPerSample
OSoundInfo OSoundInfo OSoundInfo RN
"
access via GetData()
byte byte byte

Figure 4.2: A diagram of the OSoundVectorData data format.

is the sampling rate and bitsPerSample is the number of bits per sample in the sound data. Each
cell of the byte array is a pointer to the shared memory containing the sound data. The cells
of the OSoundlInfo array are accessible using the GetInfo(int index) function, and those of the
OCommandData array are accessible using the GetData(int index) function. These functions
are members of the OSoundVectorData structure. The next section explains the common method
used to play sound.

4.2.2 Playing a .wav file

Since Aibo can only play sound in PCM format, a .wav file must be converted. In the samples
provided by Sony there is a class called WAV, handling the 8KHz 8bits Mono wav format. This
section describes the method for playing a .wav file but most of this method is common to all
sound formats.

The sound is cut in blocks that are sent through a buffer to OVirtualRobotAudioComm. A
buffering method is again necessary here because sound blocks can be larger than the max size of
the messages. It also provides the ability to stop a sound currently playing: since a block currently
playing cannot be stopped, we have to wait until it ends if we want to stop it. The smaller the
block is, the lesser we will wait for its ending.

There are five steps required to play a sound:

1. Open the speaker to get its primitive ID

2. Create a OSoundVectorData buffer array in the shared memory.
3. Load the .wav file

4. Set the speaker volume

5. Send messages to OVirtualRobotAudioComm (play the sound)

The first four ones are initialization steps and are done only once.

Open the speaker

Like for any other primitives, the programmer needs to retrieve the speaker primitive ID before
using it. To achieve this, use OPENR: :OpenPrimitive ().

OPrimitivelD speakerID;
static const charx const SPEAKER LOCATOR = "PRM:/rl/cl/c2/c3/sl—Speaker:S1";

void MySampleClass:: OpenSpeaker ()

37

H OStatus result = OPENR:: OpenPrimitive (SPEAKER LOCATOR, & speakerID);
}

Create a OSoundVectorData buffer

Since the sound data blocks are larger than what a message can hold, it is necessary to send the
sound data in several steps. The way to do this is to create a OSoundVectorData array that will
hold the whole sound data in several smaller blocks. This array buffering technique has already
been presented in the previous section with motor commands. As we did in the section 4.1.3 we
use a RCRegion based shared memory to hold the buffer.

First we have to create the buffer by setting several OSoundVectorData in the shared memory
with the function NewSoundVectorData(). Its prototype is

NewSoundVectorData(size_t numSounds, size_t dataSize, MemoryRegionID* memID,
OSoundVectorData** baseAddr),

where numSounds is the size of the arrays in the OSoundVectorData structures to be created
and dataSize is the size of the blocks containing sound data. This function sets memID and
baseAddr. Once the array of OSoundVectorData is created we must create the corresponding
array of RCRegion to hold them. We use the same RCRegion constructor as we did in section
4.1.3.

The following sample code shows how to create the sound buffer with blocks of 256 bytes length,
calculated to last for 32ms:

// 8KHz 8bits MONO
// (8000 samples % 1 byte/sample * 1 channel * 32 ms = 256 bytes/ 32ms)
static const size t SOUND_UNIT_ SIZE = 256;
static const size t SOUND_NUM BUFFER = 2;
RCRegion* region [SOUND NUM BUFFER]|; // the sound buffer
void MySampleClass:: CreateSoundBuffer ()
{
OStatus result;
MemoryRegionID soundVecDatalD ;
OSoundVectorData* soundVecData;
for (int i = 0; i < SOUND NUM BUFFER; i-++) {
result = OPENR:: NewSoundVectorData (1, SOUND UNIT SIZE,
&soundVecDatalD, &soundVecData);
// Set the size of OSoundInfo array to 1
soundVecData—>SetNumData (1);
// Set OSoundInfo members
// here speakerID is the one returned by OpenPrimitive ()
soundVecData—>GetInfo(0)—>Set (odataSOUND VECTOR,
speakerID , SOUND_UNIT SIZE);
region[i] = new RCRegion(soundVecData—>vectorInfo.memRegionID ,
soundVecData—>vectorInfo.offset ,
(void *)soundVecData ,
soundVecData—>vectorInfo.totalSize);
}
}

Load the .wav file

The .wav data files are located in the OPENR/MW/DATA/P/ directory on the MemoryStick. Each
file is associated to a keyword in the OPENR/MW/CONF/DESIGN.DB file. Here is an example of the
DESIGN.DB file from the BallTrackingHead example:

FOUND_SOUND /MS/OPEN-R,/MW/DATA /P /FOUND . WAV
LOST_SOUND /MS/OPEN-R,/MW/DATA /P /LOST .WAV

38

In a program we can refer to a file using its associated keyword. The function
OPENR: :FindDesignData("KEYWORD", ODesignDataID* dataID, byte** addr, size_t* size)
loads the file corresponding to "KEYWORD" in a shared memory. This function also initializes
dataID and allocates a shared memory of size size and sets the pointer addr to that mem-
ory. The ODesignDatalD dataID holds information about the shared memory newly allocated by
OPENR: :FindDesignData(). This information is used when the file is unloaded from the shared
memory with the OPENR: :DeleteDesignData(0DesignData DatalID) function.

An instance of a WAV class is linked to the wav file stored in the shared memory by using
the Set () function of the WAV class. The sample code below shows how to load the previous
FOUND. WAV file:

#include "WAV.h"

/* we must keep foundSoundID to free the shared memory
* at the end of the program x/

ODesignDatalD foundSoundID ;

WAV foundWAYV ;

// Call the constructor of the WAV class
foundWAV ()

void MySampleClass :: LoadWAV ()

{
OStatus result;
size _t size;
bytex addr;
result = OPENR:: FindDesignData ("FOUND_SOUND", & foundSoundID, &addr, & size)|;
foundWAV . Set (addr);
}

This global variable foundWAV must be defined since it will be later used by the CopyWAVto
function.

Set the speaker volume

Before we play the sound we have to make sure that it will be audible. The OPEN-R API provides a
static function OPENR: : ControlPrimitive () that allows the programmer to control primitives like
the camera, the speaker, etc. OPENR: :ControlPrimitive() is often used to set parameters of the
camera (see the following section) Here we will just show how to control the speaker volume. Only
two of the OPENR: :ControlPrimitive() parameters have to be set by the programmer to mute
or unmute the speaker. The value of the first parameter is the ID of the speaker, the second is a
constant that can be either oprmreqSPEAKER_MUTE_ON or oprmreqSPEAKER_MUTE_OFF. For example
OPENR: :ControlPrimitive (speakerID, oprmreqSPEAKER_MUTE_ON, O, O, O, 0); mutes the
speaker. When oprmreqSPEAKER_MUTE_ON is replaced by oprmreqSPEAKER_MUTE_OFF the speaker
is enabled.

In order to set the volume we also use OPENR: : ControlPrimitive () but more parameters need
to be set. The first parameter is still the speaker ID, the second is the following constant:

oprmreqSPEAKER_SET_VOLUME.
The other parameters are a pointer to a OPrimitiveControl SpeakerVolume (which is a special
class that holds information about the speaker volume) and the size of this class. The OPrimitive-
Control SpeakerVolume class is instanciated with one of the following arguments: ospkvolinfdB
(minimum), ospkvol25dB (-25dB), ospkvol18dB (-18dB), ospkvol10dB (-10dB, maximum.) The
sample code below shows how to set the volume to -10dB:

OStatus result;
OPrimitiveControl SpeakerVolume volume (ospkvoll0dB);

result = OPENR:: ControlPrimitive (speakerID ,

39

oprmreqSPEAKER _SET VOLUME,
&volume ,

sizeof (volume) ,

0, 0);

Playing the sound

A buffering method is used to send sound data (OSoundVectorData) to OVirtualRobotAudio Comm.
Besides, the OSoundVectorData is not sent directly but is stored in a RCRegion based shared
memory instead (as it was the case in the buffering method used in the joints command example).
So, we first create a RCRegion based buffer. This buffer is of size 2, which is enough in that
particular case, as we will explain it below.

The global variable foundWAV holds the whole wav sound data. It is capable of copying it
by blocks of a specifyed size (256 octects) into a OSoundVectorData, or, more specificaly, into a
RCRegion pointing to the OSoundVectorData. Doing so, it behaves as a sort of wav player, with
a current index pointing to the ending of the last block sent. The function that performs this
copying is CopyWAVto (RCRegion *). The end of the wav file is reached when CopyWAVTo () returns
WAV_FAILS, otherwise it returns WAV_SUCCESS. The first thing to do before using this foundWAV
object is to "rewind" it so that the index points to the beginning of the wav sound data. The WAV
class member Rewind () handles this job.

The buffering technique is used to insure a continuous flow of sound data towards OVirtualRob-
otAudioComm. We first fill the buffer (the two RCRegions) with the two first blocks of 256 octects
(this is done in the FillEntirelyBuffer function in the example below, using the CopyWAVto
function). Then, two messages are sent to OVirtualRobotAudioComm, with pointers to the two
filled RCRegions. As soon as an AR message comes back from OVirtualRobotAudioComm (the
ReadPlay function is started), we try to find one free RCRegion among the two of the buffer
(rgn[i] ->NumberOfReference()==1 7), we fill it again with the next 256 octets of wav sound
data (again, using CopyWAVto) and we send a new message pointing to this RCRegion.

This method ensures that the OVirtualRobotAudioComm will always have a block of sound to
process.

The following code shows the entire playing process:

#include "WAV.h"

/% Fill entirely the sound buffer x/
void MySampleClass:: FillEntirelyBuffer

for (int i = 0; i < SOUND NUM BUFFER; i-++)
{
if (CopyWAVTo(region|[i]) == WAV_SUCCESS)
subject [sbjPlay]—>SetData(region[i]);

subject [sbjPlay|—>NotifyObservers ();

/x this function is called when OVirtualRobotAudiocomm sends an AR x/
void MySampleClass:: ReadyPlay (const OReadyEvent& event)

{
/x first find a free region x/
RCRegion* rgn = FindFreeRegion ();

/% try to copy a sound block in the buffer if
* there are sound blocks remainings*/
if (CopyWAVTo(rgn) == WAV _SUCCESS) {
subject [sbjPlay|—>SetData(rgn);
subject [sbjPlay|—>NotifyObservers ();
} else { // no blocks remaining
if (IsAllRegionFree() == true) // the buffer is empty

/% the sound has been played entirely */

}

WAVError MySampleClass :: CopyWAVTo(RCRegion* rgn)

OSoundVectorData* soundVecData = (OSoundVectorDatasx)rgn—>Base ();

40

return foundWAV—>CopyTo(soundVecData);

}
RCRegion* MySampleClass:: FindFreeRegion ()
{
for (int i = 0; i < SOUND NUM BUFFER; i+-+) {
if (region[i]->NumberOfReference() == 1) return region|[i];
}

return 0;
bool MySampleClass:: IsAllRegionFree ()
for (int i = 0; i < SOUND NUM BUFFER; i-++) {

if (region[i]->NumberOfReference() > 1) return false;
}

return true;

One difference between this buffering method and the one used in the joint commands that we
explained before is that we use here AR messages from OVirtualRobotAudioComm to give rythm
to the process. In the joint commands example, the rythm is given by incoming messages from the

image gate of OVirtualRobotComm (FbkImageSensor gate).

4.3 Sending commands to the camera

As Aibo can move around in different environments, the camera shutter speed, gain or white

balance has to be set accordingly to the lighting conditions.

The programmer can also define the color detection table used in the section 3.2.2. Here we

will explain how to change the camera settings and color detection tables.

4.3.1 Setting the gain, color balance and shutter speed

The OPENR: : ControlPrimitive () can be used to change the camera settings. We have to get the

camera primitiveID to change settings (Use the OPENR: :OpenPrimitive() function.)
To set the white balance, use:

OPENR:: ControlPrimitive (cameralD , oprmrchAMi_SET_VVHI'TE_BALANCE7 &wb,
sizeof(wb), 0, 0);

‘ OPrimitiveControl CameraParam wb (ocamparamWB _ OUTDOOR _ MODE) ;

The arguments of the OPrimitiveControl CameraParam constructor can be :

ocamparamWB_INDOOR_MODE, ocamparamWB_0UTDOOR_MODE, ocamparamWB_FL_MODE (for fluorescent

lamps)
To set the gain, use:

OPENR:: ControlPrimitive (cameralD , oprmreqCAMisETiGAIN, & gain , sizeof(gain),

OPrimitiveControl CameraParam gain (ocamparamGAIN MID) ;
0, 0);

arguments of the OPrimitiveControl CameraParam constructor can be: ocamparamGAIN_LOW,

ocamparamGAIN_MID, ocamparamGAIN_HIGH.
To set the shutter speed, use:

OPENR:: ControlPrimitive (cameralD , oprmreqCAM_SET SHUTTER_ SPEED, & shutter ,
sizeof(shutter), 0, 0);

‘ OPrimitiveControl CameraParam shutter (ocamparamSHUTTER FAST);

41

arguments of the OPrimitiveControl CameraParam constructor can be: ocamparamSHUTTER_SLOW,
ocamparamSHUTTER_MID, ocamparamSHUTTER_FAST

Since the camera sensitivity is not very high, we recommand to use slow shutter speed and high
camera gain in most indoor environments.

4.3.2 Setting a color detection table

The programmer can set up to eight color detection channels that can be used by the internal color
detection algorithm as we explained before (see 3.2.2). As we said in the section 3.2 the colors in
Aibo are in the YCrCb format. A color description for a given channel is built on a set of 32 CrCb
plans spreading along the Y component of the color space. For each of the 32 values along Y, a
rectangle is defined in the corresponding CrCb plan. During the color detection process, Aibo’s
harware takes the Y component at each pixel and test if the corresponding (Cr,Cb) value falls
within the rectangle which is defined for this value of Y in the color description of each channel of
the detection table and thus detect which channel this pixel belongs to (it can be multiple channels).
Figure 4.3 shows a 3D representation of this method of color description in the (Y,Cr,Cb) color
space.

Cb

Figure 4.3: 3D representation of color matching rectangles in the (Y,Cr,Cb) reference .

A special method is used to set a color table and communicate it to FbkImageSensor. First
we have to create a OCdtVectorData in a shared memory with OPENR: :NewCdtVectorData().
OCdtVectorData is a data structure that holds a color detection table or "Cdt" (see figure 4.4).

It has two members: an ODataVectorInfo and an array of eight OCdtInfo. An OCdtInfo holds
the information for one channel of the color detection table. Access to an OCdtInfo is granted via
the GetInfo () function of the OCdtVectorData structure.

Fach of the eight color detection channels is represented by an OCdtInfo. We must init the
OCdtInfo with the Init() function before using it. Then we can set information with the Set ()
command. This command is straightforward, as it gives first the value of Y and then the bounding
rectangle for the CrCB plan.

Once the color detection table has been set for the desired channels, we call the
OPENR: : SetCdtVectorData() function that “sends” the OCdtVectorData() to the OfbkImageSen-
sor. To finish, we release the shared memory with OPENR: :DeleteCdtVectorData(). The sample
code below shows the entire method to set one channel in the color detection table.

42

— OCdtVectorData

ODataVectorInfo vectorinfo

size_t numData
size_t maxNumData

access via GetInfo()

ODataType type

OPrimitivelD
OCdtChannel

primitivelD

channel

OCdtInfo OCdtInfo OCdtInfo

OCdtInfo

OCdtInfo OCdtInfo

OCdtInfo

OCdtInfo

Figure 4.4: A diagram of the OCdtVectorData data format.

#define CHANNEL 0 0

/* fbkID 4s the primitive ID of the

{
OStatus result ;
MemoryRegionID cdtVeclD;
OCdtVectorData* cdtVec;
OCdtInfo * cdt

// create the OCdtVectorData in

if (result !'= oSUCCESS) {
// error !

return;

}

// indicate
cdtVec—>SetNumData (1);

// retrieve the first cell
cdt = cdtVec—>GetInfo (0);
/xinitialize the OCdtInfo. Here
* channel 0 x/

cdt—>Init (fbkID , CHANNEL 0);

of the

fbkImageSensor x/

void MySampleClass:: SetCdtVectorDataOfPinkBall ()

the share memory

result = OPENR:: NewCdtVectorData(&cdtVecID, &cdtVec);

that we set up 1 channel

OCdtInfo array

we will use the

/* Set the color table with each Y segment.
* cdt—>Set (Y _segment, Cr_max, Cr_min, Cb_mazx, Cb_min)
*

/

cdt—>Set (0, 230, 150, 190, 120);

cdt—>Set (1, 230, 150, 190, 120);

cdt—>Set (2, 230, 150, 190, 120);

cdt—>Set (3, 230, 150, 190, 120);

cdt—>Set (4, 230, 150, 190, 120);

cdt—>Set (5, 230, 150, 190, 120);

cdt—>Set (6, 230, 150, 190, 120);

cdt—>Set (7, 230, 150, 190, 120);

cdt—>Set (8, 230, 150, 190, 120);

cdt—>Set (9, 230, 150, 190, 120);

cdt—>Set (10, 230, 150, 190, 120);

cdt—>Set (11, 230, 150, 190, 120);

cdt—>Set (12, 230, 150, 190, 120);

cdt—>Set (13, 230, 150, 190, 120);

cdt—>Set (14, 230, 150, 190, 120);

cdt—>Set (15, 230, 150, 190, 120);

cdt—>Set (16, 230, 150, 190, 120);

cdt—>Set (17, 230, 150, 190, 120);

cdt—>Set (18, 230, 150, 190, 120);

cdt—>Set (19, 230, 150, 190, 120);

cdt—>Set (20, 230, 160, 190, 120);

cdt—>Set (21, 230, 160, 190, 120);

cdt—>Set (22, 230, 160, 190, 120);

cdt—>Set (23, 230, 160, 190, 120);

cdt—>Set (24, 230, 160, 190, 120);

cdt—>Set (25, 230, 160, 190, 120);

cdt—>Set (26, 230, 160, 190, 120);

cdt—>Set (27, 230, 160, 190, 120);

cdt—>Set (28, 230, 160, 190, 120);

cdt—>Set (29, 230, 160, 190, 120);

43

cdt—>Set (30, 230, 160, 190, 120);
cdt—>Set (31, 230, 160, 190, 120);

// send the command
result = OPENR:: SetCdtVectorData (cdtVecID);
if (result !'= oSUCCESS) {

// error !

// release the memory
result = OPENR:: DeleteCdtVectorData (cdtVecID);
if (result != oSUCCESS) {

// error !

44

Chapter 5

Miscellaneous

5.1 Printing to the wireless console

Aibo can be connected in a wireless environnement. In fact, it is highly recommanded since it
facilitates the debuging and monitor processes. For this purpose, a remote console is available.
The wireless console is available when the Wconsole environment configuration has been choosen
for the Memory Stick (see 5.2.2). Then, we can easily access this console using the telnet application
on the port 59000:

telnet Aibo_IP 59000.

Within OPEN-R programs, it is possible to print in the wireless console. There are two macros
defined in the OPEN-R SDK that simplify this printing operation. The first is 0SYSPRINT(),
and is always available while the other, OSYSDEBUG(), is only available when the OPENR_DEBUG
compilation flag is defined when compiling with gce. The use of 0SYSPRINT () and OSYSDEBUG () is
similar to the printf () function in the standard C library. Here are some examples:

OSYSPRINT (("Hello_world _!\n"));
// prints Hello world ! and begins a new line

OSYSDEBUG (("The_joint 's_angle_is:.%d_degrees\n" , jAngle));
// prints The joint’s angle is: 2.2564 degrees, and begins a new line.

5.2 How to compile and execute an OPEN-R program

In this section we will not explain how to install the OPEN-R SDK but we will only describe how
to compile and run an OPEN-R program. Information about the installation of the OPEN-R SDK
can be found at the OPEN-R official web site'.

5.2.1 Compilation

Before calling gce in the makefile, we must set up some files and run some OPEN-R SDK tools.
These tools generate intermediate files that are required to compile an OPEN-R object C+-+ class.
We will describe the compilation procedure for one OPEN-R object.

files to be set

The first file we have to set is the stub.cfg of the object as described in the section 2.3.1. This
file must be in the same directory than the .cc and .h of the object. Then we have to set
the objectName.ocf file. This file contains useful information used when linking the librairies.
The file contains one line with the following format: object objectname stack size heap size
sched_priority cache tlb mode

Thttp://openr.aibo.com in the member area.

45

e objectname: the name of the object.

e stack size: the size of the stack, in bytes.

e heap_size: the size of which the heap will be extended if the object runs out of heap space.
e sched_ priority: the scheduling priority of the object. Normally leave this value to “128”.

e cache: the state of using the processor’s memory cache. It is either “cache” or “nocache".
“cache” is recommended.

e tlb: the allocation area of the object’s memory. if “tlb” is specified, the memory will be
allocated in the virtual address space. With “notlb” the memory is allocated in the physical
address space.

e mode: the execution mode of the object. It is either “user” for user-mode or “kernel” for
kernel mode.

Usually objects can be linked with standard settings. The configuration line in objectName.ocf
with standard settings is:
object objectName 3072 16384 128 cache tlb user

compiling

Once stub.cfg and objectName.ocf have been set up, we can launch the compilation. We advise
you to create a makefile for each object. The following code is an example of makefile that the
programmer can easily modify to his own taste by changing “mySampleClass” to his/her object’s
name:

OPENRSDK ROOT?=/usr /local /OPEN R SDK
INSTALLDIR=../MS
CXX=$ (OPENRSDK_ROOT) /bin /mipsel —linux —g++
STRIP=$ (OPENRSDK ROOT)/bin/mipsel—linux—strip
MKBIN=$ (OPENRSDK_ROOT) /OPEN R/ bin /mkbin
STUBGEN=$ (OPENRSDK_ROOT') /OPEN_R/bin/stubgen2
MKBINFLAGS—p $ (OPENRSDK ROOT)
LIBS=-L$ (OPENRSDK ROOT) /OPEN_R/1lib —10bjectComm —IOPENR
CXXFLAGS= \
—02 \
-8\
—I.\
—I$ (OPENRSDK_ROOT) /OPEN_R/include /R4000 \
—1I$ (OPENRSDK ROOT) /OPEN R/include \

#

When OPENR_DEBUG is defined , OSYSDEBUG() is available.
#

CXXFLAGS+= —DOPENR_DEBUG

.PHONY: all install clean

all : mySampleClass. bin

%.0: %.cc
$(CXX) $(CXXFLAGS) —o0 $@ —c $-

MySampleClassStub.cc: stub.cfg
$ (STUBGEN) stub.cfg

mySampleClass.bin: MySampleClassStub.o .o mySampleClass. ocf
$ (MKBIN) $(MKBINFLAGS) —o $@ $~ $(LIBS)
$ (STRIP) $@

install : mySampleClass. bin
gzip —c¢ mySampleClass.bin > $(INSTALLDIR)/OPEN-R/MW/OBJS/MYSMPLE. BIN

clean:
rm —f *x.0 *.bin *.elf *x.snap.cc
rm —f MySampleClassStub.h MySampleClassStub.cc def.h entry.h
rm —f $(INSTALLDIR)/OPEN-R/MW/OBJS/MYSMPLE. BIN

46

When we type $> make, first stungen? is called, then mipsel-linux-g++ compiles. The linking is
done by the OPEN-R mkbin. When typing $> make install, the bin object is compressed with
gzip and then moved to the $ (INSTALLDIR)/OPEN-R/MW/0BJS/ directory.

5.2.2 Execution on Aibo

There are two steps to perform before running an OPEN-R program on Aibo. First, the base
system must be installed on the memory-stick, and then, on top of this base system, we can copy
our own OPEN-R objects and set up config files that will launch our OPEN-R program when Aibo
boots.

preparing the Memory Stick

We have to copy a base OPEN-R system able to run OPEN-R programs on the Aibo’s Memory
Stick. Three configurations are avaible:

e Basic: without a wireless LAN environment
e Wlan: with a wireless environment but without a console.
e Weconsole: with a wireless environment and console.

On top of that we can choose between memory protection (memprot) or not (nomemprot). By
default we suggest to choose memory protection because it is safer. Once we have choosen the
configuration, we have to copy to the root of the Memory Stick the base system which is available
in the corresponding OPEN-R directory. Directories that can be copied are situated in
/usr/local/0OPEN_R_SDK/OPEN_R/MS/:

e BASIC/memprot/OPEN-R

e BASIC/nomemprot/OPEN-R
e WLAN/memprot/OPEN-R

e WLAN/nomemprot/0PEN-R

e WCONSOLE/memprot/0OPEN-R

e WCONSOLE/nomemprot/0OPEN-R

Copying objects to the Memory Stick and setting config files

For each objects we have to copy the corresponding .bin files from the

$ (INSTALLDIR) /OPEN-R/MW/0BJS/ directory to the /OPEN-R/MW/0BJS/ directory on the Memory
Stick. At this time the /OPEN-R/MW/CONF/0BJECT.

CFG file on the Memory Stick must be edited: it contains the name of the objects that will be
executed. For example:

/OPEN-R/MW/OBJS/MYSMPLE. bin
/OPEN-R/MW/OBJS/TOTO. bin

Usually, this is done once when the objects are first created and then, it is enough just to copy
the .bin files to update the program.

We also have to put the connect.cfg and designdb.cfg files in the /OPEN-R/MW/CONF directory
on the Memory Stick. If we choosed to use a wireless environment, we would have to set the
WLANCONF . txt file. Here is an sample configuration of WLANCONF . txt:

47

HOSTNAME=AIBO1
ETHER_IP=192.168.1.10
ETHER _NETMASK=255.255.255.0
IP. GATEWAY=192.168.1.1
ESSID=linksys
WEPENABLE=0

WEPKEY=AIBO2

APMODE=1

CHANNEL=6

DNS SERVER 1=147.250.1.1
DNS_DEFDNAME=ensta . fr

Running the program on Aibo

Simply put the Memory Stick in Aibo and boot it up.

5.3 Using the FTP protocol to transfer file into Aibo

Extracting and reinserting the Memory Stick in the robot can become repetitive when the pro-
grammer debugs an OPEN-R program. However, there is an OPEN-R object called TinyFTPD
that provides a FTP server on Aibo. This object in part of the sample programs provided by Sony.
After compiling it (make, make install in the samples/TinyFTPD/ directory), put the binary
file samples/TinyFTPD/MS/0PEN-R/MW/0BJS/TINYFTPD.BIN in the /OPEN-R/MW/0BJS/ directory
on the Memory stick and add the line /OPEN-R/MW/0BJS/TINYFTPD.bin in the OBJECT.CFG file
situated in the /OPEN-R/MW/CONF/ directory (see previous section).

We also have to put the samples/TinyFTPD/MS/0PEN-R/MW/CONF/PASSWD file in the
/0OPEN-R/MW/CONF/ directory on the memory stick.

Then, when Aibo is running, execute a FTP client: ftp AIBO_IP. You can log in using the
anonymous account (login: anonymous, password: anonymous .) The usual FTP commands are
available (PUT, GET, etc.) In order to reboot Aibo remotely, use the following command: QUOTE
REBT (***!!l Beware because Aibo can fall as it reboots **¥).

5.4 data structures

In this section we will describe the data structures that are specific to each type of sensor (joints,
switches, etc.) and each type of command (joints, LEDs, etc.)

5.4.1 Sensors

The general type OSensorValue has to be cast to the sensor’s specific type for retrieving information
from this sensor (see 3.1.1).

OAcceleration

OAcceleration is a data type that holds acceleration values from the x, y or z acceleration sensor.
The useful member is value. The unit is 107%m.s72. The member signal is the A/D signal from
the sensor.

struct OAcceleration

slongword value;
word signal;
word padding [5];

48

OTemperature

OTemperature is a data type that holds the temperature value returned by the temperature sensor.
The useful member is value. The unit is 107°°C. The member signal is the A /D signal from the
sensor.

struct OTemperature
{
slongword value;
word signal;
word padding [5];
}
OPressure

OPressure is a data type that holds the pressure value returned by the pressure sensor. The useful
member is value. The unit is in 1075N.m™2. The member signal is the A/D signal from the
Sensor.

struct OPressure
{
slongword value;
word signal;
word padding [5];
}
OLength

OLength is a data type that holds the distance value returned by the ultrasonic distance sensor.
The useful member is value. The unit is 107%m. The member signal is the A/D signal from the
sensor.

struct OLength
{
slongword value;
word signal;
word padding [5];
}
OSwitchStatus

OSwitchStatus is a data type that holds the status returned by a switch. The useful member is
value. It is either oswitchON or oswitchOFF. The member signal is the A/D signal from the
Sensor.

struct OSwitchStatus

OSwitchValue value;
word signal;
word padding [5];

49

OJointValue

OJointValue is a data type that holds the angle value returned by a joint. The useful member is
value. The unit is 107%rad. The member signal is the feedback signal from the sensor (which is
converted using a table to obtain value). The other members are unuseful for standard programs.

struct OJointValue

{
slongword value;
word signal;
sword pwmDuty ;
slongword refValue;
word refSignal;
word padding [1]

}

5.4.2 effectors

The general type OCommandValue has to be cast to the effector’s specific type for sending a
command to this sensor (see 4.1.1).

OJointCommandValue2

OJointCommandValue2 is a data type that holds the command for a joint for 1 frame. The useful
member is value. The unit is 10~ %rad.

struct OJointCommandValue2

{

slongword value;
slongword padding;

OJointCommandValue3

OJointCommandValue3 is a data type that holds the command for the plunger movement in
the ears of an ERS-210 for 1 frame. The useful member is value.It can be 0joint3_STATEO or
0joint3_STATE1.

struct OJointCommandValue3

OJointValue3 value;

word reserved ;
word padding;
}
OLEDCommandValue2

OLEDCommandValue2 is a data type that holds the command for a LED for 1 frame. The useful
members are value (ON / OFF, respectively 01edON and 0ledOFF) and period (how long a LED
will remain in the state. The unit is 8ms).

struct OLedCommandValue2

OLedValue led;
word period ;
word reserved ;

50

Bibliography

[1] Sony. OPEN-R SDK Documents. http://openr.aibo.com/ (download section of the registered
area.)

[2] Sony. OPEN-R SDK school (6 tutorials). http://openr.aibo.com/ (OPEN-R SDK University
section of the registered area.)

[3] AiboHack web site: http://www.aibohack.com

51

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

