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Abstract. The ranking and prediction of novel therapeutic categories
for existing drugs (drug repositioning) is a challenging computational
problem involving the analysis of complex chemical and biological net-
works. In this context we propose a novel semi-supervised learning prob-
lem: ranking drugs in integrated bio-chemical networks according to
specific DrugBank therapeutic categories. To deal with this challenging
problem, we designed a general framework based on bipartite network
projections by which homogeneous pharmacological networks can be
combined and integrated from heterogeneous and complementary sources
of chemical, biomolecular and clinical information. Moreover, we propose
a novel method based on kernelized score functions for fast and effective
drug ranking in the integrated pharmacological space. Results with 51
therapeutic DrugBank categories involving about 1300 FDA approved
drugs show the effectiveness of the proposed approach.

1 Introduction

Drug development is a costly and failure-prone process [1]. In recent years a
novel pharmacological research paradigm known as drug repositioning is emerg-
ing because of its ability to reduce development costs and to shorten paths to
approval [2], which typically takes 10-15 years and upwards $1 billion [3], while
revenues due to repurposed drugs can exceeds billions of dollars [4].

Drug repositioning, i.e. the prediction of novel therapeutic indications for
existing drugs, is a challenging problem in modern computational biology. Com-
putational approaches for drug repositioning focused mainly on small-scale ap-
plications, such as the analysis of specific classes of drugs or drugs for specific
diseases [5, 6, 7, 8]. Large-scale applications, involving a relatively large number
of drugs and diseases, count only a few examples [9, 10, 11, 12].

Different computational tasks related to the the drug repositioning prob-
lem have been proposed, ranging from clustering drugs either considering their
pharmacophore descriptors [5] or Connectivity Map-based networks [10], to pre-
diction of drug-target interactions [13, 14], or drug-disease associations [15, 11].

In this context, we propose a novel prediction task, i.e. the large-scale ranking
of drugs with respect to DrugBank therapeutic categories[16]. We chose Drug-
Bank categories since their associations to drugs are manually curated using



medical literature such as PubMed, e-Therapeutics (www.e-therapeutics.ca) and
STAT!Ref (AHFS) (online.statref.com), and because “at present, there is not a
comprehensive and systematic representation of known drugs indications that
would enable a fine-scale delineation of types of drug-disease relationships” [17].
For each considered DrugBank therapeutic category we provide a ranking of
drugs, since this can allow the choice of top ranked “false positive” drugs as
natural candidates for drug repositioning, while a pure classification approach
cannot provide such preferential candidates.

To this end, we propose a novel and very fast semi-supervised network method
based on kernelized score functions for ranking drugs according to their likeli-
hood to belong to a given therapeutic category. Moreover, we propose a gen-
eral framework based on bipartite networks projections for the construction of
homogeneous pharmacological spaces. The nature of these network-structured
projected spaces allows the application of prediction algorithms to homogeneous
pharmacological spaces and improves the integration of different sources of chem-
ical, biomolecular and clinical sources of information.

We evaluated the proposed approach by integrating three pharmacological
similarity spaces accounting, respectively, for chemical similarity, drug-targets
interaction similarity and drug-chemicals similarity, in order to rank a curated
set of U.S. Food and Drug Administration (FDA) approved drugs according to
the DrugBank therapeutic categories.

2 Methods

We propose ψNetPro, Pharmacological Spaces Integration based on Networks
Projections, a general approach to construct and integrate different pharmaco-
logical similarity spaces capturing different pharmacological characteristics of
drugs, and a novel method for ranking drugs in the integrated pharmacological
networks to discover new therapeutic indications for known drugs. In Section 2.1
we introduce the bipartite network projection method to construct homogeneous
pharmacological spaces from inhomogeneous spaces represented though bipar-
tite networks. In Section 2.2 we show how to construct and integrate different
pharmacological spaces using different sources of chemical, biomolecular and
pharmacological data, and finally in Section 2.3 we present our novel approach
to rank drugs in pharmacological networks through kernel-based score functions.

2.1 Bipartite networks projection and integration

Bipartite (or two-mode) networks are graphs composed by two types of ver-
tices in which edges are established only between vertices belonging to different
sets (Fig. 1 a). Bipartite networks can be transformed into one-mode networks
(composed by a single type of nodes) by selecting one of the sets of nodes and
linking two nodes from that set if the intersection of their neighborhoods in the
two-mode network is not empty (Fig. 1 b).



Fig. 1. Bipartite network projection: the two-mode network (a) is projected onto a
one-mode network (b). Singleton nodes (i.e. d and g) are removed from the projected
network.

More precisely, given a bipartite graphG =< V,E >, with two distinct sets of
nodes Va, Vb ⊂ V , Va∪Vb = V, Va∩Vb = ∅ and edges (u, v) ∈ E ⇒ u ∈ Va ∧ v ∈ Vb,
we may induce a projected graph Gp =< Vp, Ep >, with Vp ⊆ Va, such that:

(u′, u′′) ∈ Ep ⇐⇒ ∃v ∈ Vb s.t. (u
′, v) ∈ E ∧ (u′′, v) ∈ E (1)

This operation is commonly referred to as “binary mode projection” and is
suitable for the induction of a similarity space between vertices v ∈ Va (Fig. 1).
The binary mode projection produces one-mode networks containing binary
edges, but more complex projection schemes can assign edge weights according
to the degree of nodes and the edge weights in the bipartite two-mode network.
In our experiments we adopted the binary projection technique, since the bipar-
tite drug-target data downloaded from the DrugBank database are unweighted,
and for homogeneity we applied a binary projection also to the other considered
data (see Section 2.2 for more details).

The bipartite network projection scheme may induce different pharmacolog-
ical spaces depending on the nature of the bipartite network (e.g. drug-protein
or drug-chemicals interaction bipartite networks), but the projected networks
correspond to homogeneous pharmacological spaces representing different no-
tions of induced pharmacological similarity between drugs. These spaces may
be integrated using appropriate network integration methods and proper nor-
malization techniques. For instance, we adopted the normalized graph Laplacian
L [18] to make comparable the pharmacological networks G =< V,E > repre-
sented through the corresponding symmetric adjacency matrices W :

L = D− 1
2 (D −W )D− 1

2 = I −D− 1
2WD− 1

2 (2)

where D is a diagonal matrix with elements dii =
∑

j wij , I is the identity
matrix and wij are the elements of the matrix W .

In our setting we integrated multiple networks with a simple technique that
assures a high coverage of the drugs included in the integrated pharmacolog-
ical network, without penalizing drugs for which a specific source of data is



unavailable. More precisely, given a set of n pharmacological networks Gd =<
V d, Ed >, 1 ≤ d ≤ n, constructed through appropriate bipartite graph projec-
tions, the integrated pharmacological network Ḡ =< V̄ , Ē >, with V̄ =

⋃
d V

d

and Ē ⊆
⋃

dE
d, can be derived by averaging the normalized edge weights only

when data for the corresponding pair of drugs is actually available. In other
words, if wd

ij represents the weight of the edge (vi, vj) ∈ Ed, the weight w̄ij of

the edge (vi, vj) ∈ Ē is computed as follows:

w̄ij =
1

|D(i, j)|
∑

d∈D(i,j)

wd
ij , D(i, j) = {d|vi ∈ V d ∧ vj ∈ V d} (3)

It is worth noting that other network integration methods may lead to better
results (e.g. weighted integrated networks that take into account the information
content of each source of data), but we applied this simple approach only to show
the feasibility and effectiveness of the proposed overall approach.

2.2 Construction of pharmacological networks

We constructed three pharmacological similarity networks reflecting the pairwise
chemical structure similarity between drugs (Φchemsim), the similarity between
drugs derived from common protein targets (Φdrugtarget) and the pairwise sim-
ilarity from chemical-chemical interactions (Φchemint) between the considered
drugs and other chemicals involved in their pharmacological activity.

Chemical and pharmacological data bases. Data for the computation of Φchemsim

and Φdrugtarget have been obtained from DrugBank [16], while data for Φchemint

have been extracted from the STITCH database [19]. DrugBank is a unique
bioinformatics/chemoinformatics resource that combines detailed drug (i.e. chem-
ical) data with comprehensive drug target (i.e. protein) information. In the cur-
rent release DrugBank contains detailed information about 6707 drug entries in-
cluding 1436 FDA-approved small molecule drugs. In order to construct a highly
reliable drugs set we selected from DrugBank the largest set of FDA approved
drugs targeting at least one FDA approved target. This led to the definition of
a collection composed by 1253 drugs.

STITCH integrates data distributed over many databases. For instance, the
chemical-chemical interaction networks stored in STITCH includes information
about the impact of genetic variation on drug response and from the Compara-
tive Toxicogenomics Database (which contains more than 8500 direct chemical-
disease relationships), thus ensuring the existence of drug-drug relationships
induced by common genetics and/or toxicogenomics disease-association pro-
files [20, 21].

Constructing pharmacological spaces from different sources of data. For Φchemsim

we directly computed the structural chemical similarities between each pair of
drugs, while for the other pharmacological spaces we applied the projection tech-
niques described in Section 2.1.



The simplest similarity space, Φchemsim, is based on chemical structure sim-
ilarities and was obtained by computing the Tanimoto similarity scores between
each pair of drugs in the reference set [22]. The scores were obtained by compar-
ing the simplified molecular input line entry specification (SMILES) annotations
contained in DrugBank entries [23]. The obtained adjacency matrix was then
converted to a binary matrix by thresholding the similarity scores according to
the procedure reported in [13].

The second considered similarity space, Φdrugtarget, was obtained by creating
a bipartite network between the drugs and all the FDA approved targets, ac-
cording to the information stored in DrugBank. Once constructed, this network
has been projected onto a one mode network and processed according to the
procedures described in Section 2.1.

The third pharmacological similarity space (Φchemint) has been constructed
by processing the chemical-chemical interactions stored in the STITCH 2.0
database [24]. This dataset is expected to be informative because these inter-
actions are obtained by considering many sources of information (i.e. metabolic
pathways, binding experiments, phenotypic effects and drug-target relationships).
The adjacency matrix was converted to a binary matrix by thresholding the
interaction scores to 0.7 in order to ensure a high confidence in the selected
STITCH chemical interactions. The thresholding led to a final coverage of 50%
of the drugs in our reference set.

Progressive integration of pharmacological networks. We progressively integrated
the computed pharmacological networks in order to add different and comple-
mentary sources of information and to maintain a high-coverage of drugs for
large-scale drug repositioning. To this end we considered at first the Φchemsim

space alone (that is the space with the highest drug coverage), then we progres-
sively integrated the other two pharmacological spaces characterized by a lower
coverage, that is respectively Φdrugtarget and Φchemint. These progressively en-
riched pharmacological networks have been represented through the correspond-
ing adjacency matrices W 1,W 2 and W 3, where the numeric index indicates
the number of different integrated pharmacological networks. Despite the three
networks having the same number of nodes/drugs (1253), our “progressive inte-
gration” strategy yields to a significant increment in the number of the edges,
that grow from 13010, to 43827 and 96711 respectively inW 1,W 2 andW 3, thus
resulting in a high-coverage and a large-scale setting of the drug repositioning
problem.

2.3 Ranking methods for drug therapeutic category prediction

By using the adjacency matrices W corresponding to the graphs G =< V,E >
obtained by bipartite network projection and integration (Sect. 2.1), we dispose
of networks in the pharmacological space well-suited for ranking the drugs v ∈ V
according to their likelihood to belong to a specific therapeutic category C. To
this aim we can exploit the pharmacological similarities between pairs of drugs
vi, vj ∈ V , represented by the weights wij > 0 of the edges (i, j) ∈ E, the overall



topology of the integrated pharmacological spaces, and a subset of drugs VC ⊂ V
belonging to a priori known therapeutic category C.

In our experiments we compared results obtained with drug ranking algo-
rithms based on random walks on graphs with our novel proposed method that
can be interpreted as a kernelized extension of the classical random walks.

Random walks. Random walk (RW) algorithms [25] rank drugs by exploring
and exploiting the topology of the pharmacological network: random walks across
the network are performed starting from a subset VC ⊂ V of drugs belonging
to a specific therapeutic category C by using a transition probability matrix
Q = D−1W , where W is the adjacency matrix, and D is a diagonal matrix with
diagonal elements dii =

∑
j wij . The elements qij of Q represent the probability

of a random step from vi to vj . If pt represents the probability vector of finding
a “random walker” at step t in the nodes v ∈ V , then the probability at step
t+ 1 is:

pt+1 = QTpt (4)

The initial probability of belonging to set of drugs corresponding to a given
therapeutic category can be set to po = 1/|VC | for the drugs v ∈ VC and to
po = 0 for the drugs v ∈ V \VC , and the update (4) is iterated until convergence.
We could observe that the random walker could progressively “forget” the a
priori information available for the therapeutic category C, by iteratively walking
across the overall network. To avoid this problem, we could try to apply the
random walk with restart (RWR) algorithm: at each step the random walker
can move to one of its neighbours or can restart from its initial condition with
probability θ:

pt+1 = (1− θ)QTpt + θpo (5)

With both RW and RWR methods at the steady state we can rank the vector
p to prioritize drugs according to their likelihood to belong to the therapeutic
category under study.

Score functions based on kernelized random walks. In this section we
propose a novel similarity-based method that on the one hand embeds in a kernel
function the random walk strategy and on the other hand uses this kernel within
a properly defined kernelized similarity score functions to rank drugs according
to the topology of the pharmacological network.

More precisely, we can define a distance measure D(v, VC) between a drug
v ∈ V and the set of the drugs x ∈ VC in a reproducing kernel Hilbert space H,
according to a suitable mapping φ : V → H. For instance, we can consider the
minimum euclidean distance in the Hilbert space H between a drug v ∈ V and
the set of drugs VC belonging to a specific therapeutic category:

DNN (v, VC) = min
x∈VC

n
φ(v)− φ(x)

n
2 (6)

By recalling that < φ(·), φ(·) >= K(·, ·), where K : V × V → R is a kernel
function associated to the mapping φ, we can choose in principle any valid kernel,



but in this context it is meaningful to use a random walk kernel [18] constructed
from the adjacency matrices W 1, W 2 and W 3, since it provides a similarity
measure that takes into account direct and indirect relationships between drugs
in the pharmacological space. The Gram matrix K associated to the random
walk kernel function K(·, ·) is obtained from the adjacency matrix W of the
pharmacological network:

K = (a− 1)I +D− 1
2WD− 1

2 (7)

where I is the identity matrix,D is a diagonal matrix with elements dii =
∑

j wij

and a is a value larger than 1.
By developing the square (6) we can derive the following similarity measure:

SimNN (v, VC) = − min
x∈VC

[K(v, v)− 2K(v, x) +K(x, x)] (8)

By assuming an equal auto-similarity K(x, x) for all x ∈ V , we can simplify (8),
thus achieving the nearest neighbours score SNN :

SNN (v, VC) = − min
x∈VC

−2K(v, x) = 2 max
x∈VC

K(v, x) (9)

It is easy to see that a different notion of distance based on the first k nearest-
neighbours leads to the definition of the k-nearest neighbours score SkNN :

SkNN (v, VC) = 2
∑

x∈Ik(v)

K(v, x) (10)

where Ik(v) = {x ∈ VC |x is ranked among the first k in VC according to K(v, x)}.
In a similar way we can also derive the average score similarity measure SAV

based on the average distance DAV with respect to to the set of drugs VC be-
longing to the C therapeutic category:

SAV (v, VC) =
2

|VC |
∑
x∈VC

K(v, x) (11)

It is worth noting that the SAV score resembles the one proposed by Borg-
wardt and others in the context of gene function prediction from synthetic lethal-
ity networks: from this standpoint our approach can be viewed as an extension
of the algorithm proposed in [26].

3 Experiments

3.1 Experimental setup

We propose a novel learning problem in the context of drug ranking and repo-
sitioning: the prediction of the therapeutic category of drugs according to the
annotations provided by DrugBank 3.0.



Table 1. Average AUC results across therapeutic classes of the compared ranking
methods using different pharmacological networks W 1, W 2 and W 3.

RW RWR SAV SNN SkNN

W 1 0.6846 0.8037 0.8262 0.8074 0.8277
W 2 0.5780 0.9171 0.9232 0.9066 0.9230
W 3 0.5334 0.9258 0.9312 0.9129 0.9299

In order to obtain the therapeutic category labels we parsed the DrugBank
entries belonging to our reference set (1253 FDA approved drugs, see Section 2.2)
by extracting all the drug category annotations excluding the chemical categories
(categories reflecting the chemical nature of the considered compounds). We
finally removed from our therapeutic categories set all the classes associated to
less than 15 drugs obtaining 51 therapeutic classes, in order to exclude classes
with too few positive examples to assure reliable predictions. We evaluated the
proposed ranking method by using a 5-folds cross validation scheme repeated
10 times. As the output of the proposed methods is a continuous score for each
drug-therapeutic category pair, we computed the Area Under the ROC curve
(AUC), and the precision at fixed recall levels averaged across all the considered
therapeutic classes.

3.2 Results

Table 1 shows the average AUC across therapeutic classes. We can observe that
both RWR and kernelized score function methods achieve good results (for sev-
eral classes the AUC is 1 or very close to 1 when the most informative network
W 3 is used – data not shown), while the classical RW substantially fails in
these ranking tasks, since it explores too remote relationships between drugs,
thus introducing noise in prediction results. More interestingly, independently
of the considered methods (apart from RW), the average AUC increases as new
pharmacological spaces are added: most of the increment is achieved when we
integrate 2 pharmacological spaces (W 2), but note that the apparently small
increment obtained, e.g. by SkNN , when we pass from 2 to 3 integrated phar-
macological spaces is actually statistically significant according to the Wilcoxon
ranks sum test (p-value< 0.01). These results are also confirmed by the precision
at different recall levels outcomes (Fig. 2): we can observe an increment in per-
formance whenever we move from W 1 to W 2 and W 3, no matter the method
we apply. For lack of space we reported only RWR and SkNN results, but with
the other methods (except RW that performs poorly also with this metric) we
can observe similar trends.

Comparing AUC results between the different methods, according to the
Wilcoxon rank sum test, there is no statistically significant difference between
SAV and SkNN , while both SAV and SkNN achieve significantly better results
than RWR and SNN (at 0.005 significance level), independently of the considered
pharmacological space. Considering precision at fixed recall levels, SNN performs
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Fig. 2. Precisions at fixed recall levels, with W 1, W 2 and W 3 pharmacological net-
works. (a) Random Walks with Restart (RWR); (b) SkNN . Results are averaged across
the 51 therapeutic DrugBank classes.

Table 2. Computational time requirements of the compared methods with the W 3

network, using an Intel i7-860 2.80 GHz processor.

RW RWR SAV SNN SkNN

time (sec.) 13840 645 5 5 12

significantly worse than the other methods. SAV and SkNN achieve always better
or equal results than RWR with both W 1 and W 2 pharmacological networks,
while with the most informative W 3 network no significant difference between
methods can be registered at any recall level (0.05 significance level, Wilcoxon
ranks sum test).

Table 2 reports the empirical computational complexity of the different meth-
ods for the completion of the entire experimental scheme (5-folds CV repeated
10 times for each of the 51 therapeutic categories). Results show that kernelized
score methods are significantly faster than RW and RWR methods.

Cross-validated average results across classes show that our proposed method
is able to recover therapeutic classes of drugs. A thorough analysis of the results
relative to each therapeutic category is out of the scope of this investigation, but
in order to show the potential of the proposed method we report the analysis of
the top ranked false positives predicted in three drug categories. All the ranking
results show an AUC increment due to the progressive networks integration, and
we chose among them three of the classes with the largest AUC improvement.
“Antidyskinetics” drugs are used in the treatment of motor disorders. In this
ranking task we obtained 0.730, 0.887 and 0.923 average AUC using the W1,
W2 and W3 networks respectively. The first top ranked negative (L-Tryptophan,
DrugBank id: DB00150) was reported to be effective in preventing levodopa-
induced motor complications in the treatment of patients affected by Parkinson



disease [27], and hence could be associated to the “Antidyskinetics” category. In
the ranking task associated with the “Anti HIV Agents” category we achieved
respectively 0.753, 0.900 and 0.943 AUC results using our progressively inte-
grated networks. The first top ranked negative was Darunavir (DB01264) and,
according to the associated DrugBank entry, it is indicated in the treatment
of HIV, but not annotated as “Anti HIV Agents”, probably since just anno-
tated as “HIV Protease Inhibitors”. The top ranked false positive in the task
associated with the “GABA Modulators” (AUC 0.941, 0.972 and 0.995) is Ad-
inazolam (DB00546). This drug, and the four top ranked false positives in this
task are benzodiazepines, a class of substances known to modulate the effect of
GABA [28, 29].

4 Conclusions

Results show that in the context of the drug repositioning problem the construc-
tion and integration of informative pharmacological spaces is at least relevant
as the design and the choice of proper label ranking algorithms. Indeed the
best precision at a given recall results are obtained with the integrated and
most-informative pharmacological network W 3, independently of the method
used (Fig. 2). With the simplest and least-informative pharmacological space
W 1, based on direct chemical similarities between drugs, SAV and SkNN signifi-
cantly outperform the other methods, and this is true also with the W 2 network.
This means that the process of integration of multiple pharmacological spaces by
projection of drug-target and drug-chemicals bipartite networks plays a crucial
role to improve the information content of the original simple direct chemical
similarity space between drugs. Interestingly enough, important increment in
performances are also obtained in the ranking of drugs belonging to difficult-
to-predict therapeutic classes such as the “Antiparkinson agents” (W 1 AUC
: 0.7486, W 2 AUC : 0.8930, W 3 AUC : 0.9316, results obtained using SkNN

with k = 19). Results averaged across classes show that our proposed approach
is able to correctly rank known drugs with respect to their known therapeu-
tic categories. Moreover a preliminary analysis of the top-ranked false positives
shows that our proposed methods can discover potential drug candidates for
novel therapeutic indications.

We would like also to emphasize that kernelized score ranking methods could
be applied to significantly larger drug networks, due to their low computational
complexity and scalability (Table 2). Indeed in our experiments we considered
about a thousand of FDA-approved drugs, but the same approach could be ap-
plied to thousands of investigational compounds, thus finding initial therapeutic
indications for unknown drugs. Moreover, we could apply the same network
projection and integration approach to enrich the pharmacological space with
new information coming from annotated side-effects (as the one stored in public
databases such as SIDER [30]), or from manually curated pathways databases
such as Reactome [31], or from large collections of gene expression signatures as
the ones included in the Connectivity Map public repository [9], or also from



data obtained through Next Generation Sequencing techniques, one of the most
promising biotechnologies for drug discovery and development [32].

Even if using simple binary projections we obtained high performances in
term of AUC, to better exploit the fine-grained information stored in the afore-
mentioned databases, in the future work we plan to experiment with real-valued
network projections, to take into account the weights eventually associated to
the edges of the bipartite network.
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