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Abstract—Ranking genes in functional networks according to a specific biological

function is a challenging task raising relevant performance and computational

complexity problems. To cope with both these problems we developed a

transductive gene ranking method based on kernelized score functions able to

fully exploit the topology and the graph structure of biomolecular networks and to

capture significant functional relationships between genes. We run the method on

a network constructed by integrating multiple biomolecular data sources in the

yeast model organism, achieving significantly better results than the compared

state-of-the-art network-based algorithms for gene function prediction, and with

relevant savings in computational time. The proposed approach is general and fast

enough to be in perspective applied to other relevant node ranking problems in

large and complex biological networks.

Index Terms—Gene function prediction, gene ranking, biological networks, kernel

functions
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1 INTRODUCTION

INVESTIGATIONS carried out using high throughput biomolecular
technologies highlighted that most biological functions rely on
complex relationships between numerous biomolecular compo-
nents such as proteins, DNA, RNA, and many other small
molecules. This is the reason why in gene function prediction
(GFP), as in many other computational biology research fields, the
development of approaches suitable for the analysis of data
represented in the form of a graph is of critical importance [1].

GFP is a complex task [2] with several distinctive features and

poses challenging problems from a machine learning standpoint

[25]. The first attempts to predict gene functions were based on

algorithms able to quantify the similarities between protein

sequences [4]. More general approaches to GFP collect for each

protein a set of features characterizing it, and apply machine-

learning algorithms to infer annotation rules based on those

features [5].
The availability of large-scale networks of gene interactions

constructed using different types of data, such as protein-protein

interactions (PPI), genes coexpression and coregulation just to cite

a few, allowed us to investigate gene functions using network-

based algorithms [1].
Network-based GFP methods usually represent each data set

through an undirected graph G ¼ ðV ;EÞ, where nodes � 2 V
correspond to genes, and edges e 2 E are weighted according to

the evidence of cofunctionality implied by data sources [7]. By

exploiting proximity relationships between connected nodes, these

algorithms are able to transfer annotations from previously

annotated (labeled) nodes to unannotated (unlabeled) ones

through a learning process inherently transductive in nature.

Indeed, these methods are based on algorithms that rank genes or

predict labels of unannotated examples without using a global
predictive model. They include guilt-by-association (GBA) meth-
ods [6], methods that integrate local learning strategies with simple
weighted combination of diverse information [8], approaches
based on the evaluation of the functional flow in graphs [7],
methods based on Hopfield networks [9], methods that exploit
relationships between homologous proteins to connect networks of
different species [10], and label propagation algorithms based on
Markov [11], and Gaussian Random Fields [12].

Despite their proved effectiveness, network-based GFP methods
suffer of serious limitations inherent to both prediction perfor-
mances (due to the challenging nature of the GFP problem) and
scalability (due to the rapidly increasing size of the biomolecular
networks produced by recent high-throughput technologies).

To tackle these problems, on the one hand we generalize the
guilt-by-association approach [6] by introducing fast and efficient
local learning strategies based on an extended notion of functional
distance between genes, and on the other hand we adopt also a
global learning strategy by using kernel functions able to exploit
the relationships and the overall topology of the underlying
biological network.

More precisely, we propose a semi-supervised transductive
method that generalizes the notion of average, nearest neighbor
and k-nearest neighbor distance from the set of “positive” genes
annotated to a specific functional class, and embeds a general
kernel to model the functional similarity between genes. Our
approach can be seen as a general algorithmic scheme: by
introducing different local score functions and choosing different
kernels to model the similarity between genes, we can derive
different network-based GFP algorithms. For instance, by adopting
graph kernels [13], both direct and indirect relationships between
genes can be exploited, thus taking into account the overall
topology of the network.

Our ranking method is fast and scalable, since no model
learning is required, but only a computation of scores, approxi-
mately linear in the number of genes. We compared our approach
with several state-of-the-art GFP ranking methods, by integrating
multiple sources of biomolecular data in the context of a whole-
ontology GFP problem in the yeast model organism.

2 RANKING OF GENES WITH KERNELIZED SCORE

FUNCTIONS

Our method rank genes in a biological network according to their
likelihood of belonging to a specific functional class. At first, we
introduce score functions based on different notions of kernelized
distance (Section 2.1): they are defined in terms of general kernel
functions and are used to rank genes. Then, we choose kernels
well suited for network-oriented score functions, in order to fully
exploit the topology and the graph structure of biological
networks (Section 2.2).

2.1 Score Functions for Gene Ranking in Functional
Networks

Let G ¼ ðV ;EÞ be an undirected weighted graph, where V is the
set of vertices representing genes and E the set of edges
representing some notion of functional relationships between pairs
of genes/vertices. We represent both vertices of the graph and
genes with natural numbers 1; 2; . . . ; n, since each vertex of G is
univocally associated with a gene. Let WW be the corresponding
adjacency matrix with weights wij representing the “strength” of
the relationship between vertices i; j 2 V , and VC � V a subset of
“positive” vertices belonging to a specific functional category C
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(e.g., a term of the Gene Ontology or FunCat). A set of features
xxi 2 X can be associated with a gene i. For instance, xxi could
represent the expression or the phylogenetic profile of a gene i or
whatever available data for a given gene/vertex i.

Our aim is to derive score functions S : V�!IRþ based on
properly chosen kernels, by which we can directly rank vertices
according to the values of SðiÞ: the higher the score, the higher
the likelihood that a gene belongs to a given functional class.
Score functions are based on distance measures defined in a
suitable Hilbert space H. More precisely, let � : X ! H, be a
mapping to a given universal reproducing kernel Hilbert space
H, and K : X �X ! IR its associated kernel function, such that
<�ð�Þ; �ð�Þ>H ¼ Kð�; �Þ, where <�; �>H represents an internal
product in H.

We introduce distance measures Dði; VC;XÞ in the Hilbert space
between a given vertex/gene i and the set of genes VC belonging to
a specific functional class C, according to the data X associated
with each gene. We chose to define a distance measure on Hilbert
space, since by exploiting the classical “kernel-trick” [14] we can
embed any valid kernel into the distance measure itself, thus
resulting in a modular approach by which existing graph kernels,
or in perspective graph kernels properly designed for GFP, can be
applied to rank genes according to their functions.

If there is no ambiguity about the data X, for the sake of
simplicity we denote Dði; VC;XÞ as Dði; VCÞ. By choosing different
distance measures, diverse score functions can be derived. In the
following, we introduce the Average score, the Nearest Neighbors,
and the K-Nearest Neighbors scores, that are based on the guilt-by-
association principle: the label or the score associated with a given
node depend on the label or the scores associated with the
neighboring nodes [6]. As an example, consider the majority voting
scheme, by which we choose for a node the most represented label
within its neighbors.

2.1.1 Average Score

We can define a distance measure DAV ði; VCÞ of a vertex i 2 V
w.r.t. to a set of nodes VC , simply as the average distance in the
mapped Hilbert space � : X ! H between i and the set of nodes
included in VC :

DAV ði; VCÞ ¼ �ðxxiÞ �
1

jVC j
X

j2VC
�ðxxjÞ

�����

�����
2: ð1Þ

By developing the square (1) we obtain

DAV ði; VCÞ ¼ <�ðxxiÞ; �ðxxiÞ>�
2

jVC j
X

j2VC
<�ðxxiÞ; �ðxxjÞ>

þ 1

jVC j2
X

k2VC

X

j2VC
<�ðxxkÞ; �ðxxjÞ>;

ð2Þ

where <�ð�Þ; �ð�Þ> represents an internal product in the feature
space H. By recalling that (2) represents a distance measure and
<�ð�Þ; �ð�Þ> ¼ Kð�; �Þ, we can obtain a similarity measure simply
by changing the sign:

SimAV ði; VCÞ ¼ �Kðxxi; xxiÞ þ
2

jVC j
X

j2VC
Kðxxi; xxjÞ

� 1

jVC j2
X

k2VC

X

j2VC
Kðxxk; xxjÞ:

ð3Þ

By observing that the third term of (3) is equal for all i 2 V , we can
obtain the following average score SAV :

SAV ði; VCÞ ¼ �Kðxxi; xxiÞ þ
2

jVC j
X

j2VC
Kðxxi; xxjÞ: ð4Þ

This score represents the average similarity of the gene i w.r.t. to
the genes belonging to the VC set. If all Kðxxi; xxiÞ are equal for each

i 2 V (i.e., the “autosimilarity” of genes does not matter), we can
further simplify (4) by removing its first term. It is worth noting the
SAV score resembles the one proposed by Borgwardt et al. in the
context of gene function prediction from synthetic lethality
networks: from this standpoint our approach can be viewed as
an extension of the algorithm proposed in [15].

2.1.2 Nearest-Neighbors Score

If instead of considering the average distance (1) between a vertex i

and VC we consider the minimum distance between i and VC , we

can obtain the nearest neighbors score SNN . To this end let consider

DNNði; VCÞ ¼ min
j2VC
k �ðxxiÞ � �ðxxjÞ k 2 : ð5Þ

The distance (5) is the minimum distance in the Hilbert space of

the vertex v w.r.t. the set of vertices belonging to VC . By developing

the square (5) we obtain

DNN ði; VCÞ ¼ min
j2VC
½<�ðxxiÞ; �ðxxiÞ>

þ<�ðxxjÞ; �ðxxjÞ>� 2<�ðxxiÞ; �ðxxjÞ>�:
ð6Þ

From (6) we can easily derive the following similarity measure:

SimNNðv; VCÞ ¼ �min
j2VC

Kðxxi; xxiÞ � 2Kðxxi; xxjÞ þKðxxj; xxjÞ
� �

: ð7Þ

If Kðxxj; xxjÞ is equal for all j 2 V , we can simplify (7), thus

achieving the nearest neighbors score SNN :

SNNði; VCÞ ¼ �min
j2VC
�2Kðxxi; xxjÞ ¼ 2 max

j2VC
Kðxxi; xxjÞ: ð8Þ

If it does not hold that Kðxxj; xxjÞ is equal for all j 2 V , then we can

set SNNði; VCÞ ¼ SimNNði; VCÞ.

2.1.3 K-Nearest Neighbors Score

A natural extension of the SNN score can be obtained by

introducing a different notion of distance based on k-nearest

neighbors distance:

DkNN ði; VCÞ ¼
X

j2IkðiÞ
k �ðxxiÞ � �ðxxjÞ k 2; ð9Þ

where IkðiÞ ¼ fj 2 VC jj is ranked among the first k in VCg. The dis-

tance (9) is the sum of distances of the vertex i from the set of the

k-nearest vertices included in VC in the Hilbert space to which xxi is

mapped by �. By developing the square (9) we can obtain a

similarity measure:

SimkNNði; VCÞ ¼ �
X

j2IkðvÞ
Kðxxi; xxiÞ � 2Kðxxi; xxjÞ þKðxxj; xxjÞ
� �

: ð10Þ

This similarity measure can be directly used as a k-nearest neighbors

score SkNN , but in the case that Kðxxj; xxjÞ is equal for all j 2 V , we

can simplify (10):

SkNNðv; VCÞ ¼ 2
X

j2IkðiÞ
Kðxxi; xxjÞ: ð11Þ

The proposed distance measures and the corresponding scores

are motivated by an extension of the guilt-by-association principle.

Indeed, all the proposed kernelized score functions share the

common principle that the score of each node depends only by its

neighbors. It is worth noting that we extend the notion of neighbor

through the kernel K: by choosing an appropriate kernel, node j

can be in the neighbor of node i even if there is no edge between

them in the original graph G (i.e., wij ¼ 0), but Kðxxi; xxjÞ > 0. From

this standpoint the Gram matrix KK can be interpreted as a novel

weighted adjacency matrix in the projected Hilbert space induced

by the mapping � : X ! H.
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We emphasize that we propose a general algorithmic scheme:

by choosing different score functions and/or designing novel

kernels able to capture the overall topology of the network, we can

in principle derive different network-based gene ranking algo-

rithms for GFP.
The proposed method is very fast, since no model learning is

required, but only a computation of scores based on kernelized

distances: once the kernel matrix has been computed, the score

computation has a complexity OðjV j � jVC jÞ, that is approximately

linear when the number of “positive” nodes is largely lower than

the overall number of vertices. We remark that this is just the usual

setting of GFP problems.

2.2 Random Walk (RK) Kernels for Network-Oriented
Score Functions

All the score functions introduced in Section 2.1 are based on a
generic kernel function Kð�; �Þ. It is worth noting that in principle
any valid kernel can be used (e.g., Gaussian, Laplacian or
polynomial kernels), but in the context of network-based GFP we
need to apply meaningful kernel functions able to capture the
functional similarity between genes connected in an undirected
graph. From this standpoint graph-based kernels represent a
natural choice, since they are able to take into account the
topology of the network as well as the strength of the similarities
between vertices [13].

Among them, random walk kernels [16] can capture not only
relationships coming from direct neighborhoods between genes,
similarly to guilt by association methods [6], but also relationships
coming from shared and more in general indirect neighbors
between genes. This is of paramount importance in the context of
network-based GFP, since, while it is quite obvious that
functional relationships are coded into direct neighbors, impor-
tant functional relationships between genes can also be coded
through indirect neighbors [8]: for instance, proteins belonging to
the same complex may also not directly interact, but can both
contribute to the realization of the biological function mediated by
the entire protein complex, or enzymes belonging to the same
biological process may not share the same links, since their
catalyzed reactions can be linked through other intermediate
reactions belonging to the same pathway.

Random walk kernels represent the kernelized version of
Markov Random Walks, by which random trajectories across graphs
can be exploited to investigate the relationships between nodes
and to score or to label each node with respect to a specific
property of the vertices [21]. We adopt the same term kernel to
refer to both the kernel function Kð�; �Þ and its corresponding Gram
matrix KK whose elements are kij ¼ Kðxxi; xxjÞ. Given a symmetric
adjacency matrix WW of the undirected graph G ¼ ðV ;EÞ, the
unnormalized graph Laplacian is LL ¼ DD�WW , where DD is a
diagonal matrix with elements dii ¼

P
j wij; this matrix is named

“degree” matrix, since its diagonal elements represent the
(weighted) degree of the corresponding node. The name of the
LL matrix is derived from its analogy with the Laplacian operator �
on continuous spaces and it can be shown that �LL up to a constant
is exactly the finite difference discretization of � on a regular
lattice [16]. The normalized graph Laplacian is

~LL ¼ DD�1
2LLDD�

1
2 ¼ DD�1

2ðDD�WWÞDD�1
2

¼ DD�1
2DDDD�

1
2 �DD�1

2WWDD�
1
2 ¼ II �DD�1

2WWDD�
1
2;

ð12Þ

where II is the identity matrix. In other words, to obtain the

normalized graph Laplacian, each element of the adjacency matrix

WW is divided by the square root of the product of the sum of the

weights of its corresponding row and column: from this standpoint
~LL can be regarded as a sort of regularization of the original

adjacency matrix WW of the graph. The one-step random walk kernel

[16] can be defined in terms of the normalized graph Laplacian:

KKrw ¼ aII � ~LL ¼ aII � II þDD�1
2WWDD�

1
2

¼ ða� 1ÞII þDD�1
2WWDD�

1
2;

ð13Þ

with a > 1. The q-step random walk kernel is a slight generalization of
(13) [16]:

KKq
rw ¼ ðaII � ~LLÞq; ð14Þ

where q � 1 is an integer representing the number of steps of the
random walk across the graph. The name of the kernel derives from
the fact that (14) is up to scaling terms equivalent to a q-step random
walk on the graph with random restarts, a well-known algorithm
used for scoring webpages in the Google search engine [17]. Indeed,
consider a random walk with random restart on a graph with
adjacency matrix WW , the vector of probabilities pp ¼ ½p1; p2; . . . ; pn� of
being on a certain node i; 1 � i � n, the degree matrix DD associated
with the graph, and the probability � of a random restart at an
arbitrary node. Then, the probability distribution over states obeys
the following discrete time evolution equation:

pptþ1 ¼ ½�II þ ð1� �ÞDD�1WW �ppt: ð15Þ

The stationary distribution of pp is determined by the largest
eigenvalue/eigenvector pair of the transition matrix QQ ¼
½�II þ ð1� �ÞDD�1WW � in (15), and values of pp at convergence
determine the ranking of the nodes. It can be shown that the
spectrum of the 1-step random walk kernel (13) rescaled by 1

a
is the same of the matrix QQ if we set � ¼ 1�a

a [16]. Hence, the
random walks on graphs and the stationary distribution arising
from them are closely related to the eigensystem of ~LL. The
main difference between these two methods is that with
classical random walk we may have directed graphs leading
to asymmetric WW , while with random walk kernels we need to
deal with symmetric positive semidefinite Gram matrices, thus
requiring undirected graphs, and consequently a symmetric
adjacency matrix WW , leading to symmetric LL and ~LL matrices.

To implement a q-step random walk kernel we can adopt a step-
by-step strategy: we can at first compute KK2

rw by using the one-step
random walk kernel (13), and then we can compute KK3

rw by using
the computed KK2

rw, adopting a recursive strategy for each q � 2:

KKq
rw ¼ KKq�1

rw KKrw: ð16Þ

In q-step random walk kernels the parameter a allows to balance the
weight of direct and indirect connections between nodes: by tuning
a and the number q of steps we can modulate the influence of
direct and indirect connections between genes in the network.

3 EXPERIMENTAL SETUP

3.1 Prediction of FunCat Classes in Yeast

We tested our proposed methods on gene ranking tasks with
respect to FunCat (Functional Catalogue) classes with the yeast
model organism [3]. The tree-like structure of FunCat, with up to
six levels of increasing specificity accounts for different functional
characteristics of genes and gene products.

3.2 Data

For gene ranking in yeast, we combined six biomolecular data sets
previously used for the related task of gene classification [18]. The
data sets include protein-protein interaction, protein domain, gene
expression, and pairwise sequence similarity data.

We considered only yeast genes common to all data sets, and in
order to get a not too small set of positive examples for training, for
each data set we selected only the FunCat-annotated genes,1 and
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the classes with at least 20 positive examples, using the HCgene R

package [19]. This selection process yielded 1,901 yeast genes

annotated to 168 FunCat classes distributed across 16 trees and five

hierarchical levels.
From each data set, we computed the kernel matrix using a

linear kernel, thus obtaining six square symmetric matrices with

equal number of elements. Then, we integrated the data simply by

summing the corresponding kernel matrices (unweighted aver-

aging kernel integration).2

As a preprocessing step, to obtain a sparse version of the
corresponding graph, and to avoid “singleton” disconnected
nodes, we set a threshold for the edges in order to guarantee at
least one neighbor for each node. In practice, for each node we
computed the maximum weight of its associated edges, and
among these maxima we chose the minimum, and we set it as a
threshold for the edges of the graph. In this way, we obtain a graph
with 1,901 genes/nodes and 489,338 edges, with a graph density
equal to 0.1354.

The resulting integrated matrix corresponds to the weighted
adjacency matrix WW of the graph G considered in Section 2.
According to (13) we obtained from WW the corresponding KKrw 1-
step random walk kernel, and according to (14) we constructed the
two and three steps random walk kernel.

3.3 Compared Methods

We compared our proposed kernelized score functions with
several state-of-the-art ranking methods for GFP. In particular,
we considered GeneMANIA [12], an algorithm based on Gaussian
Random Fields, that ranked among the best methods in the
MouseFunc competition for mouse GFP [20]. Since our score
functions are based on random walk kernels, we compared our
method also with the classical random walk and its variant RW 2
steps, that simply stops after two random steps instead of running
till the convergence condition is satisfied [21]. We evaluated also
another variant of RW, i.e., the random walk with restart (RWR)
algorithm, just successfully applied in gene prioritization pro-
blems [22]: at each step of the random walk in the graph the
random walker can move to one of its neighbors or can restart
from its initial condition with probability 0 < � < 1. We consid-
ered also a classical inductive method, i.e., the Support Vector
Machine (SVM) algorithm, largely applied in computational
biology and in GFP. More precisely, we considered a probabilistic
version of SVM [23], in order to obtain a probabilistic score to rank
genes with respect to functional classes. Finally, as a baseline, we
implemented a simple version of the guilt-by-association algo-
rithm [6], by which a score for each node is computed by
averaging the weights wij 2 WW of the edges connecting the node i
with positive labeled nodes j in the neighborhood of i.

3.4 Performance Measures and Software Implementation

To estimate the generalization performances of all the considered

methods we adopted a classical stratified fivefold cross validation

repeated 10 times (averaging results across the repetitions), and we

applied the Wilcoxon signed-ranks test to compare the overall

results between methods.
The performances of the compared ranking methods have been

assessed using the Area Under the ROC Curve (AUC) and the
precision at different levels of recall, since usually the FunCat
classes are highly unbalanced, with negative examples (genes not
annotated for a given class) that largely outnumber positives
(genes annotated for a given class).

Our proposed methods have been implemented in R and C

language (software is available upon request from the authors), as

well as the code for RW, RWR, and GBA, while for the probabilistic

SVM we used the C++ LIBSVM library [24], and for GeneMANIA
the MATLAB code available from the authors.

4 RESULTS

At first we analyzed the results of our proposed kernelized score
functions using different types of random walk kernels (Section 4.1),
and then we compared our proposed methods with other state-of-
the-art ranking methods for GFP (Section 4.2).

4.1 Comparing Kernelized Score Functions

We evaluated the proposed score functions (Section 2.1) using
random walk kernels (Section 2.2). To understand the impact of
the number k of neighbors in SkNN score function, we compared
the precision at different levels of recall by varying k between 3
and 23. The overall results show that the largest values of k,
i.e., k ¼ 19 or k ¼ 23 achieve the best results: red and orange
lines, quite overlapped, lie above all the other precision/recall
curves (Fig. 1, above).

Then, we compared the different score functions and at the
same time the impact of the choice of 1, 2, or 3-steps random walk
kernels. Cross-validation results averaged across classes show that
in terms of precision/recall curves SkNN and SAV largely outper-
form SNN independently of the number of steps of the random
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Fig. 1. Precision at different levels of recall with kernelized score functions (results
averaged across classes). Above: SkNN results with k varying between 3 and 23.
Below: Compared results between SkNN ; k ¼ 19 (red lines), SAV (green) and SNN
(blue) using random walk kernels with 1 (continuous lines with circles), 2 (dashed
lines with triangles), and 3 (dotted lines with crosses) steps.



walk kernels used in the score functions (Fig. 1 below). Moreover

SkNN outperforms SAV with 2 or 3-steps random walk kernels, at

almost all the recall levels (Wilcoxon signed-ranks sum test, p-value

< 10�5), but no significant difference, according to the Wilcoxon

test, can be found at any recall level when 1-step random walk

kernels are used instead. Independently of the choice of the score

function, the best results are obtained with 1-step random walk

kernels (Fig. 1): in this context, direct “functional similarities”

between genes are more informative than indirect ones, even if for

some classes also indirect connections play a significant role to

uncover functions of genes. For instance, at 0.2 recall level, with

SkNN we obtain better results with 2-steps w.r.t. to 1-step random

walk kernel for 24 FunCat classes, and for 21 classes with 3-steps

w.r.t to 2-steps random walk kernels. For some classes the

difference in precision is very large: with the class 42.25 “vacuole

or lysosome” we move from 0.57 to 0.80 precision when we use 2-

steps instead of 1-step random walk kernel. These results suggest

that by properly choosing the kernel for each functional class (e.g.,

by internal cross validation), we could further improve the overall

performances.

4.2 Comparison with State-of-the-Art Ranking Methods

Fig. 2 shows the precision at different levels of recall averaged

across classes achieved by SkNN compared with other six gene

ranking methods (Section 3.3). The red precision/recall curve with

circles denoting SkNN is above all the other curves at any recall

level (except for recall ¼ 1) and the difference is always statistically

significant (Wilcoxon signed-ranks test, p-value < 10�6) w.r.t. all

the other compared methods, except GeneMANIA, where the

difference is significant for recall levels between 0.2 and 0.8

(Wilcoxon test, p-value < 10�4). Also linear SVMs with fitted

sigmoid achieve good results, even if significantly worse than

those obtained by both SkNN and GeneMANIA. On the contrary, the

classical random walk algorithm (RW) completely fails in this task.

This is likely due to the fact that the convergence of the algorithm

requires for most classes tens or hundreds of iterations, thus

leading to explore too remote and indirect similarities between

genes and to “forget” the a priori knowledge coded in the initial

probabilities of the genes. This interpretation is also confirmed by

the fact that random walks with restart and in part also 2-steps

Random walks achieve reasonable results, since they, in different

ways, “remember” the initial probabilities of known positive

genes, by explicitly recalling them (RWR) or considering only

direct or common neighbors between genes (2-steps RW). These

results, according to the experiments of Section 4.1, show that for

most classes direct neighbors are more informative than indirect

neighbors. Our proposed score functions, and in particular SkNN
(and also SAV that achieves comparable results with SkNN , Fig. 1)

significantly outperform both classical RW and RWR algorithms,

showing that embedding random walk kernels in properly defined

score functions is the key to improve the performances in this

difficult gene ranking task.
These overall results are also confirmed through the AUC

measures: Table 1 shows that our proposed kernelized score

functions achieve the best results in terms of average AUC across

classes. More precisely, both SkNN and SAV accomplish signifi-

cantly better results than all the other compared methods

(Wilcoxon test, p-value < 10�5). Also SNN significantly outperform

the other methods (but with no significant difference w.r.t.

GeneMANIA). Note that also RWR and the simple GBA method

achieve significantly better results than SVMs in terms of AUC.

Also AUC results confirm that the “vanilla” RW algorithm fails in

this gene ranking task (AUC ’ 0:5), but if we limit the random
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Fig. 2. Comparison of precision at different levels of recall between different
ranking methods (results averaged across classes). SkNN : 19�NN-score
random walk kernel; GM: GeneMANIA; RWR: random walk with restart; RW :
random walk; RW 2 st: 2-steps random walk; GBA; guilt-by-association; SVM:
probabilistic support vector machine.

TABLE 1
Comparison of AUC Values Averaged across Classes between Different Ranking Methods

TABLE 2
Average Precision at 0.2 Recall and Average AUC at the Five Levels of the FunCat Taxonomy

Numbers in boldface refer to the best results for a given level.



walk to only 2 steps a certain learning can be registered
(AUC ’ 0:77, Table 1).

To better understand the behavior of the compared methods
w.r.t. the specificity of the functional classes, we reported the
precision at 20 percent recall and the AUC averaged per each level
of the FunCat Taxonomy (Table 2). Level 1 nodes are the root
nodes, that is the more general classes (e.g., “metabolism”), level 2
nodes are their children classes, till to the fourth and fifth levels
corresponding to more specific functional classes (e.g., “metabo-
lism of methionine”). Our proposed score functions obtain the best
results at levels 2, 3, and 4 for both AUC and precision at
20 percent recall, and also at level 5 in terms of AUC. SVMs achieve
the best results at the first level of the hierarchy, where the largest
set of positive examples is available: having enough information
on a class, inductive algorithms such as SVMs outperform the
other transductive methods. Quite interestingly, whenever we
consider more specific classes, characterized by a lower number of
positive examples, the performance of SVM substantially decay,
confirming recent results [25], while our proposed score functions
maintain or also increment the precision and the AUC (Table 2).
This is of paramount importance, since the biologists are usually
interested to the most specific classes, that better characterize the
functional role of genes.

We note that SkNN obtains better results at the first two levels
of the hierarchy, while SAV at the lower levels. This behavior
suggests that simple strategies that use different score functions
at different levels, or more in general methods able to select the
best score function for each functional class (e.g., by internal
cross validation), could lead to significantly better results.
However, for the methods compared in the proposed experi-
ments, we did not perform any fine tuning of their parameters by
internal cross validation.

The proposed score functions are very fast, and are able to
perform the ranking tasks at genome-wide and whole ontology
level in yeast in less than 10 seconds on a Xeon quad processor
W3520 2.67 GHz, with 8 Gb RAM (Table 3). Note that all the other
compared methods have a larger empirical time complexity
except for the simple GBA method that is even slightly faster.
Indeed, both kernelized score functions and GBA have linear time
complexity in GFP problems, while the other network-based
compared methods have a quadratic complexity with sparse
graphs [26]. These results show that our methods could be in
perspective efficiently applied to larger genomes (i.e., mouse,
human, fly, or also Arabidopsis), and using also ontologies with
more classes, such as the Gene Ontology.

5 CONCLUSIONS

Our proposed score functions adopt both local learning strategies
based on a generalized notion of distance in a universal
reproducing kernel Hilbert space, and global learning strategies
based on the choice of proper graph kernels to exploit the overall
topology of the underlying biological network. Whole-ontology
experiments with yeast show that the proposed methods achieve
significantly better results than the compared state-of-the art
ranking algorithms for GFP. Moreover a comparable AUC and
precision at fixed recall rate is obtained at each level of the FunCat
ontology, with no significant decay (at least in terms of AUC) also
for the most specific classes. Compared results between SkNN and
SAV suggest that selection strategies able to properly choose the

best score function for each level of the taxonomy or for each

functional class could further improve the overall performance of

the proposed gene ranking system. The transductive nature of the

method and the efficient computation of the score functions

consistently reduce the computational costs and allow to nicely

scale with large biomolecular networks.
For possible future work, we observe that even if in the context

of the proposed score functions we applied random walk kernels,

other kernels could in principle be designed to better characterize

the functional similarities between genes. Moreover, we observe

that our proposed method is general enough to be in perspective

adapted to other relevant node ranking problems in computational
biology, and recent results on drug repositioning and gene

prioritization with respect to tumoral diseases seem to confirm

this hypothesis [27], [28].
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