Decision Procedures for Automated Verification

Alessandro Armando
armando@dist.unige.it
Università di Genova

5 Settembre 2006

Scuola Estiva di Logica
Palazzo Feltrinelli, Gargnano
1. Formal Verification

2. Decision Procedures for Verification
 - Decision procedures for propositional logic
 - Deciding sets of equalities
 - Deciding sets of linear (arithmetic) constraints

3. Combining Satisfiability Procedures

4. Integrating Satisfiability Procedures

5. Encoding Techniques
 - C Bounded Model Checking
Verification is the act of proving or disproving whether a (hardware or software) system enjoys a certain property.
Testing is the most widely used verification technique.

- It amounts to checking whether the system behaves correctly on a finite subset of all possible inputs;
- It is a well established and powerful verification technique.
A verification technique: Testing

- **Testing** is the most widely used verification technique.
- It amounts to checking whether the system behaves correctly on a **finite** subset of all possible inputs;
- It is a well established and powerful verification technique.
Testing is the most widely used verification technique.

- It amounts to checking whether the system behaves correctly on a finite subset of all possible inputs;
- It is a well established and powerful verification technique.
A verification technique: Testing

- **Testing** is the most widely used verification technique.
- It amounts to checking whether the system behaves correctly on a **finite** subset of all possible inputs;
- It is a well established and powerful verification technique,

BUT . . .
October 30, 1994:

- A bug in the Intel Pentium:

\[
\begin{align*}
x & := 4195835 \\
y & := 3145727 \\
z & := x - (x/y) \times y
\end{align*}
\]

- The chip gave as answer \(z = 256\).

- Intel was forced to offer to replace all flawed Pentium processors.
Limitations of traditional Verification techniques: an example

October 30, 1994:

- A bug in the Intel Pentium:

 \[
 \begin{align*}
 x & := 4195835 \\
 y & := 3145727 \\
 z & := x - (x/y) \times y
 \end{align*}
 \]

- The chip gave as answer \(z = 256 \).

- Intel was forced to offer to replace all flawed Pentium processors.
Limitations of traditional Verification techniques: an example

October 30, 1994:
- A bug in the Intel Pentium:

\[
\begin{align*}
x & := 4195835 \\
y & := 3145727 \\
z & := x - (x/y) \times y
\end{align*}
\]

- The chip gave as answer \(z = 256\).

- Intel was forced to offer to replace all flawed Pentium processors.
Limitations of traditional Verification techniques: another example

June 4, 1996:

- The ESA rocket Ariane 5 exploded just 40 seconds after lift-off.
- The destroyed rocket and its cargo were evaluated $500 million.

Cause: a 64 bit floating point number relating to the horizontal velocity of the rocket w.r.t. platform was converted to a 16 bit signed integer.
Limitations of traditional Verification techniques: another example

June 4, 1996:

- The ESA rocket Ariane 5 exploded just 40 seconds after lift-off.

- The destroyed rocket and its cargo were evaluated $500 million.

Cause: a 64 bit floating point number relating to the horizontal velocity of the rocket w.r.t. platform was converted to a 16 bit signed integer.
Limitations of traditional Verification techniques:
yet another example

From www.risks.org:

Russian ATM software error
<morten.krog@no.ey.com>
Mon, 28 Aug 2006 12:17:41 +0200

A few days ago in Ekaterinburg city, in the Ural region in Russia, a man deposited 2000 rubles ($74 USD) in an ATM. Sounds ordinary so far, however the ATM credited his account with 2 billion rubles (yes, *billion*, with a B). [...] all the banks’ ATMs are turned off. No word yet on when they will be back up.
As the complexity of hardware and software systems increases, the limitations of traditional verification techniques (e.g. testing) become evident.

This is an increasingly serious problem for hardware and software vendors.
Formal Verification is the act of proving or disproving whether a (hardware or software) system enjoys a certain property, using formal methods (e.g. logic, automata, etc.).

If successful, formal verification ensures that the system complies with its specification on all possible inputs.

It consists of two activities:

1. **Formalisation**

2. **Proving**
Both the system and the property must be formalised, i.e. specified in a formal language enjoying a mathematically precise semantics.

The result of the formalisation activity yields a problem of the form:

\[\mathcal{T}, M \models \phi \]

where

- \(M \) is a formal specification of the system under consideration (a set of logical formulae, the formal representation of a state machine),
- \(\phi \) is a formula encoding the expected property, and
- \(\mathcal{T} \) is a background theory.
Formally proving or disproving that the system enjoys the expected property.

Can be reduced to the problem of determining whether ϕ logically follows from M and T, i.e.

$$T, M \vdash \phi$$

where \vdash is the derivability relation in some given logical calculus.

If carried out manually it can be (and usually is) a daunting task for all verification problems of practical interest.
Formally proving or disproving that the system enjoys the expected property.

Can be reduced to the problem of determining whether ϕ logically follows from M and T, i.e.

$$T, M \vdash \phi$$

where \vdash is the derivability relation in some given logical calculus.

If carried out manually it can be (and usually is) a daunting task for all verification problems of practical interest.

\[\Rightarrow\]

Automated Theorem Proving
Problem: How to automate (at least in part) the activity of proving that a system enjoys a given property?

- **Uniform Proof Procedures**, i.e. proof procedures for first-order logic, or even higher-order logics
 - :-) Generality
 - :-(Does not guarantee termination on fragments known to be decidable
 - :-(Brittle

- **Decision Procedures**, i.e. procedures able to solve a given (decidable) logical problem in a finite amount of time.
 - :-) Efficient and, obviously, terminating
 - :-(Limited scope of applicability
Dilemma: Decision procedures or Uniform proof procedures?

This dilemma dominates the scene of Automated Theorem Proving since its early days!

- Excellent (albeit biased) survey of the debate in the invited talk by N. Shankar (SRI) at 3rd Federated Logic Conference (FLoC 2002).
- Here we give some excerpts.

N. Shankar
shankar@csl.sri.com
URL: http://www.csl.sri.com/~shankar/

Computer Science Laboratory
SRI International
Menlo Park, CA

aSupported by NSF Grant CCR-0082560, DARPA/AFRL Contract F33615-00-C-3043, NASA Contract NAS1-00079, and SRI International. Opinions expressed are those of the author. Companion papers (with citations) appear in RTA’02 and FME’02, and on the web page above.
Big Engines or Little Engines

The metric here is the scale of ambition, not size or complexity.

The field of automated deduction took a wrong turn in the 1960s through an overarching emphasis on big iron, i.e., uniform first-order proof engines such as resolution.

Most applications of deduction are better served by some combination of little, domain-specific decision procedures.

Little engines have been gathering steam lately.

FLoC’02 represents a turning point in the big engines/little engines debate.

This talk motivates the construction and use of little engines of proof as a grand challenge for the 21st century.
Early Echoes of the Debate
Early History of Automated Reasoning

1954: Martin Davis programs a Presburger Arithmetic decision procedure.

Its great triumph was to prove that the sum of two even numbers is even.

Martin Davis

1957: Newell, Shaw, and Simon’s logic theorist (LT): Introduced subgoaling, substitution, replacement, and forward and backward chaining, with *human*-oriented heuristics. Applied to theorems from Russell & Whitehead’s *Principia Mathematica*.

Many early papers are collected in *Automated Reasoning: Vols. 1 & 2*, edited by Siekmann and Wrightson.

The Handbook of Automated Reasoning, edited by Robinson and Voronkov, is a good modern summary.
Wang versus Newell–Shaw–Simon

1958-60: Hao Wang showed that many LT proofs (and others from Russell/Whitehead) were in easily decidable fragments: propositional logic, Bernays–Schönfinkel. Hundreds of these theorems could be proved in minutes.

The most interesting lesson from these results is perhaps that even in a fairly rich domain, the theorems actually proved are mostly ones which call on a very small portion of the available resources of the domain. —Hao Wang
Wang versus Newell–Shaw–Simon

The controversy referred to may be succinctly characterized as being between the two slogans: “Simulate people” and “Use mathematical logic”. . . . Thus as early as 1961 Minsky remarked

...it seems clear that a program to solve real mathematical problems will have to combine the mathematical sophistication of Wang with the heuristic sophistication of Newell, Shaw, and Simon.

—Martin Davis

Due to the prevailing fashions, Wang’s ideas were ignored, but . . .
Wang Was Right. And How!
In contrast with pure logic, the chief emphasis of inferential analysis is on the efficiency of algorithms, which is usually obtained by paying a great deal of attention to the detailed structure of problems and their solutions, to take advantage of possible systematic short cuts.

That proof procedures for elementary logic can be mechanized is familiar. In practice, however, were we slavishly to follow these procedures without further refinements, we should encounter a prohibitively expansive element. . . . In this way we are led to a closer study of reduction procedures and of decision procedures for special domains, as well as of proof procedures of more complex sorts.

—Hao Wang
The Big Engine Dogma

Naïve dogma: First-order logic is a general language for expressing mathematics ergo uniform first-order proof search is the right mechanism for automating mathematics.

Naïve dogma has few takers.

Sophisticated dogma: Uniform first-order proof search is the right framework for building in domain-specific automation.

No evidence for its validity either.

Resolution-based methods (e.g., Otter) have been successful in settling hundreds of open problems in diverse areas of mathematics.

But, it is more of a temperamental diva than a trusted lieutenant.
Macrologic versus Micrologic

- Macrologic addresses the automation of a logic as a whole by means of some uniform proof method.

- Resolution is an example of a macrological proof method.

- Micrologic examines the kinds of automation needed to attack individual classes of problems.

- Decision procedures, model checkers, specific sets of rewrite rules are examples of micrological methods, i.e., little engines.

- Macrological methods are interesting and occasionally useful, but micrologic gets the unglamorous work done.
Outline

1. Formal Verification

2. Decision Procedures for Verification
 - Decision procedures for propositional logic
 - Deciding sets of equalities
 - Deciding sets of linear (arithmetic) constraints

3. Combining Satisfiability Procedures

4. Integrating Satisfiability Procedures

5. Encoding Techniques
 - C Bounded Model Checking
Let \mathcal{T} be a decidable theory.

Let ϕ be an arbitrary formula in the same language as \mathcal{T}.
- We say that ϕ is \mathcal{T}-satisfiable iff $\mathcal{T} \cup \{\phi\}$ is satisfiable.
- The problem of deciding the \mathcal{T}-satisfiability of ϕ is the decision problem for \mathcal{T}.
- Any algorithm capable to solve the decision problem for \mathcal{T} is a decision procedure for \mathcal{T}.

Let S be a set of literals in the same language as \mathcal{T}.
- We say that S is \mathcal{T}-satisfiable iff $\mathcal{T} \cup S$ is satisfiable.
- The problem of deciding the \mathcal{T}-satisfiability of S is the satisfiability problem for \mathcal{T}.
- Any algorithm capable to solve the decision satisfiability problem for \mathcal{T} is a satisfiability procedure for \mathcal{T}.
Propositional Logic

Syntax:
1. A (propositional) atom \((A_1, A_2, \ldots)\) is a formula;
2. if \(\phi_1\) and \(\phi_2\) are formulae, then also \(\neg \phi_1\), \((\phi_1 \land \phi_2)\), \((\phi_1 \lor \phi_2)\), \((\phi_1 \supset \phi_2)\), \((\phi_1 \leftrightarrow \phi_2)\) are formulae.

Semantics
- A (propositional) assignment for \(\phi\) is a function \(\mu : Atoms(\phi) \rightarrow \{T, F\}\).
- Assignments are extended to formulae in the following way:

<table>
<thead>
<tr>
<th>(\phi_1)</th>
<th>(\phi_2)</th>
<th>(\neg \phi_1)</th>
<th>((\phi_1 \land \phi_2))</th>
<th>((\phi_1 \lor \phi_2))</th>
<th>((\phi_1 \supset \phi_2))</th>
<th>((\phi_1 \leftrightarrow \phi_2))</th>
</tr>
</thead>
<tbody>
<tr>
<td>F</td>
<td>F</td>
<td>T</td>
<td>F</td>
<td>F</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>F</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>T</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>T</td>
<td>T</td>
<td>F</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
</tbody>
</table>

- A formula \(\phi\) is satisfiable iff there exists an assignment \(\mu\) for \(\phi\) such that \(\mu(\phi) = T\).
The problem of deciding the satisfiability of a propositional formula is NP-complete [Cook, 1971].

The most important logical problems (validity, entailment, equivalence, ...) can be easily reduced to satisfiability, and are thus (co)NP-complete.

⇒ No existing worst-case-polynomial algorithm.
Truth Tables Method

Semantic Tableaux

Davis-Putnam-Longeman-Loveland (DPLL) Procedure
Key Idea:
- enumerate all possible assignments for ϕ
- if $\mu(\phi) = T$ for some assignment μ, then return μ as satisfying assignment
- otherwise return Unsatifiable

$2^{|\text{Atoms}(\phi)|}$ assignments must be considered in the worst case.

Requires polynomial space

Inefficient \Rightarrow seldom/never used in practice
Semantic Tableaux

- Search for an assignment satisfying ϕ.
- Applies recursively *elimination rules* to the connectives.
- If a branch contains A_i and $\neg A_i$ for some i, the branch is *closed*, otherwise it is *open*.
- If no rule can be applied to an open branch μ, then return μ;
- If all branches are closed, the formula is not satisfiable;
Tableau Rules

\begin{align*}
\phi_1 \land \phi_2 & \quad \neg (\phi_1 \lor \phi_2) & \quad \neg (\phi_1 \supset \phi_2) \\
\phi_1 & \quad \neg \phi_1 \\
\phi_2 & \quad \neg \phi_2 \\
\neg \neg \phi & \quad \phi
\end{align*}

\begin{align*}
\phi_1 \lor \phi_2 & \quad \neg (\phi_1 \land \phi_2) & \quad \phi_1 \supset \phi_2 \\
\phi_1 & \quad \neg \phi_1 \\
\phi_2 & \quad \neg \phi_2 \\
\phi_1 & \quad \phi
\end{align*}

\begin{align*}
\phi_1 \leftrightarrow \phi_2 & \quad \neg (\phi_1 \leftrightarrow \phi_2) \\
\phi_1 & \quad \neg \phi_1 \\
\phi_2 & \quad \neg \phi_2 \\
\phi_2 & \quad \phi
\end{align*}

\begin{align*}
\phi_1 \leftrightarrow \phi_2 & \quad \neg (\phi_1 \leftrightarrow \phi_2) \\
\phi_1 & \quad \neg \phi_1 \\
\phi_2 & \quad \neg \phi_2 \\
\phi_2 & \quad \phi
\end{align*}
Tableau Algorithm

```plaintext
function Tableau(Γ)
if \(A_i \in \Gamma \text{ and } \neg A_i \in \Gamma\) /* branch closed */
    then return False;
if \((\phi_1 \land \phi_2) \in \Gamma\) /* \(\land\)-elimination */
    then return Tableau(\(\Gamma \cup \{\phi_1, \phi_2\} \setminus \{\phi_1 \land \phi_2\}\));
if \(\neg \neg \phi \in \Gamma\) /* \(\neg\neg\)-elimination */
    then return Tableau(\(\Gamma \cup \{\phi\} \setminus \{\neg \neg \phi\}\));
if \((\phi_1 \lor \phi_2) \in \Gamma\) /* \(\lor\)-elimination */
    then return Tableau(\(\Gamma \cup \{\phi_1\} \setminus \{\phi_1 \lor \phi_2\}\)) or Tableau(\(\Gamma \cup \{\phi_2\} \setminus \{\phi_1 \lor \phi_2\}\));
::
return True; /* branch expanded */
```
Semantic Tableaux: An Example

\[(A_1 \lor A_2) \land ((A_1 \lor \neg A_2) \land (\neg A_1 \lor A_2))\]

\[\{ (A_1 \lor A_2), (A_1 \lor \neg A_2), (\neg A_1 \lor A_2) \}\]

\[\{ A_1, (A_1 \lor \neg A_2), (\neg A_1 \lor A_2) \}\]

\[\{ A_1, \neg A_1 \lor A_2 \}\]

\[\{ A_1, \neg A_2, (\neg A_1 \lor A_2) \}\]

\[\{ A_2, (A_1 \lor \neg A_2), (\neg A_1 \lor A_2) \}\]

\[\{ A_1, \neg A_1 \}\]

\[\{ A_1, A_2 \}\]

\[\times\]

\[\sqrt{ }\]
Semantic Tableaux – Summary

- Handles all propositional formulas (CNF not required).
- Branches on disjunctions
- Intuitive, easy to extend
- Inefficient (compared to DPLL)
- Requires polynomial space
\(\phi \) must be in Conjunctive Normal Form (CNF), i.e. \(\phi \) must be a conjunction of a disjunction of literals. (A \textit{literal} is an atom or a negated atom.)

Given a formula \(\phi \), it is possible to build (in polynomial time) an equi-satisfiable formula \(\phi' \) in CNF.

Tries to build recursively an assignment \(\mu \) satisfying \(\phi \).

At each recursive step assigns a truth value to (all instances of) one atom.

Performs deterministic choices first.
\[
\begin{align*}
\phi \land (l) & \quad \text{(Unit)} \\
\phi & \quad \text{if } l \text{ is a pure literal in } \phi \\
\phi & \quad \text{(Pure)} \\
\phi & \quad \text{(Split)} \\
\phi & \quad \text{iff } l \text{ occurs only positively in } \phi \text{.} \\
\phi & \quad \text{Split is applied if and only if the other rules cannot be applied.}
\end{align*}
\]
function DPLL(ϕ, μ)
if ϕ = T
 then return True;
if ϕ = F
 then return False;
if (a unit clause ℓ occurs in ϕ)
 then return DPLL(ϕ[T/ℓ], μ[T/ℓ]);
if (a literal ℓ occurs pure in ϕ)
 then return DPLL(ϕ[T/ℓ], μ[T/ℓ]);
l:=choose-literal(ϕ);
then return DPLL(ϕ[T/ℓ], μ[T/ℓ]) or
 DPLL(ϕ[F/ℓ], μ[F/ℓ]);
function DPLL(\phi, \mu)
if \phi = T /* base */
 then return True;
if \phi = F /* backtrack */
 then return False;
if (a unit clause (l) occurs in \phi) /* Unit */
 then return DPLL(\phi[T/l], \mu[T/l]);
if (a literal l occurs pure in \phi) /* Pure */
 then return DPLL(\phi[T/l], \mu[T/l]);
l:=choose-literal(\phi); /* Split */
then return DPLL(\phi[T/l], \mu[T/l]) or
 DPLL(\phi[F/l], \mu[F/l]);
function DPLL(\(\phi, \mu\))

if \(\phi = T\) /* base */
 then return True;

if \(\phi = F\) /* backtrack */
 then return False;

if (a unit clause (\(\ell\)) occurs in \(\phi\)) /* Unit */
 then return DPLL(\(\phi[T/\ell], \mu[T/\ell]\));

if (a literal \(\ell\) occurs pure in \(\phi\)) /* Pure */
 then return DPLL(\(\phi[T/\ell], \mu[T/\ell]\));

l:=choose-literal(\(\phi\));

then return DPLL(\(\phi[T/\ell], \mu[T/\ell]\)) or DPLL(\(\phi[F/\ell], \mu[F/\ell]\)); /* Split */
function DPLL(φ, μ)
if φ = T */ base */
 then return True;
if φ = F */ backtrack */
 then return False;
if (a unit clause (ℓ) occurs in φ) */ Unit */
 then return DPLL(φ[T/ℓ], μ[T/ℓ]);
if (a literal ℓ occurs pure in φ) */ Pure */
 then return DPLL(φ[T/ℓ], μ[T/ℓ]);
l:=choose-literal(φ); */ Split */
then return DPLL(φ[T/ℓ], μ[T/ℓ]) or DPLL(φ[F/ℓ], μ[F/ℓ]);
DPLL Algorithm

```plaintext
function DPLL(φ, μ)
if φ = T /* base */
    then return True;
if φ = F /* backtrack */
    then return False;
if (a unit clause (ℓ) occurs in φ) /* Unit */
    then return DPLL(φ[T/ℓ], μ[T/ℓ]);
if (a literal ℓ occurs pure in φ) /* Pure */
    then return DPLL(φ[T/ℓ], μ[T/ℓ]);
  l := choose-literal(φ);
  then return DPLL(φ[T/ℓ], μ[T/ℓ]) or /* Split */
    DPLL(φ[F/ℓ], μ[F/ℓ]);
```
DPLL: An Example

\[(A_1 \lor A_2) \land ((A_1 \lor \neg A_2) \land (\neg A_1 \lor A_2))\]

\[A_2 \leftarrow T\]

\[A_1 \leftarrow F\]

\[A_2 \leftarrow F\]

\[(A_1 \land \neg A_1)\]

\[A_1 \leftarrow F\]

\[T\]

\[\sqrt{\text{Unit}}\]

\[\text{Split}\]
Preprocessing: preprocess the input formula so that to make it easier to solve

Look-ahead: exploit information about the remaining search space
- unit propagation
- pure literal
- splitting heuristics
- forward checking

Look-back: exploit information about search which has already taken place
- Backjumping
- Learning
DPLL – Summary

- Handles CNF formulas (non-CNF variant known).
- Branches on truth values
 \[\Rightarrow\] all instances of an atom assigned simultaneously
- Postpones branching as much as possible.
- Currently the most efficient SAT algorithm
- Requires polynomial space
- `choose-literal()` critical for efficiency!
- Many very efficient implementations.
Quantifier- and function-free equational logic

- **Variables:** \(x, y, z, \ldots \)

- **Formulae:** *equalities* of the form \(x = y \) where \(x \) and \(y \) are variables.

- **Decision Problem:** Let \(\mathcal{E} \) be the following set of formulae:

\[
\forall x. x = x \quad \text{(reflexivity)}
\]
\[
\forall x. \forall y. (x = y \supset y = x) \quad \text{(symmetry)}
\]
\[
\forall x. \forall y. \forall z. ((x = y \land y = z) \supset x = z) \quad \text{(transitivity)}
\]

Given a set \(S \) of equalities and negated equalities,

Is \(S \cup \mathcal{E} \) satisfiable?
A satisfiability procedure for Equality

We consider sequents of the form $G; F; D$, where G is a set of equalities and disequalities, $F : \text{Vars} \rightarrow \text{Vars}$, and D is a set of disequalities.

Inference Rules

<table>
<thead>
<tr>
<th>Rule</th>
<th>Premise</th>
<th>Conclusion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Delete</td>
<td>$x = y, G; F; D$</td>
<td>$G; F; D$</td>
</tr>
<tr>
<td></td>
<td>if $F^(x) = F^(y)$</td>
<td></td>
</tr>
<tr>
<td>Merge</td>
<td>$x = y, G; F; D$</td>
<td>$G; F'; D$</td>
</tr>
<tr>
<td></td>
<td>if $F^(x) \neq F^(y)$ and $F' = \text{union}(F, x, y)$</td>
<td></td>
</tr>
<tr>
<td>Diseq</td>
<td>$x \neq y, G; F; D$</td>
<td>$G; F; x \neq y, D$</td>
</tr>
<tr>
<td>Contrad</td>
<td>$G; F; x \neq y, D$</td>
<td>\bot</td>
</tr>
<tr>
<td></td>
<td>if $F^(x) = F^(y)$</td>
<td></td>
</tr>
</tbody>
</table>

where

$$F^*(x) = \begin{cases} x, & \text{if } F(x) = x \\ F^*(F(x)), & \text{otherwise} \end{cases}$$

$$\text{union}(F, x, y) = F[y'/x'],$$

with $x' = F^*(x)$ and $y' = F^*(y)$.

Theorem

A finite set S of equalities and negated equalities is ε-unsatisfiable iff \bot is derivable from $S; \text{Id}; \emptyset$.

Alessandro Armando (UNIGE)
Decision Procedures
5 Settembre 2006
33 / 61
Quantifier-free Linear Arithmetics

- **Variables:** x, x_1, x_2, \ldots range over \mathbb{Q} or \mathbb{R} (but can be extended to work over \mathbb{Z}).

- **Function symbols:** “+” for addition, unary “−”. Multiplication by a numeric constant n, i.e. nx, is allowed but it is a shorthand for $x + \cdots + x$ with n occurrences of x.

- **Relational symbol:** “≤” and “=” (but $<$, $>$, \geq can be added)

- **Formulae (linear constraints):** $a_1x_1 + \cdots + a_nx_n + c \leq 0$, where $a_1, \ldots a_n$ are numeric costants.

- **Notation:** In place of $a_1x_1 + \cdots + a_nx_n + c \leq 0$ we write $ax + c \leq 0$, where $a = [a_1, \ldots, a_n]$ and $x = [x_1, \ldots, x_n]$. Also, if $a = [a_1, \ldots, a_n]$, then a_k denotes a_k for $k = 1, \ldots, n$.
Fourier-Motzkin Elimination Method

Key step:

\[
\frac{ax + c \leq 0}{bx + d \leq 0} \quad b_k(ax + c) + a_k(bx + d) \leq 0 \quad FM(x_k) \quad \text{if } a_k > 0 \text{ and } b_k < 0
\]

Facts:

- \(x_k\) does not occur in the conclusion of the rule
- The conclusion of the rule is logically equivalent (in the background theory) to \(\exists x_k. (ax + c \leq 0 \land bx + d \leq 0)\).

Example:

\[
\frac{2x_1 + x_2 + 1 \leq 0}{x_1 - 2x_2 - 1 \leq 0} \quad 2(2x_1 + x_2 + 1) + 1(x_1 - 2x_2 - 1) \leq 0 \quad FM(x_2)
\]
Fourier-Motzkin Elimination Method

Key step:

\[
\begin{align*}
\frac{ax + c}{b_k(ax + c)} + \frac{bx + d}{a_k(bx + d)} & \leq 0 \\
FM(x_k) & \text{ if } a_k > 0 \text{ and } b_k < 0
\end{align*}
\]

Facts:

- \(x_k\) does not occur in the conclusion of the rule
- The conclusion of the rule is logically equivalent (in the background theory) to
 \(\exists x_k. (ax + c \leq 0 \land bx + d \leq 0)\).

Example:

\[
\begin{align*}
2x_1 + x_2 + 1 & \leq 0 \\
5x_1 + 1 & \leq 0 \\
FM(x_2)
\end{align*}
\]
function \text{FM}(S) \\
let \ S' \ be \ the \ result \ of \ replacing \ from \ S \ all \ formulae \
of \ the \ form \ ax + c = 0 \ with \ ax + c \leq 0 \land -ax - c \leq 0. \\
while \ \text{Vars}(S') \neq \emptyset \ do \\
\hspace{1em} \text{choose} \ x_k \in \text{Vars}(S') \ do \\
\hspace{2em} \text{eliminate} \ from \ S' \ all \ the \ linear \ constraints \\
\hspace{3em} \text{in} \ which \ x_k \ occurs \\
\hspace{2em} \text{and} \\
\hspace{3em} \text{replace} \ them \ with \ all \ linear \ constraints \\
\hspace{4em} \text{obtained} \ by \ applying \ \text{FM}(x_k) \\
\hspace{4em} \text{to} \ any \ pair \ of \ removed \ equations. \\
/* \ Now \ all \ constraints \ in \ S' \ are \ of \ the \ form \ c \leq 0 */ \\
\text{if} \ \text{there exists} \ c \leq 0 \in S' \ with \ c > 0 \\
\hspace{1em} \text{then return} \ Unsatisfiable; \\
\text{else} \ \text{return} \ Satisfiable;
Fourier-Motzkin Elimination Method – Summary

- Used to determine the satisfiability of finite sets of linear constraints over \mathbb{Q} or \mathbb{R}.

- Conceptually simple and elegant.

- Many redundant intermediate linear constraints are generated.

- Phase I of the Simplex can be used for the same purpose and is far more efficient.
Other decidable theories used in verification

- **Theory of lists:**
 \[
 \forall x, y. \ \text{car}(\text{cons}(x, y)) = x
 \]
 \[
 \forall x, y. \ \text{cdr}(\text{cons}(x, y)) = y
 \]
 \[
 \forall y. \ \text{cons}(\text{car}(y), \text{cdr}(y)) = y
 \]

- **Theory of arrays:** Let \(a \) be a variable of sort \(\text{ARRAY} \), \(i \) and \(j \) of sort \(\text{INDEX} \), and \(e \) of sort \(\text{ELEM} \):
 \[
 \forall a, i, e. \ \text{select}(\text{store}(a, i, e), i) = e
 \]
 \[
 \forall a, i, j, e. \ (i \neq j \supset \text{select}(\text{store}(a, i, e), j) = \text{select}(a, j))
 \]

- **Theory of records:** ...

- **Theory of bit-vectors:** ...

 ...
Outline

1. Formal Verification

2. Decision Procedures for Verification
 - Decision procedures for propositional logic
 - Deciding sets of equalities
 - Deciding sets of linear (arithmetic) constraints

3. Combining Satisfiability Procedures

4. Integrating Satisfiability Procedures

5. Encoding Techniques
 - C Bounded Model Checking
Problem: Given satisfiability procedures for two theories \mathcal{T}_1 and \mathcal{T}_2 how can we build a satisfiability procedure for $(\mathcal{T}_1 \cup \mathcal{T}_2)$?

Example: Let
- P_A be a satisfiability procedure for the theory of arrays (\mathcal{A}) and
- P_R be a satisfiability procedure for (rational) linear arithmetics (\mathcal{R}),

how can we determine the $(\mathcal{A} \cup \mathcal{R})$-satisfiability of the following formula?

$$\text{select}(\text{store}(v, i, \text{select}(v, j)), i) \neq \text{select}(v, i) \land i+j \leq 2j \land j+4i \leq 5i$$
Combining Satisfiability Procedures

Problem: Given satisfiability procedures for two theories \mathcal{T}_1 and \mathcal{T}_2 how can we build a satisfiability procedure for $(\mathcal{T}_1 \cup \mathcal{T}_2)$?

Example: Let

- P_A be a satisfiability procedure for the theory of arrays (\mathcal{A}) and
- P_R be a satisfiability procedure for (rational) linear arithmetics (\mathcal{R}),

how can we determine the ($\mathcal{A} \cup \mathcal{R}$)-satisfiability of the following formula?

\[
\text{select}(\text{store}(v, i, \text{select}(v, j)), i) \neq \text{select}(v, i) \land i + j \leq 2j \land j + 4i \leq 5i
\]
Decomposition: Example

Naive approach:

- Decompose ϕ into $\phi_R \land \phi_A$:

 $\phi_R = i + j \leq 2j \land j + 4i \leq 5i$

 $\phi_A = \text{select}(\text{store}(v, i, \text{select}(v, j)), i) \neq \text{select}(v, i)$

- Apply P_R to ϕ_R:

 \Rightarrow satisfiable

- Apply P_A to ϕ_A:

 \Rightarrow satisfiable

- Return satisfiable
In fact: unsatisfiable.

\[i + j \leq 2j \land j + 4i \leq 5i \Rightarrow i = j \]

\[\text{select(store}(v, i, \text{select}(v, j)), i) \neq \text{select}(v, i) \land i = j \Rightarrow \]

\[\text{select}(v, i) \neq \text{select}(v, i) \]

Problems:
- Shared variables
- Shared equality predicate

Possible solution: propagation of equalities between variables
Purification

What if a formula contains symbols from both theories?

For example,

\[
\text{select}(\text{store}(v, i, \text{select}(v, j)), i) < \text{select}(v, i) \land i + j \leq 2j \land j + 4i \leq 5i
\]

Introduce new variables and decompose the formula as follows:

\[
x = \text{select}(\text{store}(v, i, \text{select}(v, j)), i) \land \\
y = \text{select}(v, i) \land \\
x < y \land \\
i + j \leq 2j \land \\
j + 4i \leq 5i
\]
What if a formula contains symbols from both theories?

For example,

\[\text{select(\text{store}(v, i, \text{select}(v, j)), i) < \text{select}(v, i)} \land i + j \leq 2j \land j + 4i \leq 5i \]

Introduce new variables and decompose the formula as follows:

\[
\begin{align*}
x &= \text{select(\text{store}(v, i, \text{select}(v, j)), i)} \land \\
y &= \text{select}(v, i) \land \\
x < y \land \\
i + j &\leq 2j \land \\
j + 4i &\leq 5i
\end{align*}
\]
Nelson-Oppen Approach: Picture

mixed conjunction

Purification

Procedure 1

Equality

satisfiable / unsatisfiable

Procedure 2

pure conjunction

satisfiable / unsatisfiable
Nelson-Oppen Approach

- Union of disjoint theories.
- Combination of satisfiability procedures.
- General brute-force method, easy to understand, but no much interest in practice.

Shostak Approach

- Union of disjoint theories + some additional requirements.
- Combination of algorithm for congruence closure (for the theory of equality) and specific procedures for other theories.
- Efficient method, difficult to get right and prove correct, but implemented in many systems.
1. Formal Verification

2. Decision Procedures for Verification
 - Decision procedures for propositional logic
 - Deciding sets of equalities
 - Deciding sets of linear (arithmetic) constraints

3. Combining Satisfiability Procedures

4. Integrating Satisfiability Procedures

5. Encoding Techniques
 - C Bounded Model Checking
It is often useful/necessary to integrate satisfiability procedures with other reasoning components:

- with rewrite engines for simplifying expressions.
 - The integration of satisfiability procedures within the Boyer&Moore theorem prover is described in [Boyer and Moore, 1988].
 - The integration of satisfiability procedures within the Maple computer algebra system is described in [Weibel and Gonnet].
 - A general integration schema for satisfiability procedures with rewriting is described in [Armando and Ranise, 2003].

- with decision procedures for propositional logic to get decision procedures for the quantifier-fragments of the theory.
Integrating satisfiability procedures with decision procedures for propositional logic

We are interested in deciding the satisfiability/validity of formulae of the form:

1. An atomic formula of \mathcal{T} is a formula;
2. if ϕ_1 and ϕ_2 are formulae, then also $\neg\phi_1$, $(\phi_1 \land \phi_2)$, $(\phi_1 \lor \phi_2)$, $(\phi_1 \supset \phi_2)$, $(\phi_1 \leftrightarrow \phi_2)$ are formulae.

where \mathcal{T} is a decidable theory for which a satisfiability procedure is available.
function T-Tableau(Γ)
if $A_i \in \Gamma$ and $\neg A_i \in \Gamma$ /* branch closed */
 then return False;
if $(\phi_1 \land \phi_2) \in \Gamma$ /* \land-elimination */
 then return T-Tableau($\Gamma \cup \{\phi_1, \phi_2\} \setminus \{((\phi_1 \land \phi_2))\}$);
if $\neg\neg \phi \in \Gamma$ /* $\neg\neg$-elimination */
 then return T-Tableau($\Gamma \cup \{\phi\} \setminus \{\neg\neg \phi\}$);
if $(\phi_1 \lor \phi_2) \in \Gamma$ /* \lor-elimination */
 then return T-Tableau($\Gamma \cup \{\phi_1\} \setminus \{((\phi_1 \lor \phi_2))\}$) or T-Tableau($\Gamma \cup \{\phi_2\} \setminus \{((\phi_1 \lor \phi_2))\}$);
:
return T-satisfiable(Γ); /* branch expanded */
function T-DPLL(ϕ,μ)

if $\phi = T$ /* base */
then return T-satisfiable(μ);

if $\phi = F$ /* backtrack */
then return False;

if (a unit clause (ℓ) occurs in ϕ) /* Unit */
then return T-DPLL($\phi[T/\ell],\mu[T/\ell]$);

l:=choose-literal(ϕ); /* Split */
then return T-DPLL($\phi[T/\ell],\mu[T/\ell]$) or T-DPLL($\phi[F/\ell],\mu[F/\ell]$);

where $\mu^* = \{\alpha: \alpha \in Atoms(\phi) \text{ and } \mu(\alpha) = T\} \cup \{\neg\alpha: \alpha \in Atoms(\phi) \text{ and } \mu(\alpha) = F\}$.

Note: Pure Literal optimisation unsound here and therefore dropped.
Outline

1. Formal Verification

2. Decision Procedures for Verification
 - Decision procedures for propositional logic
 - Deciding sets of equalities
 - Deciding sets of linear (arithmetic) constraints

3. Combining Satisfiability Procedures

4. Integrating Satisfiability Procedures

5. Encoding Techniques
 - C Bounded Model Checking
Bounded Model Checking (basic idea):
1. reduce a bounded model checking problem to a satisfiability problem in propositional logic (SAT), then
2. use a state-of-the-art SAT solver to solve the problem.

Initially applied successfully to analyze HW circuits
Recently applied to find bugs in sequential programs (CBMC)
However model checking of SW poses new challenges as programs often deal with large or potentially unbounded data.

The CBCM approach to SW Model Checking can be adapted to use a SMT solver instead of a SAT solver.
The usage of SMT solvers instead of SAT solvers improves performance considerably on many problems of practical interest.
Bounded Model Checking (basic idea):
1. reduce a bounded model checking problem to a satisfiability problem in propositional logic (SAT), then
2. use a state-of-the-art SAT solver to solve the problem.

Initially applied successfully to analyze HW circuits
Recently applied to find bugs in sequential programs (CBMC)
However model checking of SW poses new challenges as programs often deal with large or potentially unbounded data.

The CBCM approach to SW Model Checking can be adapted to use a SMT solver instead of a SAT solver.
The usage of SMT solvers instead of SAT solvers improves performance considerably on many problems of practical interest.
1 Preprocessing
 1 Unwinding loops
 2 Turning the program in Single Assignment Form
 3 Turning the program in Conditional Normal Form

2 Encoding

3 Solving
Preprocessing: Unwinding Loops

Every loop is reduced to a sequence of \(k \) nested \(\text{if} \) statements + an additional \textit{unwinding assertion}.

\textbf{Example:} If \(k = 2 \), then

\begin{verbatim}
 i=0;
 while (i<5) {
 a[i]=i;
 i++;
 }
\end{verbatim}

\begin{verbatim}
 :=
 if (i<5) {
 a[i]=i;
 i++;
 if (i<5) {
 a[i]=i;
 i++;
 assert (!i<5);
 }
 }
\end{verbatim}
Preprocessing: Single Assignment Form

Rename program variables in such a way that each variable is assigned exactly once.

Example:

```plaintext
i = a[0];
if (x>0) {
    if (x<10)
        x=x+1;
    else
        x=x-1;
}
assert (y>0 && y<5);
a[y]=i;
```

```plaintext
i_1 = a_0[0];
if (x_0>0) {
    if (x_0<10)
        x_1=x_0+1;
    else
        x_2=x_1-1;
}
assert (y_0>0 && y_0<5);
a_1[y_0]=i_1;
```
Preprocessing: Conditional Normal Form

Remove `else` constructs and push `if` statements downwards in the abstract syntax tree of the program until they are applied to atomic statements only.

Example:

```plaintext
i_1 = a_0[0];
if(x_0>0) {
    if(x_0<10) x_1=x_0+1;
    else x_2=x_1-1;
}
assert(y_0>0 && y_0<5);
a_1[y_0]=i_1;
```

```plaintext
if(true) i_1 = a_0[0];
if(x_0>0 && x_0<10) x_1=x_0+1;
if(x_0>0 && !(x_0<10)) x_2=x_1-1;
if(true) assert(y_0>0 && y_0<5);
if(true) a_1[y_0]=i_1;
```
Let P be the program in conditional normal form resulting from the application of the previous transformations to the input program.

Let T the union of the theory of arrays and the theory of bit-vectors.

We build two sets of quantifier-free formulae C and P such that $T, C \models \bigwedge P$ if and only if no computation path of P violates any \texttt{assert} statement in P.

Example:

\begin{align*}
\text{if (true) } & \quad i_1 = a_0[0]; \\
\text{if (}x_0>0 \ \&\& \ x_0<10) & \quad x_1=x_0+1; \\
\text{if (}x_0>0 \ \&\& \neg(x_0<10)) & \quad x_2=x_1-1; \\
\text{if (true) assert } (y_0>0 \ \&\& \ y_0<5); \\
\text{if (true) } & \quad a_1[y_0]=i_1; \\
\end{align*}

\begin{align*}
C & = \{ \quad i_1 = (T \ ? \ \text{select}(a_0, 0) : i_0), \\
x_1 = ((x_0 > 0 \land x_0 < 10) \ ? \ x_0 + 1 : x_0), \\
x_2 = ((x_0 > 0 \land \neg(x_0 < 10)) \ ? \ x_1 - 1 : x_1), \\
a_1 = (T \ ? \ \text{store}(a_0, y_0, i_1) : a_0) \} \\
P & = \{ T \supset (y_0 > 0 \land y_0 < 5) \}
\end{align*}

$v = (c \ ? \ e_1 : e_2)$ abbreviates the formula $(c \supset v = e_1) \land (\neg c \supset v = e_2)$.
In order to check whether $C \models_T \bigwedge \mathcal{P}$, we can use any SMT solver capable to decide the union of the theory of arrays and the theory of bit-vectors.

⇒ SMT-CBMC [Armando et al., 2006] uses CVC Lite as SMT-solver.

If we regard arrays as a finite collection of distinct memory cells, $C \models_T \bigwedge \mathcal{P}$ can be reduced to a (usually very big) propositional formula that can be solved by a SAT solver.

⇒ CBMC [Clarke et al., 2004] uses Chaff as SAT-solver.
int a[N] = {N-1, ..., 0};
void main() {
 int i;
 SelectSort();
 for (i=0; i<N-1; i++)
 assert (a[i] <= a[i+1]);
}

void SelectSort() {
 int i, j, t, min;
 for (j=0; j<N-1; j++) {
 min = j;
 for (i=j+1; i<N; i++)
 if (a[i] > a[min])
 min = i;
 t = a[j];
 a[j] = a[min];
 a[min] = t;
 }
}

(a) Time (seconds) spent by the tools
(b) Size of the formulae
More information

- Combination Methods in Automated Reasoning
 http://combination.cs.uiowa.edu/

- SMT-LIB - The Satisfiability Modulo Theories Library
 http://combination.cs.uiowa.edu/

- SMT-COMP - The Satisfiability Modulo Theories Library

- SATLive! - Up-to-date links for SAT
 http://goedel.cs.uiowa.edu/smtlib/

- SATLIB - The Satisfiability Library
 http://www.satlive.org/index.jsp

- Web Forum on Automated Reasoning
 http://www-users.cs.york.ac.uk/~frisch/AR-Forum/
The slides by Silvio Ranise (available at the http://www.loria.fr/~ranise/) are a good source of information about combination methods for satisfiability procedures.

The slides by Roberto Sebastiani (available at the http://dit.unitn.it/~rseba/) are a good source of information about SAT-solvers in general and about the integration of satisfiability procedures with SAT-solvers.

