

Monga Re

Sistemi Operativi¹

Mattia Monga

Dip. di Informatica Università degli Studi di Milano, Italia

mattia.monga@unimi.it

a.a. 2013/14

Lezione XXI: Esecuzione di un programma utente in JOS

Riassunto gestione memoria

- Il setup della memoria avviene in mem_init
- La funzione di servizio principale è boot_map_region
- Allo scopo serve:
 - Gestire la relazione con la MMU: pgdir_walk, page_insert, page_remove, page_lookup
 - Gestire le strutture dati struct PageInfo pages[] e page_free_list: page_init, page_alloc, page_free, page_decref

Bruschi Monga Re

Il mapping finale

 $PGSIZE = 4096 (0 \times 1000)$

PTSIZE = 4M (0x400000)

simbolo	va	PDX	fisico
(4G)	Oxffff ffff	0x3ff	va - KERNBASE
KERNBASE, KSTACKTOP	0xf000 0000	0x3c0	va - KERNBASE
MMIOLIM	0xefc0 0000	0x3bf	page_alloc
MMIOBASE, ULIM	0xef80 0000	0x3be	page_alloc
UVPT	0xef40 0000	0x3be	page_alloc
UPAGES	0xef00 0000	0x3bc	page_alloc
UXSTACKTOP, UTOP, UENVS	0xeec0 0000	0x3bb	
USTACKTOP	0xeebf e000	0x3ba	
UTEXT	0x0080 0000	0x2	
PFTEMP	0x007f f000	0x1	
UTEMP	0x0040 0000	0x1	
USTABDATA	0x0020 0000	0x0	
EXTPHYSMEM	0x0010 0000	0x0	
IOPHYSMEM	0x000a 0000	0x0	
(0)	0x0000 0000	0x0	

Monga Re

¹©⊕ 2008–14 M. Monga. Creative Commons Attribuzione — Condividi allo stesso modo 4.0 Internazionale. http://creativecommons.org/licenses/by-sa/4.0/deed.it.. Immagini tratte da [2] e da

Program environment

Bruschi

Monga Re

La gestione è simile a quella di pages

```
1 struct Env {
                                                                 2 struct Trapframe env_tf; // Saved registers
                                                                3 struct Env *env_link; // Next free Env
                                                                 4 envid_t env_id; // Unique environment identifier
                                                                 5 envid_t env_parent_id; // env_id of this env's parent
                                                                 6 enum EnvType env_type; // Indicates special system
1 struct Env *envs = NULL; // All environments
2 struct Env *curenv = NULL; // The current env
                                                                    environments
 \  \  \, \text{3} \  \  \, \text{static struct } \text{Env } *\text{env\_free\_list; } /\!/ \  \  \, \textit{Free environment} \, \text{7} \  \  \, \text{unsigned env\_status; } /\!/ \, \textit{Status of the environment} \, 
                                                                 8 uint32_t env_runs; // Number of times environment
                                                               10 // Address space
                                                               11 pde_t *env_pgdir; // Kernel virtual address of page dir
```

Per ogni programma è previsto un nuovo mapping (env_pgdir)! I programmi sono nella memoria del kernel, non nel file system (che non c'è): li carica load_icode (per scriverla conviene copiare la gestione ELF dal boot)

Gestione delle eccezioni (e interruzioni)

Bruschi

Monga Re

Il meccanismo hardware è il medesimo, logicamente si tratta di un protected control transfer

Interrupt asincrono, generato dalle periferiche Exception sincrono, generato dai programmi (per errori o esplicite istruzioni come int) Il punto fondamentale è che deve essere il kernel a decidere l'indirizzo di esecuzione della

"gestione" e non chi genera l'eccezione.

load_icode

Il nocciolo è nel fatto che gli indirizzi contenuti nel programma

utente fanno riferimento allo spazio di indirizzamento user. Per rendere "facile" il ciclo cambio la paginazione. 1 struct Elf *eb = (struct Elf*) binary;

2 struct Proghdr *ph, *eph; 4 if (eb->e_magic != ELF_MAGIC) panic("Invalid binary!"); 6 ph = (struct Proghdr *) (binary + eb->e_phoff); 7 $eph = ph + eb - > e_phnum;$ 8 lcr3(PADDR(e->env_pgdir)); 9 while (ph < eph){ 10 if (ph->p_type == ELF_PROG_LOAD){ 11 region_alloc(e, (void*)ph->p_va, ph->p_memsz); 12 memset((void*)ph $->p_va$, 0, ph $->p_memsz$); 13 memcpy((void*)ph->p_va, (void*)(binary + ph->p_offset), ph->p_filesz); 15 ph += 1: 16 17 18 lcr3(PADDR(kern_pgdir)); 19 $e->env_tf_tf_eip = eb->e_entry;$

IDT

Bruschi

Monga Re

Il meccanismo hardware per imporre il trasferimento di controllo è che la gestione passa per l'IDT.

2 int 0x80

Il vettore 0x80 seleziona una riga dell'IDT che contiene (ce li ha messi il kernel...)

- eip e cs (fondamentale per i privilegi della gestione)
- salvare lo stato dei programmi utente interrotti.

1 mov eax. 3

• TSS: serve per tenere uno stack speciale (kernel) dove

Monga Re

Gestione in generale

Sistemi Operativi

Bruschi Monga Re

OS

La gestione della memoria

Strutture dati per i programmi

Sestione ccezioni

ccezioni secuzione di un rogramma tente

In JOS per il momento è piú semplice. . .

get TSS, save in P stack

save in P stack, swit

K Stack

int gate

334

trapentry

Sistemi Operativi

> Bruschi Monga Re

JOS

La gestione della memoria Strutture dati per i programmi

cezioni

Esecuzione di programma utente

name: /* function starts here */
pushl \$(num) /* error code */
jmp _alltraps

alltraps:
pushl %ds // see Trapframe in inc/trap.h
pushl %es // see Trapframe in inc/trap.h
pushal
movw \$GD_KD, %ax
movw %ax, %ds
movw %ax, %es
pushl %esp
call trap

Per popolare la IDT usare SETGATE
SETGATE(idt[...], 1, GD_KT, ..., 0);

335

L'esecuzione vera e propria

restore from P' stack, set TSS

Bruschi Monga Re

06

La gestione de memoria Strutture dati per i programn utente Gestione

Esecuzione di un programma

Sistemi Operativi

Bruschi Monga Re

JOS

La gestione de memoria Strutture dati per i programn utente Gestione

> secuzione di ι rogramma

1 env_pop_tf(&curenv->env_tf);

"Ripristina" lo stato del programma utente...