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Abstract The most basic molecular mechanism enabling

a living cell to dynamically adapt to variation occurring in

its intra and extracellular environment is constituted by its

ability to regulate the expression of many of its genes. At

biomolecular level, this ability is mainly due to interactions

occurring between regulatory motifs located in the core

promoter regions and the transcription factors. A crucial

question investigated by recently published works is if, and

at what extent, the transcription patterns of large sets of

genes can be predicted using only information encoded in

the promoter regions. Even if encouraging results were

obtained in gene expression patterns prediction experi-

ments the assumption that all the signals required for the

regulation of gene expression are contained in the gene

promoter regions is an oversimplification as pointed out by

recent findings demonstrating the existence of many reg-

ulatory levels involved in the fine modulation of gene

transcription levels. In this contribution, we investigate the

potential improvement in gene expression prediction per-

formances achievable by using early and late data inte-

gration methods in order to provide a complete overview of

the capabilities of data fusion approaches in a problem that

can be annoverated among the most difficult in modern

bioinformatics.

Keywords Weighted averaging � Decision templates �
Vector space integration � Early fusion � Late fusion �
Decision fusion � Data integration �
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1 Introduction

The information required for the construction of proteins,

the main players involved into the realization of the com-

plex set of biochemical and metabolic reactions occurring

in living cells, are encoded in the DNA in form of infor-

mational units called genes. The regulation of gene

expression is of capital importance in order to ensure the

presence of the required proteins at the right moment and in

specific subcellular locations.

A great part of the ability to regulate gene expression at

cellular level is due to the presence of many signals

encoded in the core promoter, a relatively small region

located immediately upstream the transcription start site

(TSS). According to classical biomolecular models, gene

expression is regulated by proteins known as transcription

factors (TFs) that interact with cis-regulatory elements, the

transcription factor binding sites (TFBS), located in the

promoter regions. Only in response to a specific set of

environmental conditions, the right combination of TFs

bind the TFBSs, and this event enables the cellular tran-

scriptional machinery to start the transcription of the

gene.

The complexity of these gene expression regulation

models relies on the combinatorial nature of the TF

action, since the binding of a specific TF to a specific

core-promoter sequence can both enhance or silence the

transcription of the regulated gene, according to complex

regulatory networks that are, at today, only partially

understood.

Recently published works demonstrated that connec-

tivity maps based on gene-expression signatures, data

collected in presence/absence of perturbagens and clinical

information are tool of election for the characterization of

functional associations among diseases, gene perturbations
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and drug action Lamb et al. (2006). Other recently pro-

posed methods are able to predict Drug mode of action

(MOA) of novel compounds using gene expression profiles

(GEPs) Iorio et al. (2009) and to explain genome wide

expression data by focusing on gene sets, that is, groups of

genes that share common biological function, chromo-

somal location, or regulation Subramanian et al. (2005).

While these methods are of crucial importance in clinical

and pharmaceutical investigations, being them able to

detect functional associations between genes,chemicals and

diseases using expression profiles, they are not suitable for

the prediction of co-expressed groups of genes without the

direct evaluation of expression data.

A key point required for the elucidation of the tran-

scriptional regulation mechanisms is the definition of the

minimal set of DNA regulatory signatures (comprising

combinations of TFBSs, evolutionary constraints, epige-

netic modifications, and many others) responsible for

specific expression patterns characterizing co-regulated

genes.

In a recently published work Beer and Tavazoie (2004)

the authors tried to predict the expression class of yeast

genes using only information encoded in the promoter

regions. The expression classes were obtained using a

clustering algorithm Hartigan (1975) to find genes that are

co-expressed across a broad range of conditions. The

underlying assumption in this work is that genes sharing

similar expression patterns have to share also a common set

of signals in their promoter regions. The authors were able

to predict the expression pattern of the genes in many and

stress conditions, using only the signals encoded in the

promoter regions (the TFBSs, their location and orienta-

tion) achieving a 73% accuracy.

Despite the short cis-regulatory sequences contained in

the promoter regions are key players in the regulation of

the first step of gene transcription, other mechanisms are

involved the regulation of gene expression. Recently,

Millar and Grunstein (2006) demonstrated that post trans-

lational histone modification are able to modulate the

expression pattern of genes. Other useful information can

be obtained by investigating the conservation of the TFBSs

across different but phylogenetically related organisms

McIsaac et al. (2006). This approach is motivated by the

observation that the strength of the selective pressures

acting during evolution on cis-regulatory motifs sited in the

core promoters could help to filter out noisy and a specific

TFBS.

Histone modifications and phylogenetic conservation

are only two of the potentially useful source of information

for gene expression prediction as recent advances in bio-

technologies resulted in the last years into an ever

increasing number of biomolecular datasets available in the

public domain.

In order to effectively exploit these information for gene

expression prediction a key problem is the integration of

heterogeneous biomolecular data. Data fusion approaches

can be roughly classified according to the moment in which

the integration of heterogeneous data occurs. In early

integration methods the integration is performed at feature

level, as in the case of the direct ‘‘vector-space integration’’

(VSI) in which different vectorial data are concatenated

desJardins et al. (1997) and then used to train a final

classifier. Kernel methods, by exploiting the closure

property with respect to the sum, represents another valu-

able research direction for the integration of biomolecular

data Lanckriet et al. (2004).

All these methods suffer of limitations and drawbacks,

due to their limited scalability to multiple data sources [as

in the case of Kernel integration methods based on semi-

definite programming Lanckriet et al. (2004)], to their

limited modularity when new data sources sources are

added (e.g. vector-space integration methods), or when

data are available with different data type representations

(e.g. functional linkage networks and vector-space inte-

gration). A possible alternative approach is based on

ensemble methods.

In late fusion methods, as in the case of ensemble sys-

tems, a single learner is trained for any available data-

source and the base learners outputs are then converted into

a common form resulting into an intermediate feature space

in which a suitable rule can be applied to make a final

decision. To our knowledge, this is the first work devoted

to the investigation of performances achievable in gene

expression prediction by using early and late data inte-

gration methods. In this contribution, we compare the

effectiveness of an early fusion method (direct vector space

integration) and several late integration approaches: the

classical weighted integration (using two different

weighting schemes) and the Decision Templates combiner

Kuncheva et al. (2001) in order to provide an overview of

capabilities of multiple classifier systems in the integration

of heterogeneous biomolecular data sources for the pre-

diction of gene expression.

2 Heterogeneous data integration: the early

and the late fusion approaches

2.1 Early fusion by vector space integration

The simplest form of heterogeneous data integration is to

concatenate the features collected for each gene in all the

available datasets in a fixed-length vector and then feed the

resulting collection of vectors into a classification algo-

rithm Pavlidis et al. (2002). The vector-space integration

(VSI) is suitable for data integration independently from
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the structure of the involved dataset and has the advantage

of simplicity. VSI is suffering of biases due to the different

length of the concatenated vectors and is not able to

incorporate much domain knowledge being each type of

data treated identically Noble and Ben-Hur (2007). In

our experiments, we normalized the data with respect to

the mean and standard deviation, separately for each data

set.

2.2 Reasons motivating the use of the late

integration approach based on ensemble systems

There are several reasons to apply ensemble methods in the

specific context of genomic data fusion for gene expression

prediction. At first, continuous advances in high-through-

put biotechnologies provide new types of data, as well as

updates of existing biomolecular data available for gene

expression prediction.In this context, ensemble methods

are well-suited to embed new types of data or to update

existing ones by training only the base learners devoted to

the newly added or updated data, without retraining the

entire ensemble. Moreover most ensemble methods scale

well with the number of the available data sources, and

problems that characterize other data fusion approaches are

thus avoided. Using vectorial data for different sources

there is no bias in the integration of large and small or

sparse and dense vectors. More in general diverse types of

data (e.g. sequences, vectors, graphs) can be easily inte-

grated, because with ensemble methods the integration is

performed at decision level. Data fusion of heterogeneous

biomolecular data sources can be effectively realized by

means of ensemble systems composed by base learners

trained on different datasets, and then combining their

outputs to compute the consensus decision.

2.3 The simplest form of late fusion integration:

the weighted average

In the context of gene expression classification, we need to

estimate of the reliability of the prediction. To this end, we

use SVMs, with probabilistic output obtained by applying a

sigmoid fitting to their output Lin et al. (2007). Thus a

trained base classifier computes a function dj : X ! ½0; 1�
that estimates the probability that a given example x 2 X

belongs to a specific class xj. An ensemble combines the

outputs of n base learners, each trained on a different type

of biomolecular data, using a suitable combining function g

to compute the overall probability lj for a given class xj:

ljðxÞ ¼ gðd1;jðxÞ; . . .; dn;jðxÞÞ ð1Þ

A simple way to integrate different biomolecular data

sources is represented by the weighted linear combination

rule:

ljðxÞ ¼
Xn

t¼1

wtdt;jðxÞ ð2Þ

The weights are usually computed using an estimate of

the overall accuracy of the base learners, but for gene

function prediction, where the functional classes are largely

unbalanced (positive examples are largely less than

negative ones), we choose the F-measure (the harmonic

mean between precision and recall). We consider two

different ways to compute the weights:

wl
t ¼

FtPn
t¼1 Ft

w
log
t / log

Ft

1� Ft
ð3Þ

The wl
t weights are obtained by a linear combination of the

F-measures, and w
log
t by a logarithmic transformation.

Independently of the choice of the weights the decision

DjðxÞ of the ensemble about the class xj is taken using the

estimated probability lj (Eq. 2):

DjðxÞ ¼
1; if ljðxÞ[ 0:5
0; otherwise

�
ð4Þ

where output 1 correspond to positive predictions for xj

and 0 to negatives.

2.4 Late integration accounting for systematic errors

in base learners outputs: the Decision Templates

combiner

Certain types of biomolecular data can be informative for

some expression classes, but uninformative for others.

Hence it would be helpful to take into account whether

certain types can be informative or not, depending on the

class to be classified. To this end Decision Templates

Kuncheva et al. (2001) can represent a valuable approach.

The main idea behind decision templates consists in com-

paring a ‘‘prototypical answer’’ of the ensemble for the

examples of a given class (the template), to the current

answer of the ensemble to a specific example whose class

needs to be predicted (the decision profile).

More precisely, the decision profile DPðxÞ for an

instance x is a matrix composed by the dt;j 2 ½0; 1� elements

representing the support given by the tth classifier to class

xj: Decision templates DTj are the averaged decision

profiles obtained from Xj; the set of training instances

belonging to the class xj :

DTj ¼
1

jXjj
X

x2Xj

DPðxÞ ð5Þ

Given a test instance we first compute its decision profile

and then we calculate the similarity S between DPðxÞ and

the decision template DTj for each class xj; from a set of c

classes. As similarity measure the Euclidean distance is

usually applied:
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SjðxÞ ¼ 1� 1

n� c

Xn

t¼1

Xc

k¼1

½DTjðt; kÞ � dt;kðxÞ�2 ð6Þ

The final decision of the ensemble is taken by assigning a

test instance to a class with the largest similarity:

DðxÞ ¼ arg max
j
SjðxÞ ð7Þ

In our experimental setting we consider dichotomic

problems, because a gene may belong or not to a given

expression class, thus obtaining two-columns decision

template matrices. It is easy to see that with dichotomic

problems the similarity ðS1Þ (Eq. 6) for the positive class

and the similarity ðS2Þ for the negative class become:

S1ðxÞ ¼ 1� 1

n

Xn

t¼1

½DT1ðt; 1Þ � dt;1ðxÞ�2 ð8Þ

S2ðxÞ ¼ 1� 1

n

Xn

t¼1

½DT2ðt; 1Þ � dt;1ðxÞ�2 ð9Þ

where DT1 is the decision template for the positive class

and DT2 for the negative one. The final decision of the

ensemble for a given functional class is:

DðxÞ ¼ arg max
f1;2g
ðS1ðxÞ;S2ðxÞÞ ð10Þ

3 Experimental setup

We choose to perform our experiments using the data

provided in Beer and Tavazoie (2004) supplemental

materials and two additional datasets. In Beer and Tavazoie

(2004), the authors used not only the matching scores of the

motifs in the promoter regions but also their location and

orientation. In this experiment, we used only the matching

scores. The motifs scores used as indicators of the pres-

ence/absence of the TFBSs in the gene promoters in Beer

and Tavazoie (2004) were used in the form provided by the

authors and in form of binary indicators.

We also included two additional datasets collected,

respectively, from the ChromatinDB database O’Connor

and Wryck (2007) and from McIsaac et al. (2006) sup-

plemental material.

Genome-wide Chromatin Immuno Precipitation (ChIP)

data for 22 different histone modifications were down-

loaded from ChromatinDB O’Connor and Wryck (2007).

We extracted from ChromatinDB all the available data

inherent to ChIP data annotated in the genomic regions

corresponding to all the annotate Saccharomyces cerevisiae

gene promoters. Thanks to the data preprocessing policies

adopted in the development of the ChromatinDB database

the data, collected from literature, are available both in raw

and normalized form in order to avoid biases introduced by

the differences in the experimental setup under which the

data were originally produced. All the data collected from

ChromatinDB were retrieved in normalized form.

The last dataset involved in our experiments is based on

the conservation scores produced by the PhyloCon algorithm

McIsaac et al. (2006). The authors provided these data in

form of three tables of motifs scores expressing the conser-

vation level of the motifs annotated in S. cerevisiae promoters

produced by comparative genomics methods based on the

comparison of orthologous promoters pairs. The data are

provided in form of three table dedicated to low, moderately

and highly conserved motifs. The PhyloCon data were

merged into an unique table expressing the conservation level

of all the TFBSs in form of discrete and ordered indicators

ranging from 0 (not conserved) to 3 (highly conserved).

The expression data used in Beer and Tavazoie (2004)

for the clustering analysis resulting in the definition of the

49 expression classes and constituting the labels in our

experiments are published in Gasch et al. (2000), Spellman

et al. (1998). The main characteristics of the data sets used

in the experiments are summarized in Table 1.

We considered yeast genes common to all data sets

(2490), and we associated them to the expression classes

reported in Beer and Tavazoie (2004). The investigated

classification problems are affected by a severe unbalance

between positives and negatives examples ranging the

number of positive examples from 5.0 to 0.5% of the

available data depending on the considered expression

Table 1 Datasets

Code Dataset Examples Features Description

DtavR Beer motif scores real 2,587 666 Beer motif scores (Real) from Beer and Tavazoie

(2004)

DtavB Beer motif scores binary 2,587 666 Beer motif scores (binary) from Beer and Tavazoie

(2004)

Dhistmod Histone modification scores 2,580 22 Histone modification scores collected from the

ChromatinDB O’Connor and Wryck (2007)

database

Dphylo Motifs conservation scores 2,492 121 Motifs conservation scores produced using the

PhyloCon algorithm McIsaac et al. (2006)
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class (see Table 2). In order to avoid classification tasks

with a too low number of positive examples the 8 smallest

expression classes were excluded from our experiments

resulting in 41 binary classification problems.

The learning problem was split in 41 binary classifica-

tion tasks in which each gene was predicted as belonging or

not to the considered expression class.

Each dataset was split into a training set and a test set

(composed, respectively, by 70 and 30% of the available

samples). We performed a threefold stratified cross-vali-

dation on the training data for model selection: we com-

puted the F-measure across folds, while varying the

parameters of gaussian kernels (both r and the C regular-

ization term, ranging from 10�5 to 105).

Classification performances of the component classifi-

ers, the ensemble systems and VSI have been evaluated

using a multiple hold-out scheme based on five replicates

of the aforementioned training and testing procedure. The

collected test sets classification performances have been

averaged across all the replicates.

In order to evaluate the gain in prediction performances

achievable by data integration methods in presence and in

absence of the problems due to the unbalance between

positives and negatives examples we repeated the entire

procedure using artificially balanced datasets constituted

by all the positive examples belonging to the considered

expression class and the same amount of negative exam-

ples randomly chosen from the remaining expression

classes. We adopted many performances evaluators,

instead of the Accuracy used by Beer and Tavazoie (2004).

Our choice is motivated by the large unbalance between

positive and negative examples that characterizes the

investigated prediction problems: indeed on the average

only a small subset of the available genes is annotated to

each expression class (see Table 2). We compared the

performances of single gaussian SVMs trained on each data

set with those obtained with the late fusion approaches

described in Sects. 2.3 and 2.4 and with the performances

obtained with the early fusion method, VSI, described in

Sect. 2.1. We normalized the data with respect to the mean

and standard deviation, separately for each data set.

4 Results

Results obtained in the unbalanced learning tasks are sum-

marized in Table 3. The table shows the average F-measure,

accuracy, precision and recall across the 41 selected gene

expression classes, obtained through the evaluation of the

test sets (each constituted by 747 genes). The performances

are estimated using a multiple hold-out based on five repli-

cates and the final test sets performances are averaged. The

three first columns are dedicated to the late fusion methods

and refer, respectively, to the weighted linear, weighted

logarithmic and decision template ensembles (see Sects. 2.3

and 2.4), VSI represent the averaged results obtained by the

early integration method Vector Space integration, Davg

represents the averaged results of the single SVMs across the

four datasets, and DtavR represents the single SVM trained

using data provided by Tavazoie and colleagues (Table 1).

Table 4 shows the same results obtained in the balanced

learning tasks.

Table 2 Number of positives and negatives examples in the 41

investigated expression classes

ExprClass Posi Nega TRpos TRneg TEpos TEneg

01 124 2,366 87 1,656 37 710

02 108 2,382 76 1,667 32 715

03 104 2,386 73 1,670 31 716

04 104 2,386 73 1,670 31 716

05 81 2,409 57 1,686 24 723

37 31 2,459 22 1,721 9 738

38 29 2,461 20 1,723 9 738

39 32 2,458 22 1,721 10 737

40 27 2,463 19 1,724 8 739

41 27 2,463 19 1,724 8 739

Each row of the table lists the code of the expression classes (Expr-

Class) corresponding to the labels defined in Beer and Tavazoie

(2004), the number of positive and negatives points for each class

(Posi and Nega columns), and the number of positive and negative

points in the training (TR) and test (TE) sets (last four columns). The

rows are sorted according to the number of positive examples. From

the entire set of the 41 considered expression classes, the table lists

only the top 5 and bottom 5

Table 3 Unbalanced setup

Metric Elin Elog Edt VSI Davg Dtav

F 0.1087 0.1419 0.2683 0.1230 0.1077 0.2094

acc 0.9233 0.9481 0.9119 0.9769 0.9768 0.9773

prec 0.2440 0.3332 0.4361 0.2949 0.2160 0.4293

rec 0.1409 0.1372 0.2563 0.0874 0.0802 0.1559

Late fusion methods, VSI, average performances of base learners and

performances of Dtav: average F-measure, accuracy, precision and

recall evaluated by multiple hold-out

Table 4 Balanced setup

Metric Elin Elog Edt VSI Davg DtavR

F 0.7891 0.7891 0.7913 0.6844 0.6989 0.7832

acc 0.7914 0.7915 0.7931 0.6806 0.6604 0.7850

prec 0.7993 0.7992 0.7999 0.6857 0.6490 0.7896

rec 0.7903 0.7904 0.7904 0.6967 0.8128 0.7910

Ensembles of learning machines, average performances of base

learners and performances of Dtav : average F-measure, accuracy,

precision and recall computed by multiple hold-out techniques
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Under the unbalanced experimental setup (see Table 3),

the large accuracies are due to the concurrent failure of the

component classifiers in the learning problems (meaning

that in many classification tasks all the test instances were

predicted as negatives), and the large unbalance in the data.

According to the collected F-measures we observe that

data integration methods are able on the average to out-

perform the component classifiers independently by the

considered data fusion approach. Interestingly this trend is

not confirmed in the comparison of the data fusion methods

with results obtained by the best performing component

classifier: DtavR: In particular 2 out of 3 late fusion methods

(Elin and Elog) are on the average unable to outperform

DtavR.

The early fusion method, VSI, was also unable to out-

perform DtavR but is able, according to the observed

F-measure, to outperform the late fusion approach based on

the weighted averaging using linear weights (Elin). The

only data fusion method able to outperform the best com-

ponent classifier (in 33 over 41 classification tasks) is the

Decision Templates combination rule. The ability of Edt to

outperform DtavR is also confirmed looking at the Precision

and the Recall.

In this extremely difficult classification test, the col-

lected results confirmed the ability of the Decision Tem-

plates combiner to learn not only from correct predictions

but also from the wrong ones exploiting the different pat-

terns in the errors produced during the classification of the

positive and negative instances.

According to the collected F-measures averaged for

each gene expression class across the performed replicates,

the data fusion methods Elin;Elog;Edt and VSI were able to

outperform the best component classifier (DtavR), respec-

tively, 4, 2, 33, and 6 times under the unbalanced setup,

indicating that in critically difficult gene expression

prediction problems the Decision Templates ensemble

system is the safer choice.

In order to evaluate the impact on classification per-

formances of the severe unbalance affecting the data we

repeated the entire experiment by random sampling, in

each classification task, a number of negative instances

equal to the number of the positive ones. The summary of

the averaged results collected in the artificially balanced

gene expression prediction tasks are reported in Table 4.

The table shows the average F-measure,accuracy, precision

and recall across the 41 selected gene expression classes,

obtained through the evaluation of the test sets. The table

has the same structure of Table 3.

Looking at the values presented in Table 4 and con-

sidering the F-measure, we see that, on the average, in the

artificially balanced setup late fusion methods realized by

using ensemble methods provide better results than single

SVMs, independently of the applied combination rule. In

particular Decision Templates achieved the best average

F-measure albeit the performances are quite similar for all

the tested combination methods. The early fusion method

(VSI) was unable to outperform the averaged performances

of the component classifiers.

Considering the averaged accuracies the data fusion

methods are still able to outperform all the component

SVMs. The observed trend is confirmed for Precision but

not for the Recall: only the Decision Templates combiner

was able to outperform all the component classifiers

independently of the considered performance metric.

Under this balanced setup, and using the accuracy as

performance metric, we outperformed the results obtained

by Beer and colleagues (73% accuracy).

The averaged F-measures collected during the test sets

evaluation under the unbalanced setup and the artificially

balanced setup are reported in Figs. 1 and 2, respectively.
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Fig. 1 Unbalanced setup:

comparison of the averaged

F-measures achieved in gene

expression prediction. Davg

stands for the average across the

base learners, DtavR for the best

component classifier, VSI for

the early integration method and

Edt for the best performing late

integration method
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5 Conclusions

In this work, we compared the performances in yeast gene

expression prediction of early and late data fusion methods.

Many methods suitable for heterogeneous data integration

(like Ada Boost and many others Friedman et al. 2000;

Rosset et al. 2004; Zhu et al. 2004) are available but, in

this preliminary investigation, we decided to systematically

test simple integration methods in order to evaluate the

potential of data fusion methods in gene expression pre-

diction. A possible future direction could be the test of the

performances of a more broad set of data integration

methods in gene expression prediction problems.

Despite the extreme difficulty of the investigated clas-

sification problems due to a severe unbalance affecting the

datasets involved in our experiments, our results clearly

demonstrated the potential benefits in classification per-

formances introduced by the use of relatively simple late

integration methods.

Among the tested data integration approaches the VSI

method obtained the worst classification performances

indicating that early integration methods are not well suited

for gene expression prediction problems. Our observations

are supported both in the original severely unbalanced

problem investigated by Tavazoie and colleagues and under

an artificially balanced setup in which one of the investi-

gated methods, the Decision Templates combiner, was

also able to outperform the results presented in Beer and

Tavazoie (2004) (73%) achieving a final 79% accuracy.

A reexamination of the original experiment performed

by Beer and Tavazoie (2004) was recently published in

Yuan et al. (2007). In agreement with our results Yuan and

colleagues found that, using the same dataset published in

Beer and Tavazoie (2004), better gene expression predic-

tion performances can be achieved avoiding the use of the

position of the regulatory motifs along the promoter

regions and their orientation. Our results are also compa-

rable with the results recently published in Pavesi and

Valentini (2009) confirming that the proposed method is

able to provide an overall classification accuracy that is

comparable with other state of the art studies aimed to

predict the expression class of co-regulated genes. Using

performance measures well-suited to unbalanced problems,

we also demonstrated that, in critically difficult gene

expression prediction problems involving severely unbal-

anced datasets, the use of late integration methods and, in

particular, the Decision Template combiner can improve

the classification performances both in terms of precision

and recall.

The results presented in this contribution, obtained with

relatively simple combining methods, show the effective-

ness of the proposed approach and demonstrates that data

fusion realized using ensemble systems is a promising

research line in gene expression prediction.
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