
PERL scripting

UNIVERSITA’ DEGLI
STUDI DI MILANO

Teacher: Matteo Re

S introduction

Metodi e linguaggi per il trattamento dei dati

Objectives

• PERL programming
• Problem solving and Debugging
• To read and write documentation
• Data manipulation: filtering and transformation
• Pattern matching and data mining (examples)

• Example application: Computational Biology
• Analysis and manipulation of biological sequences
• Interaction with biological batabases (NCBI, EnsEMBL,

UCSC)
• BioPERL

Guidelines

• Operating system
• During class appointments we will use windows

• PERL installation

 WIN: http://www.activestate.com/activeperl/downloads
 UNIX, MacOS: available by default

• Text editor

PERL are saved as text files. Many options available…

Vim (UNIX like OS)
Notepad (Windows)

>gi|40457238|HIV-1 isolate 97KE128 from Kenya gag gene, partial cds
CTTTTGAATGCATGGGTAAAAGTAATAGAAGAAAGAGGTTTCAGTCCAGAAGTAATACCCATGTTCTCAG
CATTATCAGAAGGAGCCACCCCACAAGATTTAAATACGATGCTGAACATAGTGGGGGGACACCAGGCAGC
TATGCAAATGCTAAAGGATACCATCAATGAGGAAGCTGCAGAATGGGACAGGTTACATCCAGTACATGCA
GGGCCTATTCCGCCAGGCCAGATGAGAGAACCAAGGGGAAGTGACATAGCAGGAACTACTAGTACCCCTC
AAGAACAAGTAGGATGGATGACAAACAATCCACCTATCCCAGTGGGAGACATCTATAAAAGATGGATCAT
CCTGGGCTTAAATAAAATAGTAAGAATGTATAGCCCTGTTAGCATTTTGGACATAAAACAAGGGCCAAAA
GAACCCTTTAGAGACTATGTAGATAGGTTCTTTAAAACTCTCAGAGCCGAACAAGCTT

>gi|40457236| HIV-1 isolate 97KE127 from Kenya gag gene, partial cds
TTGAATGCATGGGTGAAAGTAATAGAAGAAAAGGCTTTCAGCCCAGAAGTAATACCCATGTTCTCAGCAT
TATCAGAAGGAGCCACCCCACAAGATTTAAATATGATGCTGAATATAGTGGGGGGACACCAGGCAGCTAT
GCAAATGTTAAAAGATACCATCAATGAGGAAGCTGCAGAATGGGACAGGTTACATCCAATACATGCAGGG
CCTATTCCACCAGGCCAAATGAGAGAACCAAGGGGAAGTGACATAGCAGGAACTACTAGTACCCCTCAAG
AGCAAATAGGATGGATGACAAGCAACCCACCTATCCCAGTGGGAGACATCTATAAAAGATGGATAATCCT
GGGATTAAATAAAATAGTAAGAATGTATAGCCCTGTTAGCATTTTGGACATAAAACAAGGGCCAAAAGAA
CCTTTCAGAGACTATGTAGATAGGTTTTTTAAAACTCTCAGAGCCGAACAAGCTT

>gi|40457234| HIV-1 isolate 97KE126 from Kenya gag gene, partial cds
CCTTTGAATGCATGGGTGAAAGTAATAGAAGAAAAGGCTTTCAGCCCAGAAGTAATACCCATGTTTTCAG
CATTATCAGAAGGAGCCACCCCACAAGATTTAAATATGATGCTGAACATAGTGGGGGGGCACCAGGCAGC
TATGCAAATGTTAAAAGATACCATCAATGAGGAAGCTGCAGAATGGGACAGGCTACATCCAGCACAGGCA
GGGCCTATTGCACCAGGCCAGATAAGAGAACCAAGGGGAAGTGATATAGCAGGAACTACTAGTACCCCTC
AAGAACAAATAGCATGGATGACAGGCAACCCGCCTATCCCAGTGGGAGACATCTATAAAAGATGGATAAT
CCTGGGATTAAATAAAATAGTAAGAATGTATAGCCCTGTTAGCATTTTGGATATAAAACAAGGGCCAAAA
GAACCATTCAGAGACTATGTAGACAGGTTCTTTAAAACTCTCAGAGCCGAACAAGCTT

Sequence file – FASTA format

GenBank Record
LOCUS AK091721 2234 bp mRNA linear PRI 20-JAN-2006

DEFINITION Homo sapiens cDNA FLJ34402 fis, clone HCHON2001505.

ACCESSION AK091721

VERSION AK091721.1 GI:21750158

KEYWORDS oligo capping; fis (full insert sequence).

SOURCE Homo sapiens (human)

 ORGANISM Homo sapiens

 Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;

 Mammalia; Eutheria; Euarchontoglires; Primates; Catarrhini;

 Hominidae; Homo.

 TITLE Complete sequencing and characterization of 21,243 full-length

 human cDNAs

 JOURNAL Nat. Genet. 36 (1), 40-45 (2004)

FEATURES Location/Qualifiers

 source 1..2234

 /organism="Homo sapiens"

 /mol_type="mRNA"

 CDS 529..1995

 /note="unnamed protein product"

 /codon_start=1

 /protein_id="BAC03731.1"

 /db_xref="GI:21750159"

 /translation="MVAERSPARSPGSWLFPGLWLLVLSGPGGLLRAQEQPSCRRAFD

...

 RLDALWALLRRQYDRVSLMRPQEGDEGRCINFSRVPSQ"

ORIGIN

 1 gttttcggag tgcggaggga gttggggccg ccggaggaga agagtctcca ctcctagttt

 61 gttctgccgt cgccgcgtcc cagggacccc ttgtcccgaa gcgcacggca gcggggggaa

...

Why Perl?
• Broadly used in many application areas (i.e.

computational Biology)
• Bioperl

• http://www.bioperl.org/wiki/Main_Page

• Relatively easy programming language
• Strong pattern matching capabilities
• Easy construction of pipelines
• Relatively easy to learn

• Rapid prototyping
• Lot of problems can be solved with a few lines of code

• Portability
• Available on Unix, Windows, Macs

• Open source
• Good documentation (try: %perldoc perldoc)

• %perldoc –f print
• http://perldoc.perl.org/index-tutorials.html
• Many modules (libraries) available (http://www.cpan.org/)

http://www.bioperl.org/wiki/Main_Page
http://www.bioperl.org/wiki/Main_Page
http://www.cpan.org/

The PERL interpreter
PERL is an interpreted language.

The PERL interpreter:

1) translates each high level instruction (here high-level means that it
is interpretable by a human being) into a instruction written in
machine code (only composed by 0s and 1s) and that is specific for
the considered machine architecture.

2) send the instruction to the CPU (that execute it)

This cycle continues until the source code (a text file containing the
PERL instructions) contains at least one row of code.

It is possible to compile the script source. This produce a single file
composed entirely by machine code instruction. The compiled file is
called executable (the interpreter is no longer required) .

PERL scripting

UNIVERSITA’ DEGLI
STUDI DI MILANO

Teacher: Matteo Re

p1 PERL basics (reference)

Metodi e linguaggi per il trattamento dei dati

Originally developed by Larry Wall in 1987

Borrows features from

C: imperative language with variables, expressions, assignment
statements, blocks of statements, control structures, and procedures /
functions

Lisp: lists, list operations, functions as first-class citizens

AWK: (pattern scanning and processing language) hashes / associative
arrays, regular expressions

sed: (stream editor for filtering and transforming text) regular expressions
and substitution s///

Shell: use of sigils to indicate type ($ – scalar, @ – array, % – hash, & –
procedure)

Object-oriented programming languages: classes/packages

PERL USES AD APPLICATIONS

• Main application areas of Perl
• text processing
 → easier and more powerful than sed or awk
• system administration
 → easier and more powerful than shell scripts

• Other application areas
• web programming
• code generation
• bioinformatics
• linguistics
• testing and quality assurance

PERL: APPLICATIONS
Applications written in Perl

• Movable Type – web publishing platform
 http://www.movabletype.org/

• Request Tracker – issue tracking system
 http://bestpractical.com/rt/

• Slash – database-driven web application server
 http://sourceforge.net/projects/slashcode/

• EnsEMBL - genomic browser (originally written in PERL, now available in
 other programming languages)
 https://www.ensembl.org/index.html

PERL: APPLICATIONS
Organisations using Perl

• Amazon – online retailer
 http://www.amazon.co.uk

• BBC – TV/Radio/Online entertainment and journalism
 http://www.bbc.co.uk

• Booking.com – hotel bookings
 http://www.booking.com

• craigslist – classified ads
 http://www.craigslist.org

• IMDb – movie database
 http://www.imdb.com

• Monsanto – agriculture/biotech
 http://www.monsanto.co.uk/

JAVA vs PERL: JAVA
1 /* Author : java programmer
2 * The HelloWorld class implements an application
3 * that prints out " Hello World ".
4 */
5 public class HelloWorld {
6 // --------------- METHODS -------------
7 /* Main Method */
8 public static void main(String[] args) {
9 System.out.println(" Hello World ");
10 }
11 }

Edit-compile-run cycle:

1) Edit and save as HelloWorld.java
2) Compile using javac HelloWorld.java
3) Run using java HelloWorld

JAVA vs PERL: PERL
1 #!/usr/bin/perl
2 # Author : Matteo Re
3 # The HelloWorld script implements an application
4 # that prints out " Hello World ".
5
6 print " Hello World \n" ;

Edit-compile-run cycle:

1) Edit and save as HelloWorld
2) Run using perl HelloWorld
 OR
1) Edit and save as HelloWorld
2) Make it executable chmod u+x HelloWorld
This only needs to be done once!
3) Run using ./HelloWorld

PERL code on green
background

PERL

Perl borrows features from a wide range of programming languages
including imperative, object-oriented and functional languages

• Advantage: Programmers have a choice of programming styles

• Disadvantage: Programmers have a choice of programming styles

• Perl makes it easy to write completely incomprehensible code
 → Documenting and commenting Perl code is very important

PERL
1 #!/usr/bin/perl
2 # Authors : Matteo Re
3 # Text manipulation using regular expressions
4 #
5 # Retrieve the Perl documentation of function ' atan2 '
6 @lines = `perldoc -u -f atan2`;
7 # Go through the lines of the documentation,turn all text
 # between angled brackets to uppercase and remove the
 # character in front of the opening angled bracket , then
8 # print the result
9 foreach(@lines){
10 s/\w<([^\ >]+)>/\U$1/g ;
11 print ;
12 }

Perl makes it easy to write completely incomprehensible code.
In the example, there are more lines of comments than there are lines of
code.

PERL

In the following we will consider various constructs of the Perl
programming language

• numbers, strings
• variables, constants
• assignments
• control structures

If you are already able to program using other scripting languages (i.e.
Java) you will notice some similarities. Remember that Perl predates Java
and thus common constructs are almost always inherited by both
languages from the C programming language

PERL SCRIPTS

• A Perl script consists of one or more statements and comments
there is no need for a main function (or classes)

• Statements end in a semi-colon ;

• Whitespace before and in between statements is irrelevant
(This does not mean its irrelevant to someone reading your code)

• Comments start with a hash symbol # and run to the end of the
line

• Comments should precede the code they are referring to

PERL SCRIPTS

Perl statements include
• Assignments
• Control structures

NB: Every statement returns a value

Perl data types include
• Scalars
• Arrays / Lists
• Hashes / Associative arrays

Perl expressions are constructed from values and variables using
operators and subroutines.
Perl expressions can have side-effects (evaluation of an expression
can change the program state).
Every expression can be turned into a statement by adding a semi-
colon.

Data types: scalar $

A scalar is the simplest type of data in Perl

• A scalar is either

• an integer number
0 2012 -40 1_263_978

• a floating-point number
1.25 256.0 -12e19 2.4e-10

• a string
’hello world’ "hello world\n"

Note:

• There is no ‘integer type’, ‘string type’ etc
• There are no boolean constants (true / false)

Data type: scalar $

Integers and floating point numbers

Perl provides a wide range of pre-defined mathematical
functions

abs(number) absolute value
log(number) natural logarithm
random(number) random number between 0 and number
sqrt(number) square root

Additional functions are available via the POSIX module
ceil(number) round fractions up
floor(number) round fractions down

Note: There is no pre-defined round function
use POSIX;
print ceil (4.3); // prints '5 '
print floor (4.3); // prints '4 '

PSEUDOCODE on yellow
background

Error handling

Mathematical functions and Error handling

Perl, PHP and JavaScript differ in the way they deal with
applications of mathematical functions that do not produce a
number

In Perl we have

• log(0) produces an error message: Can't take log of 0
• sqrt(-1) produces an error message: Can't take sqrt of -1
• 1/0 produces an error message: Illegal division by zero
• 0/0 produces an error message: Illegal division by zero

the execution of a script terminates when an error occurs

Error handling

A possible way to perform error handling in Perl is as follows:

eval {
... run the code here # try

1;
} or do {
...handle the error here using $@... # catch

};

The special variable $@ contains the Perl syntax or routine
error message from the last eval, do-FILE, or require
command

Double quoted strings backslash escapes

• In a single-quoted string \t is simply a string consisting of \ and t
• In a double-quoted string \t and other backslash escapes have

the following meaning

UTF-8

Perl supports UTF-8 character encodings which give you access
to non-ASCII characters

• The pragma
use utf8;

allows you to use UTF-8 encoded characters in Perl scripts

• The function call
binmode (STDIN , " : encoding (UTF -8) ");
binmode (STDOUT , " : encoding (UTF -8) ");

ensures that UFT-8 characters are read correctly from STDIN
and printed correctly to STDOUT

• The Unicode::Normalize module enables correct
decomposition of strings containing UTF-8 encoded
characters

use Unicode :: Normalize ;

UTF-8

Example…

binmode(STDOUT , " : utf8 ");
print "\x{4f60}\x{597d}\x{4e16}\x{754c}\n"; # chinese
print "\x{062d}\x{fef0}\n"; # arabic

String operators and automatic conversion:

Two basic operation on strings are:

– String concatenation

– String repetition

These operation can be combined:

Perl automatically converts between strings and numbers:

‘Booleans’

• Perl does not have a boolean datatype
• Instead the values

0 # zero and all floating-point numbers equal to 0
'' # empty string
'0 ' # string consisting of zero , but not '0.0'
undef # undefined
() # empty list

all represent false with all other values represent true .

‘Boolean operators’

• Perl offers the same short-circuit boolean operators as Java: &&,
||, !

• Alternatively, and, or, not can be used

Note that this means that && and || are not commutative, that is,
(A && B) is not the same as (B && A)

($denom != 0) && ($num / $denom > 10)

Comparison operators

• Perl distinguishes between numeric comparison and string
comparison

 Comparison Numeric String

Examples

 35 == 35.0 # true
' 35 ' eq ' 35.0 ' # false
' 35 ' == ' 35.0 ' # true
 35 < 35.0 # false
' 35 ' lt ' 35.0 ' # true
' ABC ' eq "\Uabc" # true

Scalar variables

A variable also does not have to be initialised before it can be used, although
initialisation is a good idea

• Uninitialised variables have the special value undef

However, undef acts
like 0 for numeric variables and
like '' for string variables

if an uninitialised variable is used in an arithmetic or string operation

• To test whether a variable has value undef use the routine defined

$s1 = "";
print '$s1 eq undef : ' ,($s1 eq undef)?' TRUE':' FALSE' ," \n";
print '$s1 defined : ' ,(defined($s1))?' TRUE ':' FALSE',"\n" ;
print '$s2 defined : ' ,(defined($s2))?' TRUE ':' FALSE',"\ n";

$s1 eq undef : TRUE
$s1 defined : TRUE
$s2 defined : FALSE

OUTPUT on light blue
background

special variables

Perl has a lot of ‘pre-defined’ variables that have a particular meaning
and serve a particular purpose

Variable Meaning

For a full list see:
https://perldoc.perl.org/perlvar.html#SPECIAL-VARIABLES

Constants

Perl offers three different ways to declare constants

• Using the constant pragma:

use constant PI = > 3.14159265359;

(A pragma is a module which influences some aspect of the compile time or
run time behaviour of Perl)

• Using the Readonly module:

use Readonly ;
Readonly $PI = > 3.14159265359;

• Using the Const::Fast module:

use Const :: Fast ;
const $PI = > 3.14159265359;

variable interpolation with constants does not work

Constants

• Just like Java, Perl uses the equality sign = for assignments:

$student_id = 200846369;
$name = " Mario Rossi " ;
$student_id = " E00481370 " ;

But no type declaration is required and the same variable can hold a
number at one point and a string at another

• An assignment also returns a value, namely (the final value of) the variable
on the left → enables us to use an assignment as an expressions

Example:

$b = ($a = 0) + 1;
$a has value 0
$b has value 1

Variable declaration

In Perl, variables can be declared using the my function (Remember: This is not
a requirement)

• The pragma
use strict;

enforces that all variables must be declared before their use, otherwise a
compile time error is raised

Example:
use strict;
$studentsOnPERLmodule = 133;
Global symbol " $studentOnPERLmodule " requires explicit
package name at ./ script line 2.

Execution of ./ script aborted due to compilation errors.
use strict;
my $studentsOnPERLmodule;
$studentsOnPERLmodule = 154;
my $studentsOnPERLmodule2 = 53;

Variable interpolation

Any scalar variable name in a double quoted string is (automatically) replaced
by its current value at the time the string is ‘created’

Example:

$actor = " Jeff Bridges " ;
$prize = " Academy Award for Best Actor " ;
$year = 2010;

print " 1: " , $actor , " won the ",$prize," in ",$year,"\n";
print " 2: $actor won the $prize in $year\n";

Output:

1: Jeff Bridges won the Academy Award for Best Actor in 2010
2: Jeff Bridges won the Academy Award for Best Actor in 2010

 Conditional statements
 Switch statements
 While and Until loops
 For loops

Control structures

Conditional statements

The general format of conditional statements is very similar to that in
Java and other scriptng langiages:

if(condition){
statements

}elsif(condition){
statements

}else{
statements

}

• condition is an arbitrary expression
• the elsif-clause is optional and there can be more than one
• the else-clause is optional but there can be at most one
• in contrast to Java, the curly brackets must be present
even if statements consist only of a single statement

Control structures

Conditional statements

Perl also offers two shorter conditional statements:
statement if(condition);

and

statement unless(condition);

• Perl also offers conditional expressions:
condition ? if_true_expr : if_false_expr

Examples:
$descr = ($distance < 50) ? " near " : " far " ;

$size = ($width < 10) ? " small " :
 ($width < 20) ? " medium " :

 " large " ;

Control structures

Blocks

A sequence of statements in curly brackets is a block --> an alternative
definition of conditional statements is

if(condition) block
elsif(condition) block
else block

In
statement if (condition);
statement unless (condition);

only a single statement is allowed,
but do block counts as a single statement, so we can write

do block if (condition);
do block unless (condition);

Control structures

Switch statement / expression

Starting with Perl 5.10 (released Dec 2007), the language includes a
switch statement and corresponding switch expression. But these are
considered experimental and need to be enabled explicitly.

Example:

use feature "switch";

given ($month){
when ([1 ,3 ,5 ,7 ,8 ,10 ,12]){ $days=31 }
when ([4 ,6 ,9 ,11]){ $days=30 }
when (2){ $days=28 }
default{ $days=0 }
}

Note: no explicit break statement is needed

Control structures

while and until loops

Perl offers while-loops and until-loops
while (condition) {

statements
}

until (condition) {
statements

}

A ‘proper’ until-loop where the loop is executed at least once can be
obtained as follows

do{ statements }until(condition);

The same construct also works for if, unless and while
In case there is only a single statement it is also possible to write
statement until (condition);

Again this also works for if, unless and while

Control structures

For loops

for-loops in Perl take the form

for(initialisation ; test ; increment){
statements

}

Again, the curly brackets are required even if the body of the loop only consists
of a single statement

Such a for-loop is equivalent to the following while-loop:

initialisation ;

while (test) {
statements;
increment;

}

Control structures

A list is an ordered collection of scalars

An array (array variable) is a variable that contains a list

Array variables start with @ followed by a Perl identifier
@identifier

An array variable denotes the entire list stored in that variable

Perl uses
$identifier[index]

to denote the element stored at position index in @identifier
The first array element has index 0

• Note that

$identifier
@identifier

are two unrelated variables (but this situation should be avoided)

Data type: lists , arrays

A list can be specified by a list literal, a comma-separated list of values
enclosed by parentheses
(1 , 2 , 3)
(" adam " , " ben " , " colin " , " david ")
(" adam " , 1 , " ben " , 3)
()
(1..10 , 15 , 20..30)
($start .. $end)

List literals can be assigned to an array:

@numbers = (1..10 , 15 , 20..30);
@names = (" adam " , " ben " , " colin " , " david ");

Examples of more complex assignments, involving array concatenation:

@numbers = (1..10 , undef , @numbers , ());
@names = (@names , @numbers);

Note that arrays do not have a pre-defined size/length

Data type: lists , arrays

Size of an array:

There are three different ways to determine the size of an array

$arraySize = scalar(@array);
$arraySize = @array ;
$arraySize = $#array + 1;

One can access all elements of an array using indices in the range 0 to $#array

But Perl also allows negative array indices:
The expression $array[-index]
is equivalent to $array[scalar(@array)-index]

Example:

$array[-1] is the same as $array[scalar(@array)-1]
is the same as $array[$#array]
that is the last element in @array

Data type: lists , arrays

Perl allows you to access array indices that are out of bounds

@array = (0 , undef , 22 , 33);

print '$array[4] = ',$array[4],' ,which ',(defined($array[4]) ? ' IS NOT ' : ' IS
',"undef\n";

$array[4] = , which IS undef

print '$array[1] = ',$array[1],' ,which ',(defined($array[1]) ? ' IS NOT ' : ' IS
',"undef\n";

$array[1] = , which IS undef

The function exists can be used to determine whether an array index is within bounds
and has a value (including undef) associated with it

print ' $array[4] exists : ' , exists($array[4]) ? 'T ': 'F ' ,"\n" ;

$array[4] exists : F

print ' $array[1] exists : ' , exists($array[1]) ? 'T ': 'F ' ,"\n" ;

$array[1] exists : T

Data type: lists , arrays

Scalar context vs List context:

when an expression is used as an argument of an operation that requires
a scalar value, the expression will be evaluated in a scalar context

Example of scalar context:
$arraySize = @array;

@array stores a list , but returns the number of elements of @array in a scalar
context.

when an expression is used as an argument of an operation that requires
a list value, the expression will be evaluated in a list context

Example of list context:
@sorted = sort 5;

A single scalar value is treated as a list with one element in a list context

Data type: lists , arrays

Scalar context vs List context:

Expressions behave differently in different contexts following these rules:

• Some operators and functions automatically return different values in different
contexts

$line = <IN>; # return one line from IN
@lines = <IN>; # return a list of all lines from IN

• If an expression returns a scalar value in a list context, then by default Perl
will convert it into a list value with the returned scalar value being the one and
only element

• If an expression returns a list value in a scalar context, then by default Perl
will convert it into a scalar value by take the last element of the returned list

Data type: lists , arrays

Array functions: push, pop, shift, unshift

Perl has no stack or queue data structures, but has stack and queue functions
for arrays:

 Function Semantics

Data type: lists , arrays

Array operators: push, pop, shift, unshift

@planets = ("earth");
push(@planets , "mars" ,"jupiter" ,"saturn");
unshift(@planets , "mercury" ,"venus");
print "Array\@1 : " , join (" " , @planets) , "\n";

Array@1 : mercury venus earth mars jupiter saturn

Note: unshift does not proceed argument by argument

$last = pop(@planets);
print "Array\@2 : " , join (" " , @planets) , "\n";

Array@2 : mercury venus earth mars jupiter

$first = shift(@planets);
print "Array\@3 : " , join (" " , @planets) , "\n";
print " @4 : " , $first , " " , $last , "\n";

Array@3 : venus earth mars jupiter
 @4 : mercury saturn

Data type: lists , arrays

Array operators: delete

delete($array[index])
– removes the value stored at index in @array and returns it
– only if index equals $#array will the array’s size shrink to the position of the highest

element that returns true for exists()

Example
@array = (0 , 11 , 22 , 33);
delete($array[2]);
print '$array[2] exists : ', exists($array[2])? "T" : "F","\n";
print 'Size of $array : ' ,$#array+1, " \ n " ;

$array[2] exists : F
Size of $array : 4

delete($array[3]);
print '$array[3] exists : ',exists($array[3])? "T" : "F" ,
"\n";

print 'Size of $array : ' ,$#array+1, "\n" ;

$array[3] exists : F
Size of $array : 2

Data type: lists , arrays

Foreach loop
Changing the value of the foreach-variable changes the element of the list that it

currently stores
A foreach-variable reverts to its previous value after the end of a loop

Example:
@my_list = (1..5 ,20 ,11..18);
print "Before : " . join("," , @my_list). "\n";
Before : 1,2,3,4,5,20,11,12,13,14,15,16,17,18

foreach $number (@my_list){
$number++;
}
print "After : ". join("," , @my_list). "\n";
After : 2,3,4,5,6,21,12,13,14,15,16,17,18,19

print '$number = ' ,defined($number)?$number:"undef " ,"\n";
$number = undef

If no variable is specified, then the special variable $_ will be used to store the array
elements

Control structures

Foreach loop

An alternative way to traverse an array is

foreach $index (0..$#array){
statements

}

where an element of the array is then accessed using $array[$index] in statements

Example:

@my_list = (1..5 ,20 ,11..18);
foreach $index (0..$# my_list) {
$max = $my_list[$index] if($my_list[$index]>$max);

}
print("Maximum number in ",join(',',@my_list)," is $max\n");

Control structures

Foreach loop variants

In analogy to while- and until-loops, there are the following variants of
foreach-loops:

do{ statements } foreach list;
statement foreach list;

In the execution of the statements within the loop, the special variable $_ will be set
to consecutive elements of list

Instead of foreach we can also use for:
do{ statements } for list;
statement for list;

Example:
Instead of
foreach(@my_list){ $_++ }
we can write
$_++ foreach(@my_list);

Control structures

last and next

The last command can be used in while-, until-, and foreach-loops and discontinues
the execution of a loop

while($value = shift($data)){
$written = print(FILE $value);
if(!$written){ last; }

}
Execution of last takes us here

• The next command stops the execution of the current iteration
of a loop and moves the execution to the next iteration

foreach $x (-2..2){
if($x == 0){ next; }
printf(" 10/%2d = %3d\n",$x,(10/$x));

}

10 / -2 = -5
10 / -1 = -10
10 / 1 = 10
10 / 2 = 5

Control structures

• A hash is a data structure similar to an array but it associates scalars
with a string instead of a number

• Alternatively, a hash can be seen as a partial function mapping strings
to scalars

• Remember that Perl can auto-magically convert any scalar into a string

• Hash variables start with a percent sign followed by a Perl identifier

%identifier

A hash variable denotes the entirety of the hash

• Perl uses

$identifier{ key }
where key is a string, to refer to the value associated with key

Data type: hashes

Note that

$identifier
%identifier

are two unrelated variables (but this situation should be avoided)

An easy way to print all key-value pairs of a hash %hash is the following

use Data::Dumper;
$Data::Dumper::Terse = 1;
print Dumper \%hash;

Note the use of \%hash instead of %hash
(\%hash is a reference to %hash)

Data::Dumper can produce string representations for
arbitrary Perl data structureswith key

Data type: hashes

Basic hash operations

• Initialise a hash using a list of key-value pairs

%hash = (key1, value1, key2, value2, ...);

• Initialise a hash using a list in big arrow notation

%hash = (key1=>value1 ,key2=>value2, ...);

• Associate a single value with a key

$hash{ key } = value;

• Remember that undef is a scalar value

$hash{ key } = undef;

extends a hash with another key but unknown value

 Data type: hashes

Basic hash operations

It is also possible to assign one hash to another

%hash1 = %hash2;

In contrast to C or Java this operation creates a copy of %hash2 that is
then assigned to %hash1

Example:

%hash1 = ('a ' = > 1 , 'b ' = > 2);
%hash2 = % hash1;
$hash1 { 'b '} = 4;
print "\$hash1{ ' b '} = $hash1{ ' b '}\n";
print "\$hash2{ ' b '} = $hash2{ ' b '}\n";

$hash1 { 'b '} = 4 # value has changed
$hash2 { 'b '} = 2 # value has not changed

 Data type: hashes

The each, keys and values functions

Examples:
while (($key,$value) = each %hash){
statements

}

foreach $key (sort keys %hash){
$\value = $hash{ $key };

}

 Data type: hashes

Example: Two-dimensional hash as a ‘database’

use List :: Util " sum " ;
$name { ' 200846369 '} = ' Jan Olsen ';
$marks { ' 200846369 ' }{ ' INGM_master_class_1 '} = 61;
$marks { ' 200846369 ' }{ ' INGM_master_class_2 '} = 57;
$marks { ' 200846369 ' }{ ' INGM_master_class_3 '} = 43;
$marks { ' 200846369 ' }{ ' INGM_master_class_4 '} = 79;
$average = sum(values($marks{'200846369
'}))/scalar(values($marks{' 200846369 '});

print(" avg : $average\n");

Output:
avg : 60

Data type: hashes

Example: Frequency of words

Establish the frequency of words in a string
$string = " peter paul mary paul jim mary paul " ;
Split the string into words and use a hash
to accumulate the word count for each word
++$count{ $_ } foreach split (/\s+/ , $string);
Print the frequency of each word found in the
string
while (($key,$value) = each %count){
print ("$key = > $value ;");
}

Output:
jim = > 1; peter = > 1; mary = > 2; paul = > 3

Data type: hashes

PERL scripting

UNIVERSITA’ DEGLI
STUDI DI MILANO

Teacher: Matteo Re

p2 The PERL debugger

Metodi e linguaggi per il trattamento dei dati

1 Debugger basics

Starting the debugger

Usually you will start the debugger with a script/application you want to
explore in greater detail.

The easiest way to do this is to use the -d switch with perl:

perl -d ./simplest.pl

If you run that you will see something like:

$perl -d simplest.pl

Loading DB routines from perl5db.pl version 1.39
Editor support available.

Enter h or 'h h' for help, or 'man perldebug' for more help.

main::(simplest.pl:2): my $nothing = 0;
 DB

At the prompt simply type q and press ENTER to quit the debugger.

1 Debugger basics

Stepping through a script

Use the debugger with step.pl:

perl -d ./step.pl

Each time you see the debugger prompt, type n and press ENTER.

When you see:

Debugged program terminated. Use q to quit or R to restart

press q then ENTER to quit the debugger.

1 Debugger basics

Example output

$ perl -d ./step.pl

Loading DB routines from perl5db.pl version 1.39
Editor support available.

Enter h or 'h h' for help, or 'man perldebug' for more help.

main::(step.pl:2): my $nothing = 0;
 DB n
main::(step.pl:3): my $something = 1;
 DB n
main::(step.pl:4): $nothing++;
 DB n
main::(step.pl:5): if ($nothing == $something) {
 DB n
main::(step.pl:6): print "How can nothing be something?\n";
 DB n
How can nothing be something?
Debugged program terminated. Use q to quit or R to restart,

1 Debugger basics

Stepping through a script with fewer key-presses

Use the debugger with step.pl:

perl -d ./step.pl

The FIRST time you see the prompt, type n and press ENTER.
All other times only press ENTER.

When you see:

Debugged program terminated. Use q to quit or R to restart,

press q then ENTER to quit the debugger.

1 Debugger basics

Restarting your script

Use the debugger with step.pl:

perl -d ./step.pl

Step one or two lines through the script using n.

Restart the script by typing R and pressing ENTER.

Step through and restart a few times more.

Once you are happy stepping through and restarting the script
press q then ENTER to quit the debugger.

1 Debugger basics

Summary

 perl -d ./scriptfilename start debugging
 n step through the script (‘next’)
 q quit the debugger (‘quit’)
 R start the script from the beginning (‘restart’)

2 Examining variables

Examining variables

Start by running the relevant script in the debugger:

perl -d ./variables.pl

Step through the script (with n) until you see:

string is Mary had a little lamb.
main::(variables.pl:8): print "stop pressing 'n' or 'ENTER' now\n";
 DB

2 Examining variables

Examining variables

You can now examine the variables that have been declared in the script. Try
these commands in the debugger:

 p $string
 x $string
 p @things
 x @things
 p %hashof
 x %hashof

 What is the difference between the p and the x command (use the h command
to answer this question)

2 Examining variables

Examining variables

You may have noticed that x %hashof isn’t very easy to parse. Once you
realise it’s a hash you can examine the reference for a nicer output:

 x \%hashof

Slightly less useful in this simple example is:

 x \@things

In your day-to-day debugging you will usually use x for examining the
value of variables.

2 Examining variables

Examining variables

The perl debugger doesn’t run in ‘strict mode’ so you can examine variables
that have not been defined.

 DB x $my_made_up_thing
0 undef

2 Examining variables

Summary

 X examine a variable
 p print the value of a variable

PERL scripting

UNIVERSITA’ DEGLI
STUDI DI MILANO

Teacher: Matteo Re

p3 Regular expressions (1)

Metodi e linguaggi per il trattamento dei dati

Regular expressions

Introduction

Characters

Character classes

Quantifiers

Regular expressions: Motivation

Suppose you are testing the performance of a new sorting algorithm by
measuring its runtime on randomly generated arrays of numbers
of a given length:

Generating an unsorted array with 10000 elements took 1.250 seconds
Sorting took 7.220 seconds
Generating an unsorted array with 10000 elements took 1.243 seconds
Sorting took 10.486 seconds
Generating an unsorted array with 10000 elements took 1.216 seconds
Sorting took 8.951 seconds

Your task is to write a program that determines the average runtime of
the sorting algorithm:

Average runtime for 10000 elements is 8.886 seconds

Solution: The regular expression /^Sorting took (\d+\.\d+) seconds/

allows us to get the required information

Regular expressions are useful for information extraction

Regular expressions: Motivation

Suppose you have recently taken over responsibility for a company’s
website. You note that their HTML files contain a large number of
URLs containing superfluous occurrences of ‘..’, e.g.

http://www.myorg.co.uk/info/refund/../vat.html

Your task is to write a program that replaces URLs like these with
equivalent ones without occurrences of ‘..’:

http://www.myorg.co.uk/info/vat.html

while making sure that relative URLs like

../video/disk.html

are preserved

Solution: s!/[^\/]+/\.\.!!; removes a superfluous dot-segment

Substitution of regular expressions is useful for text manipulation

Regular expressions: Motivation

\Ahttps?:\/\/[^\/]+\/.\w.\/(cat|dog)\/\1

• \A is an assertion or anchor

• h, t, p, s, :, \/, c, a, t, d, o, g are characters

• ? and + are quantifiers

• [^\/] is a character class

• . is a metacharacter and \w is a special escape

• (cat|dog) is alternation within a capture group

• \1 is a backreference to a capture group

Pattern match operation

To match a regular expession regexpr against the special
variable $_ simply use one of the expressions /regexpr/ or
m/regexpr/

• This is called a pattern match
• $_ is the target string of the pattern match

In a scalar context a pattern match returns true (1) or false ('')
depending on whether regexpr matches the target string

if (/\Ahttps?:\/\/[^\/]+\/.\w.\/(cat|dog)\/\1/) {
... }
if (m/\Ahttps?:\/\/[^\/]+\/.\w.\/(cat|dog)\/\1/) {
... }

Regular expressions: characters

The simplest regular expression just consists of a sequence of
• alphanumeric characters and
• non-alphanumeric characters escaped by a backslash:

that matches exactly this sequence of characters occurring as a
substring in the target string

$_="ababcbcdcde" ;
if (/cbc/){print "Match\n"}else{print "No match\n"}

Output:
Match

$_="ababcbcdcde" ;
if (/dbd/){print "Match\n"}else{print "No match\n"}

Output:
No match

Regular expressions: special escapes

There are various special escapes and metacharacters that match
more than one character:

Regular expressions: Character class

A character class, a list of characters, special escapes,
metacharacters and unicode properties enclosed in square
brackets, matches any single character from within the
class, for example, [ad\t\n\-\\09]

• One may specify a range of characters with a hyphen -,
for example, [b-u]

• A caret ^ at the start of a character class
negates/complements it, that is, it matches any single character
that is not from within the class, for example, [^01a-z]

$_ = "ababcbcdcde" ;
if(/[bc][b-e][^bcd]/){
print "Match at positions $-[0] to ", $+[0]-1 ,": $&\n"};

Output:
Match at positions 8 to 10: cde

Regular expressions: quantifiers

• The constructs for regular expressions that we have so far are
not sufficient to match, for example, natural numbers of arbitrary
size

• Also, writing a regular expressions for, say, a nine digit number
would be tedious. This is made possible with the use of
quantifiers

Quantifiers are greedy by default and match the longest leftmost
sequence of characters possible

Regular expressions: quantifiers

Example:
$_ = "Sorting took 10.486 seconds" ;
if (/\d+\.\d+/){
print "Match at positions $-[0] to ",$+[0]-1,": $&\n"};

Match at positions 13 to 18: 10.486

$_ = "A sample staff id is E00481370" ;
if (/[A-Z]0{2}\d{6}/){
print "Match at positions $-[0] to ",$+[0]-1, ": $&\n"};

Match at positions 21 to 29: E00481370

Regular expressions: quantifiers

Example:

$_ = "E00481370";
if (/\d+/) {
print "Match at positions $-[0] to ",$+[0]-1, " : $&\n"};

Output:
Match at positions 1 to 8: 00481370

• The regular expression \d+ matches 1 or more digits
• As the example illustrates, the regular expression \d+
• matches as early as possible
• matches as many digits as possible → quantifiers are

greedy by default

PERL scripting

UNIVERSITA’ DEGLI
STUDI DI MILANO

Teacher: Matteo Re

p4 Regular expressions (2)

Metodi e linguaggi per il trattamento dei dati

Regular expressions: capture groups and
backreferences

• We often encounter situations where we want to identify the
repetition of the same or similar text, for example, in HTML
markup:

 ...
 ...

• We might also not just be interested in the repeating text itself,
but the text between or outside the repetition

• We can characterise each individual example above
using regular expressions:
.*<\/strong>
.* <\/li>
but we cannot characterise both without losing fidelity, for

example:
<\w+>.* <\/\w+>
does not capture the ‘pairing’ of HTML tags

Regular expressions: capture groups

 The solution are capture groups and backreferences

/Sorting took (\d+\.\d+) seconds/
/<(\w+)>.*<\/\1>/
/([A-Z])0{2}(\d+)/
/(?<c1>\w)(?<c2>\w)\g{c2}\g{c1}/
/((?<c1>\w)(?<c2>\w)\g{c2}\g{c1})/

Regular expressions: capture groups

 Via capture variables the strings matched by a capture group are
also available outside the pattern in which they are contained

The matched strings are available until the end of the enclosing
code block or until the next successful match

$_ = "Yabba dabba doo" ;
if (/((?<c1>\w)(?<c2>\w)\g{c2}\g{c1})/){
print " Match found : $1 | $2 | $+{c1}\n"
}
Match found : abba | a | a

Regular expressions: alternations

• The regular expression regexpr1 | regexpr2 matches if either
regexpr1 OR regexpr2 matches. This type of regular expression
is called an alternation

• Within a larger regular expression we need to enclose
alternations in a capture group or non-capturing group:
(regexpr1|regexpr2) or (?:regexpr1|regexpr2)

Examples:

1 /Mr|Ms|Mrs|Dr/
2 /cat|dog|bird/
3 /(?:Bill|Hillary) Clinton /

Regular expressions: alternations

• The order of expressions in an alternation only matters if one
expression matches a sub-expression of another

Example:
$_ = " cats and dogs " ;
if (/(cat|dog|bird)/) { print " Match 1: $1\n" }
Match 1: cat

$_ = " cats and dogs " ;
if (/(dog | cat | bird)/) { print " Match 2: $1 \ n " }
Match 2: cat

if (/(dog | dogs)/) { print " Match 3: $1 \ n " }
Match 3: dog

→ Matching is greedy with respect to quantifiers not wrt alternations!

if (/(dogs | dog)/) { print " Match 4: $1 \ n " }
Match 4: dogs

Regular expressions: anchors

• Anchors allow us to fix where a match has to start or end

Example:
$_ = " The girl who \nplayed with fire\n";
if(/fire\z/){print "`fire' at string end\n"}
if(/fire\Z/){print "`fire' at string end modulo \\n \n"}

`fire' at string end modulo \n

Regular expressions: Modifiers

• Modifiers change the interpretation of certain characters in a
regular expression or the way in which Perl finds a match for a
regular expression

Regular expressions: Modifiers

• Modifiers change the interpretation of certain characters in a
regular expression or the way in which Perl finds a match for a
regular expression

$_=" bill\nClinton " ;
if (/(Bill | Hillary). Clinton/mi){ print " R1 mi : $&\n" }
if (/(Bill | Hillary). Clinton/si){ print " R1 si : $&\n" }
if (/(Bill | Hillary). Clinton/smi){ print " R1 smi : $&\n" }
if (/(Bill | Hillary).^ Clinton/si){ print " R2 si : $&\n" }
if (/(Bill | Hillary).^ Clinton/smi){ print " R2 smi : $&\n" }

R1 si : bill R2 smi : bill
Clinton Clinton
R1 smi : bill
Clinton

Regular expressions: Modifiers (/ /g and / /c)
• Often we want to process all matches for a regular expression,
but the following code has not the desired effect

$_ = " 11 22 33 " ;
while(/\d+/){ print "Match starts at $-[0]: $&\n"}

The code above does not terminate and endlessly prints out the
same text:

Match starts at 0: 11

To obtain the desired behaviour of the while-loop we have to use
the / /g modifier:
In scalar context, successive invocations against a string will
move from match to match, keeping track of the position in the
string
In list context, returns a list of matched capture groups, or
if there are no capture groups, a list of matches to the whole

regular expression

Regular expressions: Modifiers (/ /g and / /c)
• With the / /g modifier our code works as desired:
$_ = "11 22 33" ;
while(/\d+/g){print "Match starts at $-[0]: $&\n"}

Output:
Match starts at 0: 11
Match starts at 3: 22
Match starts at 6: 33

An example in a list context is the following:
$_ = "ab 11 cd 22 ef 33" ;
@numbers = (/\d+/g);
print "Numbers : ",join(" | ",@numbers), "\n";

Output:
Numbers : 11 | 22 | 33

Read / /g as: Start to look for a match from the position where
the last match using / /g ended

Regular expressions: Modifiers (/ /g and / /c)

/ /g modifier in scalar context:
$_ = "11 22 33" ;
while(/\d+/g){print "Match starts at $-[0]: $&\n"}

/ /g modifier in a list context:
$_ = "ab 11 cd 22 ef 33" ;
@numbers = (/\d+/g);
print "Numbers : ",join(" | ",@numbers), "\n";

Generating regular expressions on-the-fly

The Perl parser will expand occurrences of $variable and
@variable in regular expressions

→ regular expessions can be constructed at runtime

Example:
$_="Bart teases Lisa" ;
@keywords = ("bart" ,"lisa" ,"marge" , 'L\w+' ,"t\\w+");
while($keyword = shift(@keywords)){
print "Match found for $keyword : $&\n" if/$keyword/i;
}

Output:
Match found for bart : Bart
Match found for lisa : Lisa
Match found for L\w+ : Lisa
Match found for t\w+ : teases

Binding operator
Perl offers two binding operators for regular expressions

Note that these are similar to comparison operators not
assignments

Most of the time we are not just interested whether these
expressions return true or false, but in the side effect they have
on the special variables $N that store the strings matched by
capture groups

Examples:
$name = " Dr Mario Rossi " ;
if($name =∼ /(Sig | Dr)?\s*(\w+)/){print "Ciao $2\n"}
Ciao Mario
$name = " Davide Neri " ;
if($name =∼ /(Sig | Dr)?\s*(\ w +)/){print "Ciao $2\n"}
Ciao Davide

Pattern matching in list context

When a pattern match /regexpr/ is used in a list context,
then the return value is
• a list of the strings matched by the capture groups in regexpr
if the match succeeds and regexpr contains capture groups, or
• (a list containing) the value 1 if the match succeeds and regexpr

contains no capture groups, or
• an empty list if the match fails

Examples:
$name = " Dr Matteo Rossi";
($t,$f,$l)=($name = /(Mr|Ms|Mrs|Dr)?\s*(\w+)\s+(\w+)/);∼
print " Name : $t , $f , $l\n";
Name : Dr , Matteo , Re

$name = "Mario Verdi" ;
($t,$f,$l)=($name = /(Mr|Ms|Mrs|Dr)?\s*(\w+)\s+(\w +)/);∼
print " Name : $t , $f , $l\n";
Name : , Mario , Verdi

Pattern matching in list context

When a pattern match /regexpr/g is used in a list context,
then the return value is

• a list of the strings matched by the capture groups in regexpr
each time regex matches provided that regexpr contains capture

groups, or
• a list containing the string matched by regexpr each time

regexpr matches provided that regexpr contains no capture
groups, or

• an empty list if the match fails

$string="firefox: 10.3 seconds ; chrome: 9.5 seconds";
%performance =($string =∼ /(\w+)\:\s+(\d+\.\d+)/g);
foreach $system (keys %performance){
print " $system -> $performance {$system}\n"
}
firefox -> 10.3
chrome -> 9.5

Text manipulation examples (functions and RegExp)

join(":", "a", "b", "c") → "a:b:c"

split(/:/, "a:b:c") → "a", "b", "c"

reverse("ACTG") → "GTCA" #NOT complement!

"ACCTTG" =~ s/T/U/g → "ACCUUG" # DNA->RNA

"ACCTTG" =~ tr/ACGT/UGCA/ → "UGGAAC" #complement!

length("abc") → 3

index("ACT", "TTTACTGAA") → 3 # -1 if not found

Replace first occurrence of FOO in variable $x wit BAR
$x =~ s/FOO/BAR/;
"aaaFOObbbFOO" → "aaaBARbbbFOO"

Replace all occurrences
$x =~ s/FOO/BAR/g; # g stands for "global"
"aaaFOObbbFOO" → "aaaBARbbbBAR"

The thing to substitute can be a regular expression
$x =~ s/a+/x/;
"aaaFOObbbFOO" → "xFOObbbFOO"

Matches are “greedy”
$x =~ s/a.*F/x/;
"aaaFOObbbFOO" → "axOO"

If it can't find FOO, s/// does nothing
$x =~ s/FOO/BAR/;
"aaabbb" → "aaabbb"

Split a sequence in codons:

#!/usr/bin/perl
$seq="ATTCGATTCGATCTATATCGGCTAGCTGATCTCTCGAGATCGTCGATATAGC";
my @codons = $seq =~ /\w{3}/g;

print "@codons\n";

Exercise:

- Read a FASTA sequence from a file
- Compute EACH possible reading frame (F1,F2,F3, R1,R2,R3)
- Split each reading frame in codons

For each reading frame DO{
- Print the reading frame
- Print the codons

}

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106

