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The Ensembl Automatic Gene Annotation System
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European Bioinformatics Institute, The Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SD, UK; 3The Broad
Institute, Cambridge, Massachusetts 02141, USA

As more genomes are sequenced, there is an increasing need for automated first-pass annotation which allows timely
access to important genomic information. The Ensembl gene-building system enables fast automated annotation of
eukaryotic genomes. It annotates genes based on evidence derived from known protein, cDNA, and EST sequences.
The gene-building system rests on top of the core Ensembl (MySQL) database schema and Perl Application
Programming Interface (API), and the data generated are accessible through the Ensembl genome browser
(http://www.ensembl.org). To date, the Ensembl predicted gene sets are available for the A. gambiae, C. briggsae,
zebrafish, mouse, rat, and human genomes and have been heavily relied upon in the publication of the human,
mouse, rat, and A. gambiae genome sequence analysis. Here we describe in detail the gene-building system and the
algorithms involved. All code and data are freely available from http://www.ensembl.org.

Recent years have seen the release of huge amounts of sequence
data from genome sequencing centers. However, these raw se-
quence data are most valuable to the laboratory biologist when
provided along with quality annotation of the genomic se-
quence. This information can be the starting point for planning
experiments, interpreting SNPs, inferring the function of gene
products, predicting regulatory sites for gene expression, and so
on. The currently agreed ‘gold standard’ for the annotation of
eukaryotic genomes is that made by a human being. Manual
annotation is based on information derived from sequence ho-
mology searches and the results of various ab initio gene predic-
tion methods. ‘Gold standard’ annotation of large genomes such
as mouse and human is slow and labor-intensive, taking large
teams of annotators years to complete. As a result, the annota-
tion can almost never be entirely up-to-date and free of incon-
sistencies (as the annotation process usually begins before the
sequencing process is complete). Hence, an automated annota-
tion system is desirable, because it is a relatively rapid process
that allows frequent updates to accommodate new data. To meet
this need, we produced the Ensembl annotation system by ob-
serving how annotators build gene structures, and by condensing
this process into a set of rules.

Ensembl was conceived in three parts: as a scalable way of
storing and retrieving genome-scale data, as a Web site for ge-
nome display, and as an automatic annotation method based on
a set of heuristics. It was initially written for the draft human
genome (International Human Genome Sequencing Consortium
2001) which was sequenced clone by clone, but has also been
successfully used for whole-genome shotgun assemblies such as
mouse (Waterston et al. 2002), rat (Rat Genome Sequencing
Project Consortium 2004), and Anopheles gambiae (Holt et al.
2002). Although the storage and display parts of Ensembl have
been used for many genomes, the automatic annotation has been
used for human, mouse, rat, mosquito, Fugu rubripes, zebrafish,
and C. briggsae. All these annotations can be found at http://
www.ensembl.org.

RESULTS AND DISCUSSION
In this section we first describe the procedure developed in En-
sembl for predicting gene structures, and then present details of
specific gene builds.

Gene Prediction Procedure
Automated genome annotation commonly commences with
running various stand-alone analyses. In the case of Ensembl,
this initial stage of computation is known as the ‘raw compute’
(Potter et al. 2004). The analyses conducted include RepeatMas-
ker (A. Smit and P. Green, unpubl.), Genscan (Burge and Karlin
1997), tRNAscan (Lowe and Eddy 1997), eponine (Down and
Hubbard 2002), and, importantly, homology searches using
BLAST (Altschul et al. 1997). The results of these analyses are
stored in the Ensembl database and are displayed in the Ensembl
Web site. A similar approach is used in other genome browsers;
see, for example, Karolchik et al. (2003). However, Ensembl takes
these types of analyses one step further and provides a set of gene
annotations based on them. Our aim is to produce a set of pre-
dicted gene structures to which we can link extra biological in-
formation such as gene family information, expression data, and
gene ontologies.

As with the Ensembl analysis pipeline (Potter et al. 2004),
the Ensembl gene build software is comprised of a set of Run-
nables and RunnableDBs. In addition to these, we have a set
of classes that provide utility methods for some of the com-
plex manipulations and checks that are necessary during the
gene-build process. We have designed these classes to be as
modular as possible so that the analyses and algorithms are
readily reusable. This makes the code very powerful, as the tools
can be quickly incorporated into new solutions for genomic
analysis.

The efficient analysis of large genomes (over 3 Gb of DNA
for human) presents a challenge when we consider that the av-
erage memory capacity of a reasonably priced compute farm ma-
chine is currently around 1 gigabyte. Many of the programs we
use run most efficiently with about 200 kb of sequence. For
clone-based genome assemblies (e.g., human), this is conve-
niently the size of a full-length clone, and in these cases the raw
compute pipeline runs the analyses on individual clones (or the
contigs that make up a clone for unfinished sequence).

4Corresponding author.
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Article and publication are at http://www.genome.org/cgi/doi/10.1101/
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We employ two approaches to cope with the large scale of
the annotation process. One approach is to reduce the genomic
search space by starting our analysis with fast approximate scans
of the entire genome. This allows us to apply accurate and com-
putationally expensive analyses on relatively short sequences.
The second approach is to run some of the steps in the gene build
on pieces of chromosome sequence, typically 1–5 Mb, which we
call slices. The Ensembl API allows manipulation of the resulting
features at either the clone, contig, or assembly (i.e., chromo-
some) level, thus seamlessly joining the clones and their features
back together (Stabenau et al. 2004). The API can retrieve features
from the database (e.g., exons, genes) that span the junction of
two slices. Similarly, the API can correctly store genes that fall off
the end of a slice and exons that map to the junction of two
assembly contigs. In order to avoid feature duplication at slice
boundaries, we use the convention of dropping those that fall off
the lower coordinate end of the slice.

Whole-genome shotgun assemblies (WGS) are more chal-
lenging. The first assembly of a new genome, or one that has low
coverage, can contain many small unassembled contigs. In this
case a dummy assembly is created so that we can again run the
gene build on regular-sized slices.

A variety of ab initio gene predictors have been developed
that use purely genomic sequence for their gene structure pre-
diction. Manual annotators can use predictions from these pro-
grams to confirm gene structures, using BLAST evidence to sup-
port the exon predictions. Ab initio prediction does have its place
in the Ensembl annotation system, as described below. However,
the tendency of even the best methods, such as Genscan (Burge
and Karlin 1997), to overpredict genes, and to miss small exons
(Burset and Guigo 1996) compels us to temper its use with other
approaches. BLAST (Altschul et al. 1990, 1997) is a powerful tool
for locating protein and cDNA sequences in the genome, but it is
not suitable for predicting gene structures. BLAST simply detects
homology and has no model for splice sites and hence exon
boundaries. For these reasons, BLAST alone cannot be used to
annotate genes. A more complex gene-building strategy is
needed, where homology results are extended and augmented
such that even an incomplete prediction can yield an accurate
gene structure.

We combine evidence from various sources into our predic-
tions. For instance, information derived from protein homolo-
gies is generally combined with information from other data
sources to derive a full transcript structure. This need to mean-
ingfully combine data from independent analyses adds a level of
complexity to the automatic annotation process. Our gene-build
procedure is currently biased towards protein-based prediction,
as we concentrate on predicting genes that have valid transla-
tions.

A very important decision in the annotation process is the
choice of data sources for homology searches. We generally use
species-specific protein and cDNA data. However, in addition, we
want to take advantage of data from other species, but this
should not take priority over the species-specific data in the an-
notation. This methodology is reflected in the logic of the auto-
matic annotation process as described below, and requires that
extra care be taken in managing data sources.

The Ensembl gene-build process can be briefly described as
follows. Species-specific proteins and cDNAs are first placed in
the genome to create transcript models. Proteins from other spe-
cies are then used to locate transcripts which have not been
found previously. Protein- and cDNA-based transcripts are com-
bined to obtain transcripts with untranslated region (UTR) in-
formation. Redundant transcript structures are eliminated and
genes are created using the protein- and cDNA-based transcripts.
We now give a more thorough explanation of the different steps.

An overview of the current Ensembl gene build is given in Fig-
ure 1.

Targetted Protein Alignments
Following the initial raw computes, the first stage of the gene-
build process proper is to place known proteins and full-length
cDNAs derived for the genome of interest to their most likely
position on the genome. This involves aligning these sequences
such that they have correct splice sites and coherent translations.
Here we describe the protein alignment process, known as the
Targetted stage. The alignment of cDNAs is described in the sec-
tion below entitled “cDNA Alignments.”

We place known proteins onto the genome using pmatch
(R. Durbin, unpubl.), and construct transcript structures for them
using genewise (Birney et al. 2004). Our protein sources are the
genome-specific proteome sets from SWISS-PROT/TrEMBL
(Boeckmann et al. 2003) and RefSeq (Pruitt et al. 2000). For the
human build on assembly NCBI33, this combined source com-
prised 48,176 protein sequences (a redundant set) and for mouse
assembly NCBI30 we had 33,605 protein sequences.

Pmatch is a fast, exact matching program for aligning pro-
tein sequences with either protein or DNA sequence; it looks for
identical hits of at least 20 residues and then extends these until
there is no longer an exact match. It has no splice-site model.
We use it to find the rough genomic extent of the matches of
the set of known proteins and the genome. In practice, pmatch
gives us one or more hits for each protein-coding exon. These
hits are pieced together to determine the rough genomic extent
of the matches, while making sure that the exons remain on the
same strand and are colinear with respect to the protein se-
quence.

We run pmatch first at the chromosomal level, rejecting any
processed match that covers less than 25% of the parent protein.
Then we take the best-in-genome match (based on protein cov-
erage) plus any matches that fall within 2% of this. For human
NCBI33, 87% of the proteins had a single best-in-genome match.

Pmatch is only the initial step in aligning proteins, but it
does get us over the first hurdle, which is to reduce our alignment
space for each protein from 3 Gb down to about 1 Mb.

We use genewise (Birney et al. 2004) to produce the final
protein alignments. This program aligns at the protein level, al-
lowing for splice sites and frameshifts, and in some respects is
ideal for genome annotation—alignment at the protein level
guarantees that our predicted genes will code for protein, a splice-
site model allows the alignment to jump over introns, and tol-
erance of frameshifts allows for sequencing or assembly errors, so
that we can annotate draft or low-coverage assemblies. Unfortu-
nately the major drawback with genewise is speed; aligning a
single 400-residue protein to a 100-kb DNA sequence takes on
average 300 CPU sec. Even narrowing down the location of every
protein aligned to 100 kb (currently around 40,000 for the hu-
man genome), genewise would take at least 6 CPU months. Thus
we further reduce the search space by positioning individual ex-
ons using BLAST. We run BLAST between the piece of genomic
sequence found by pmatch and the protein sequence. Each
BLAST hit is padded with 200 bp to provide sequence around the
splice sites. The genomic sequences of the padded BLAST hits are
joined together to form a miniature genomic sequence contain-
ing only exon sequence and a small amount of intronic se-
quence, which we call a miniseq (Fig. 2). This procedure can re-
duce a 50-kb gene to under 2 kb, and the alignment of 40,000
proteins to a 3-Gb genome using genewise becomes a tractable
problem. Using this three-step process (rough gene positioning,
rough exon positioning, final alignment), all human proteins
can be aligned to the genome in a few hours on 400 CPUs.
There is, however, still the possibility of missing very small fea-
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tures or predictions, because we are not using all of the genomic
sequence.

This miniseq approach forms a core part of the gene build
and is not genewise-specific—it has been used within Ensembl to
speed up the performance of other programs that would other-
wise be too slow for whole-genome use, including est_genome
(Mott 1997) and genomewise (Birney et al. 2004).

We compare the predicted translation with the parent pro-
tein, and reject any single-exon predictions matching fewer than
80% of the parent’s residues, whereas multi-exon predictions
must match at least 25% of the residues. We also check the
lengths of introns and split predicted transcripts at introns ex-

ceeding 200 kb if the coverage of the par-
ent protein is less than 95%. We reject
any resultant single-exon transcripts, as
we have observed that long introns are
often either the first or last introns in a
genewise prediction. All of these param-
eters are configurable.

Similarity Alignments
We next turn to proteins from other or-
ganisms for the stage known as the Simi-
larity gene build. This is analogous to
the Targetted stage (and indeed, many of
the same software objects are reused) ex-
cept that in this case the initial place-
ment of proteins comes from the raw
compute pipeline BLAST analysis. The
pipeline uses BLAST to match ab initio
predicted peptides against protein data-
bases. We screen the raw BLAST hits for
those which do not overlap a previously
constructed Targetted transcript, and
then re-BLAST promising proteins
against the appropriate genomic region.
We use this second set of BLAST hits to
construct the miniseq, and run genewise
as before.

We use different thresholds for the
Similarity genes than for the Targetted
genes. We reject any prediction whose
translation matches less than 70% of the
parent protein. Transcripts are split at in-
trons longer than 10 kb unless the par-
ent protein coverage exceeds 90%. We
also reject any prediction with more
than 60% of low-complexity sequence
in its translation, assessed using Seg
(Wootton and Federhen 1996).

DNA Alignments
In parallel with the protein alignments,
we align all full-length cDNAs from an
organism to its genomic sequence. Our
sequence sources vary; for the human
genome we use cDNA sequences from
EMBL (Stoesser et al. 1997) and RefSeq
(Pruitt et al. 2000), whereas for the
mouse genome we additionally use the
FANTOM2 data set (Okazaki et al. 2002).
For the human build on NCBI33, we
aligned 86,918 cDNAs.

We use Exonerate (G. Slater, un-
publ.), which rapidly aligns cDNAs (and
ESTs) to the genome in one step. Exon-

erate efficiently handles a large set of sequences and includes
various models for aligning splice sites, combining speed and
accuracy.

The standard thresholds used for the alignments are 90%
coverage and 97% identity. For each cDNA match that exceeds
these thresholds, we take the alignment with the best coverage
and any other match within 2% of this one. These alignments are
sorted by the number of exons they contain and by their cover-
age. If the best alignment is spliced, any subsequent unspliced
alignment is rejected as being a potential processed pseudogene.
From the human cDNA data set, 842 cDNAs which exceeded the
threshold values were rejected as potential processed pseudo-

Figure 1 Overview of Ensembl Gene Build. Most genes are predicted using the sequences of known
proteins aligned to the genome using genewise (Targetted and Similarity builds). UTR sequences for
these genes are derived from the alignment of cDNAs to the genomic sequence (Exonerate, cDNA
Gene Build). Transcripts created in this manner are then clustered to form genes (GeneBuilder). Finally,
novel genes supported solely by cDNA evidence are added to the gene set, which is written to the
database.
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genes. The 86,918 cDNAs that were aligned to the NCBI33 hu-
man genome assembly were distributed in 97,166 distinct align-
ments. For 19,457 human cDNAs, Exonerate found an alignment
but the coverage was below the chosen thresholds.

UTR Attachment
Now we use the information within cDNA-based transcripts to
add UTRs to the protein-based genewise predictions obtained
from the Targetted and Similarity stages. These are used to gen-
erate a consensus transcript structure that consists of a 5� UTR, a
coding region, and a 3� UTR. The protein data sets contain both
full-length sequences and some fragmented sequences that over-
lap with them. In order to avoid adding UTRs to a fragment
instead of a full-length sequence (which could lead to an incor-
rect prediction having a short ORF with an extremely long UTR),
we first sort the genewise transcript predictions by length, con-
sidering both genomic extent and total exon length. We then
pair each of the genewise predictions with a cDNA prediction,
allowing each cDNA to be matched with a single, long genewise
prediction. An individual genewise prediction may at this stage
be paired with more than one cDNA.

We compare the 5� genewise exon to each of the exons in a
cDNA transcript and call a match if: (1) The end of the 5� gene-
wise exon exactly coincides with the end of one of the cDNA
exons, and either (2) the cDNA exon starts upstream of the gene-
wise exon, or (3) the cDNA exon starts downstream of the gene-
wise exon, and the matching cDNA exon is not the first in the
prediction—that is, there are potential spliced UTR exons.

A similar procedure compares the 3� terminal genewise exon
with the cDNA, considering exon start coordinates. We do not
require a cDNA prediction to extend both 5� and 3� UTRs. Single-
exon genewise predictions match any cDNA which entirely en-

closes them within one of its exons.
Various examples of matching cDNA
and genewise structures are shown in
Figure 3.

The best matching cDNA is chosen
for each genewise result based on exon
overlap and, if necessary, the extent of
shared genomic overlap between the
two. The cDNA and genewise transcripts
are now combined, giving preference to
the genewise predicted ORF/translation
coordinates—internal exons are taken
from the genewise prediction. The ex-
ceptions to this rule are cases where the
cDNA exon coordinates did not pre-
cisely match the 5�/3� terminal genewise
exons. This can occur as genewise some-
times fails to align a very short terminal
coding region to the right exon. The
translation must be then recalculated to
take into account the corrected splice
sites, and this is achieved using genome-
wise (Birney et al. 2004).

The combined predictions are
stored in a clean database. Additionally,
if no matching cDNA is found for a
genewise prediction, we re-store the un-
modified genewise prediction. This is
important in preventing loss of support-
ing evidence, as at this stage we store
only one transcript per predicted gene.
The final GeneBuilder combines all tran-
scripts belonging to the same gene and
will transfer supporting evidence from

any partial transcripts that may have been subsumed by full-
length transcripts.

Final GeneBuilder
Finally, we need to cluster all the predicted transcripts and use
them to create Ensembl genes. For many organisms we use only
the genewise/cDNA combined predictions, though we can bring
in transcripts built from ab initio methods if required (see below).
The clustering process consists of a number of stages:

1. All transcripts are clustered by genomic overlap. Within each
cluster, we prune redundant transcripts. First, we sort by both
total exonic length and translation length so that the ordering
is as follows: long translation + UTR > long translation > short
translation + UTR > short translation. Then, shorter transcripts
with exon structure redundant with a longer transcript are
subsumed: if all the pairs of adjacent exons within a transcript
overlap, the supporting evidence is transferred from the
shorter to the longer transcript, and the shorter one is dis-
carded. We use pairs of exons rather than individual exons for
this comparison to make sure that we do not reject alternative
variants. If a cluster contains only single-exon predictions, we
retain the longest one and subsume the others into it.

2. We then cluster transcripts into genes considering exon over-
lap. Transcripts are placed into clusters such that each of the
transcripts has one exon overlapping with an exon from at
least one of the other transcripts in the cluster. Transcripts
which lie entirely within the introns of other transcripts are
thus clustered separately.

3. Occasionally, clusters contain very large numbers of tran-
scripts, so we select the best transcripts for each cluster—
defaulting to 10 transcripts per cluster, and giving priority to

Figure 2 The Miniseq: We use a miniseq representation of genomic sequence in various stages of the
gene build in order to reduce search space and increase processing speed. We BLAST a sequence of
interest against a genomic region and pad the resulting hits with 200 bp. We then join the padded hits
together to form a “mini genomic” sequence containing only exon sequence plus a small amount of
intron sequence.

The Ensembl Annotation System

Genome Research 945
www.genome.org

 Cold Spring Harbor Laboratory Press on April 27, 2011 - Published by genome.cshlp.orgDownloaded from 

http://genome.cshlp.org/
http://www.cshlpress.com


transcripts with long translations and UTRs over transcripts
with just a short translation. Very few clusters are affected by
this; in the most recent human build (NCBI33) only 44 clus-
ters were involved.

4. The final transcript set is reclustered into genes, in case there
were gene splits after the previous step. We remove shared
duplicate exons from each transcript cluster, after first trans-
ferring the supporting evidence. For each gene we store a
unique set of exons, and for each exon we store all the sup-
porting evidence from each of the transcripts where the exon
appears.

In recent builds we have used less evi-
dence from ab initio methods, because the
number of genes derived from this evidence in
previous builds was small. As described in the
accompanying Ensembl pipeline paper (Potter
et al. 2004), we use BLAST to search ab initio
predicted peptides against various DNA and
protein sequence databases. This approach
both improves search speed (by drastically re-
ducing the genomic search space), and in-
creases sensitivity (through the increased sta-
tistical power afforded by searching with
BLAST amino acid sequences). The disadvan-
tage is that significantly homologous se-
quences may be missed if they are not pre-
dicted by ab initio methods.

Using these pre-computes, we generate
putative transcripts in the following way: We
construct exon pairs from predicted adjacent
exons if they are supported by BLAST evidence
that spans the intron and has consistent coor-
dinates (i.e., the pieces of evidence neither
overlap by a large amount, nor have an exces-
sive gap between them which might indicate a
missing intermediate exon). Exon pairs are
then recursively linked into transcripts which
can be clustered together with genewise/
cDNA-based transcripts as described above.
Commonly, we use Genscan for ab initio pre-
diction in human, mouse, and rat, but the sys-
tem is equally applicable to other methods
such as FgenesH (Solovyev et al. 1995) and
genefinder (P. Green, unpubl.).

In order to exploit any cDNA information
which has not yet been used, we extend the
gene build using a module known as the
GeneCombiner. Aligned cDNAs are merged
into a minimal set of nonredundant spliced
variants using the ClusterMerge algorithm (Ey-
ras et al. 2004) to generate a set of genes based
solely on cDNAs. These are merged with the
genes from the GeneBuilder, giving priority to
the protein-based set: all of the protein-based
genes are kept, and cDNA-based transcripts are
added if they represent a new gene locus. In
order to increase alternative splicing annota-
tion, we can optionally add cDNA-based tran-
scripts if they represent a new variant in a pro-
tein-based gene locus: we test for an instance
of exon-skipping and/or alternative 5�/3� ex-
ons with respect to the protein-based tran-
scripts.

Assigning a Gene Identifier
We use pmatch to compare our predicted pep-

tide set with the set of SWISS-PROT and RefSeq proteins used for
the gene build. We take the best match for each peptide as long
as it is above 50% identity, and use it to assign an identifier to
each predicted transcript. We are improving the process to take
into account possible sequence ambiguities, as in the case of two
transcripts which have different exon structure but very similar
translations.

Correctly Predicting Tandemly Repeated Genes
Tandemly repeated genes can perturb the gene build, primarily
because homology-searching programs often distinguish poorly

Figure 3 Rules for adding UTRs to genewise predictions: (A) Simplest case: Ends of exons A
and D coincide, thus exon A is extended to include the UTR and the translation start is main-
tained. Starts of exons C and F coincide, thus UTR exons are added and the translation stop is
maintained. The coordinates of genewise-derived exon B are used in preference over exon F. (B)
cDNA prediction rejected: Neither the ends of exons G and I nor the starts of exons H and J
coincide, so the genewise-predicted structure is unmodified. (C) cDNA prediction with short
exons: The ends of the exons K and M and the starts of exons L and N coincide. Even though
K is shorter than M, it is not the first exon of the cDNA prediction and is thus retained. However,
N is shorter than L and there are no additional exons, so it is rejected.
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between multiple high-scoring matches. As a result, miniseqs
used in gene building can sometimes contain all or parts of more
than one gene. If these genes are tandemly repeated or otherwise
highly similar, genewise can mix their exons, as it tries to predict
the gene that best matches the input protein sequence.

In order to rectify this, before a miniseq is passed to gene-
wise we use a simple algorithm to decide whether it may contain
multiple homologous genes. Essentially, the algorithm uses
BLAST match information of the input protein with the miniseq
to look for multiple copies of the input protein exons. If a suffi-
cient proportion of duplicate exons are detected, the algorithm
attempts to split the miniseq into separate fragments in order to
isolate each gene or repeated segment. If the repeated units
within the miniseq can be resolved into multiple complete genes,
separate genewise runs are performed on each fragment of the
starting miniseq. If the fragments do not form sets of whole
genes, they are considered to be derived from a single gene with
repetitive exons. Using this strategy we have built correct genes
in regions containing high numbers of tandemly repeated genes,
such as the HLA region of human chromosome 6. This method
has also been successfully applied to the zebrafish genome in
regions where genes from the same family are close together (e.g.,
the TCR-� locus and the MHC-2 region).

EST Gene Build
Expressed sequence tags (ESTs) are notorious for their variable
quality. They are single-read sequences and thus prone to se-
quencing error. Additionally, the libraries from which they are
derived can often be contaminated with genomic sequence
which cannot be detected by an automatic annotation system.
Finally, they are generally around 400 bp long, and thus a single
EST is unlikely to cover an entire gene. For these reasons we have
less confidence in genes built from ESTs, so we build them sepa-
rately from the main gene build.

The Ensembl EST gene build process involves two steps.
First, ESTs for the genome of interest are aligned to the genomic
sequence using either Exonerate (G. Slater, unpubl.) or BLAT
(Kent 2002). These programs are both capable of searching whole
chromosomes or even genomes in a modest amount of CPU
time. However, their memory usage is directly related to the
number of hits they find, so we process the EST sequences in
chunks of 300–500 sequences. With the total human division of
dbEST (Boguski et al. 1993) being presently around 5.5 million
ESTs, roughly 15,000 separate jobs must be computed. Fortu-
nately, both Exonerate and BLAT are extremely fast. With 400
CPUs, this computation can be performed in less than three days
(Exonerate) or around 36 h (BLAT). The variable quality of EST
sequence leads us to employ conservative match criteria. We
screen for the best-in-genome match for each EST, which must
exhibit not worse than 97% identity with the genomic sequence
over not less than 90% of its length. In general, only about half
of the starting EST data set will meet these criteria, although this
is highly dependent on EST quality.

The second stage is to use the aligned ESTs to build gene
structures using the ClusterMerge algorithm (Eyras et al. 2004).
Translations are then predicted using genomewise (Birney et al.
2004) with parameters set such that the exon boundaries are not
modified. The ESTs are useful in determining possible alternative
splicing of the predicted genes (Eyras et al. 2004).

The methods used in predicting the Ensembl EST gene set
are fully described elsewhere (Eyras et al. 2004).

Processed Pseudogene Tagging
Processed pseudogenes result from reverse transcription of a ma-
ture mRNA and reinsertion into the genomic sequence. We have

developed a system to detect potential processed pseudogenes
among the Ensembl transcript predictions. We test the Ensembl
predicted transcripts for:

1. lack of introns, that is, single-exon transcripts
2. presence of a poly A tail downstream of the disrupted open

reading frame
3. absence of methionine at the start of the predicted translation
4. frameshifts—genewise can align a protein to a potential pro-

cessed pseudogene by introducing frameshifts to avoid in-
frame stops, though these can also be due to sequencing errors
and/or errors in the protein sequence used to predict the struc-
ture.

5. whether the supporting evidence is found spliced elsewhere in
the genome—processed pseudogenes represent an unspliced
copy of a functional transcript

6. whether there is sequence similarity in homologous regions in
other species—according to Hillier et al. (2003), most of the
detectable processed pseudogenes have appeared after specia-
tion, hence they are independently integrated in the genome
and therefore unlikely to have any sequence similarity in ho-
mologous regions. We use homology at the genomic level
rather than gene orthology for this assessment.

We found that the strongest signals for processed pseudo-
genes are for single-exon predictions with in-frame stop codons,
which are based on protein evidence that is spliced elsewhere in
the genome and that have no sequence similarity in the homolo-
gous region in mouse and rat. Human gene predictions are there-
fore tagged as processed pseudogenes if they fulfill these three
properties.

We tagged 962 pseudogenes out of 24,261 gene predictions
in the NCBI33-based human gene build. We only tag genes with
a single transcript, because a candidate that overlaps with a func-
tional transcript is unlikely to have arisen from retrotransposi-
tion. As genes in Ensembl are classified as a set of transcripts
having exon overlap, our method will detect pseudogenes even if
they fall in the intron of a functional gene. The detected pseu-
dogene set is underrepresented, as very stringent filters are ap-
plied in the process of gene prediction, including the rejection of
transcripts with in-frame stops. In the future we plan to turn this
process around and actively look for pseudogenes in various ge-
nomes.

At present we do not attempt to classify nonprocessed pseu-
dogenes, but this is an active area of research in the group.

Annotation of Expression Data
For the human genome we link the Ensembl predictions to the
eVoc expression vocabulary (Kelso et al. 2003). We add this in-
formation in the following way: eVoc links an EST identifier to
the leaves of the vocabulary trees via its library name. We use
aligned ESTs to link the Ensembl predictions to the vocabularies.
We carry out a coordinate-based comparison between the ESTs
and the Ensembl transcripts and link each Ensembl transcript to
every EST which has a splicing structure compatible with it, fol-
lowing the same compatibility rules and comparison methods of
Eyras et al. (2004). We usually allow a 6-bp mismatch at exon
boundaries, whereas for terminal exons we allow any mismatch
at the external boundaries. The results are stored as a link be-
tween Ensembl transcripts and EST identifiers, which is then
used to link to the eVoc database (Kelso et al. 2003). The results
of this analysis can be retrieved from EnsMart (Kasprzyk et al.
2004) and will be soon available through the Ensembl Web
browser, http://www.ensembl.org.
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Gene Build Results
Ensembl has a large and powerful compute farm, described by
Cuff et al. (2004), and as a result the various stages of the build
are now completed in days rather than weeks. For example, the
Targetted and Similarity stages of the NCBI33 human build were
each mostly complete within 48–72 h, and subsequent stages
took only a few hours each. However, there are always a few jobs
that take longer to run—for example, the many transcript vari-
ants of the 700-kD human protein titin always cause problems
for genewise in the Targetted build, and some regions of the
genome have thousands of BLAST hits to be processed during the
Similarity build. Additionally, the gene-build code is under con-
tinuous development, inevitably in parallel with preparing data
for release; these timings do not reflect the need to adjust param-
eters and rerun stages. Other time-consuming steps include vi-
sual inspection of the predictions at each stage of the build, ex-
tensive quality control of the final gene set, and setting up and
checking multiple build databases (typically one per interim
stage plus the final release database). These stages are essential if
we are to produce a final database which is in a fit state to be
handed over to the Web and EnsMart (Kasprzyk et al. 2004)
teams for release. Also, with such a large farm and so much data
there are always inevitably hardware issues, power cuts, and so
on to contend with. Currently we expect to complete the gene
build on a large genome such as human or mouse in 3–4 weeks.

Human Build on NCBI33 Assembly
From a starting point of 48,176 human proteins, 42,589 proteins
were placed at one location in the genome, 3173 at two locations,
and 781 at three locations. In addition, 492 proteins (1%) could
not be located at all due to missing genomic sequence or insuf-
ficient coverage of the placed protein. The final gene build step
resulted in 23,299 genes containing 32,035 transcripts. Of these,
270 (0.84%) were built solely from cDNAs, 6219 (19%) were built
from human proteins with no UTR attachment, and 2983 (9%)
were built from nonhuman proteins with no UTR attachment. Of
the combined transcripts with UTRs, there were 21,889 (68%)
built from human protein and cDNA, and 674 (2%) built from
nonhuman protein and cDNA. We estimate that around 70% of
our predictions are full-length (start with ATG, end with TAA/
TAG/TGA). Of the transcripts built, 962 were tagged as pseudo-
genes.

Mouse Build on NCBI30 Assembly
The last gene build on the mouse genome resulted in 24,948
genes containing 32,911 transcripts. No genes were built solely
from cDNAs, as this process was not introduced at the time. Simi-
larly to the human build, the majority of the transcripts (14,912
or 45%) were built from mouse proteins combined with UTRs
from cDNAs; 1387 (4%) were built from non-mouse proteins
with UTRs, 4589 (14%) were built from mouse protein only, and
9385 (29%) were built from non-mouse protein. The number

that were built from similarity confirmation of Genscan ab initio
predictions was 2368 (7%). As this build was completed before
the human NCBI33 build, no pseudogenes were tagged.

Comparison to Manual Annotation
We compared the predicted Ensembl genes for the human
NCBI33 assembly with the set of manual annotations for chro-
mosomes 6 (Mungall et al. 2003) and 13 (A. Dunham, in prep.)
from the HAVANA group at the Sanger Institute, and chromo-
some 14 (Heilig et al. 2003) from Genoscope, all available at
http://vega.sanger.ac.uk. Chromosomes 6 and 13 were chosen
for being the most recent available annotations, whereas 14 was
chosen for serving as a reference point as it was annotated using
less similar methods. We did not compare to chromosome 20
(Deloukas et al. 2001), as the annotations were made less recently
and thus from older data sources. We only considered genes of
type Known and Novel-CDS for the comparison (Known genes
are supported by a cDNA or a protein and have a LocusLink or
GDB entry; Novel-CDS genes are supported by spliced ESTs or by
similarity to another gene and have an unambiguous ORF), as the
evidence they are based upon is the closest to the evidence used
for the Ensembl predictions. Genes predicted as pseudogenes by
Ensembl were not considered in the comparisons. A difficulty in
this comparison is that the annotation of chromosome 6 is not
based on assembly NCBI33, and 113 Known and 34 Novel-CDS
genes could not be transferred. Thus we compared Ensembl genes
with annotated genes that could be transferred to NCBI33,
namely, a total of 1497 Known and 473 Novel-CDS genes.

We carried out comparisons at the gene, transcript, exon,
and base-pair level. At the gene level (Table 1), a gene was con-
sidered as found if the genomic extent of the gene had some
overlap with at least one Ensembl gene. This represents a rough
estimate of correctly predicted gene loci.

We use methods described by Eyras et al. (2004) for taking
into account the high degree of alternative splicing, especially at
the exon level, and for calculating the possible transcript pairs for
every gene pair formed by genomic overlap. The annotations
contain an average of slightly over three transcripts per gene. In
contrast, Ensembl genes have about 1.3 transcripts per gene.
Thus sensitivity at the transcript level is bound to be low, though

Table 1. Gene-Level Comparison to Manual Annotations

Sn Sp

chr13 0.90 0.74
chr14 0.92 0.77
chr6 0.94 0.72

Genes are compared according to the genomic extent, from where
we draw gene-pairs. This represents a rough estimate of found gene
loci.

Table 2. Transcript-Level Comparison to Manual Annotations

No exons
unpaired

1 exon
unpaired

2 exons
unpaired

No exons unpaired
(coding)

1 exon unpaired
(coding)

2 exons unpaired
(coding)

chr13 55.5% 18.09% 11% 65% 15% 6%
chr14 52.41% 22.08% 8.12% 62% 18% 6%
chr6 60.88% 18.49% 8.40% 70% 16% 5%

Isoforms from either gene in the gene-pairs are paired up according to the best transcript alignment. A transcript is considered found if there is an
alignment with a predicted transcript which has no better alignment with the other annotated transcripts. Also given is the percentage of the
transcript pairs that have 0, 1, and 2 exons unpaired.
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the specificity is on average 0.73. We therefore consider the frac-
tion of those transcript pairs which had all exons paired up,
disregarding exon boundaries (Table 2).

At the exon level, we restrict the exon comparisons to the
transcript pairs: we calculate the percentage of exact exon
matches from the exon pairs within transcript pairs, and the
sensitivity and specificity of exact exon matches within the tran-
script pairs. In Table 3 we present these results for all exons and
for coding exons only. Finally, for the comparison at the base-
pair level (Table 4), we compared the genomic extent of both
predicted and annotated exons. We give values for all exons, and
also for coding exons only.

Some of the overpredicted genes overlap with pseudogene
annotations: our current pseudogene tagging method did not
detect these cases. These predictions are usually based on frag-
mented proteins. Others overlap with one of the other annotated
gene types which we did not consider in the comparison: Novel-
transcript, and Putative (for a detailed description of these gene
types, see Deloukas et al. 2001). These annotations are based on
ESTs, and the ORF is ambiguous or absent; we do not include
nontranslating genes in the core gene build, and the discrepancy
is probably due to the difference in the data sources. For example,
the annotators use nonhuman cDNA data to annotate human
sequence, and they combine human and nonhuman ESTs with
protein and cDNA data to produce some gene structures, whereas
the automatic Ensembl gene build uses only human cDNAs for
predicting cDNA-based gene structures, and does not include EST
data in the core gene set.

Almost all of the 143 missed genes and the missed transcript
variants are based on EST evidence, though some are cDNA-
based. We do not combine the EST gene build with the main
Ensembl gene build and thus do not include these cases in our
gene set. On the other hand, 46% of the missed genes are covered
by the ESTGene set. Note that we use a best-in-genome approach
in the EST mapping, which the annotators do not use. We also
miss some pseudogenes. These are usually based on a protein that
we used to annotate a coding gene elsewhere in the genome but
we did not align it in the location of the pseudogene, presumably
because it fell below our matching thresholds.

Building Genes on Virgin Genomes
The gene build was designed and tested with human data. It must
be tuned for any new organisms that are analyzed, and as such
has a number of configuration files controlling the various
stages. For the mouse and rat genomes, few modifications were

necessary, but less closely related organisms require more inter-
vention.

Caenorhabditis briggsae
For the most recent C. briggsae build (March 03), we used the
WormBase (Harris et al. 2003) protein set for the Targetted build,
BLASTs against SwissProt and TrEMBL (Boeckmann et al. 2003)
for the Similarity build, and cDNAs and ESTs from C. briggsae and
C. elegans. Genefinder (P. Green, unpubl.) was the source of ab
initio predictions.

The nature of genes in C. briggsae required us to alter the
genewise parameters. The median intron length for human is
1502 bp (estimated from the Ensembl genes for the human as-
sembly NCBI33) but for C. briggsae it is only 54 bp. Therefore we
increased the genewise gap extension penalty from the standard
two to 10 to prevent prediction of long exons. We also reduced
the maximum allowed intron size from 20,000 to 5000 for the
Targetted build and from 10,000 to 2500 in the Similarity build.
Because we were using cDNAs and ESTs from C. elegans, we re-
duced the percentage identity threshold from 97% to 80%, while
leaving the coverage filter at 90%.

This gene build produced 11,884 genes and 14,713 tran-
scripts, just over half the expected gene number of 19,507. We
believe this is because most of the genes were based on similarity
to C. elegans proteins, and the evolutionary distance between the
two species is too far (110 mya) for a full gene set to be predicted.

Anopheles gambiae
We also had to modify the gene build when analyzing Anopheles
gambiae (Holt et al. 2002; Mongin et al. 2004); only a few gene
families have been described, particularly those involved in odor
reception and Plasmodium falciparum : Anopheles gambiae interac-
tions, and as such there are few Anopheles protein, EST, or cDNA
sequences available. Moreover, the closest dipteran is Drosophila
melanogaster, which is 250 mya (Gaunt and Miles 2002).

Because our first Anopheles gene build produced a limited set
of genes, we adjusted build parameters, concentrating mainly on
the Similarity build. We used lower-scoring BLAST hits to select
proteins to be used with genewise (cut-off score 125 instead of
200) and required that the predicted genewise translation cover
at least 40% of the parent protein (instead of 70%). As a result, we
produced an extremely large number of hits which were then
sorted and filtered based on genome coverage, reducing the hits
∼10-fold. We used 40,000 Anopheles gambiae EST sequences in the
EST gene build (Eyras et al. 2004), and combined genes from the
Similarity and EST gene builds to produce the final set of 14,653
(Anopheles release 2).

Some issues are still to be resolved:

1. False positives. Anopheles repeats are not yet well described,
leading us to include a few transposons and low-complexity
genes in our gene set.

Table 3. Exon Level Per Transcript-Pair Comparison to
Manual Annotations

Exact
pairs Sn Sp

Exact pairs
(coding)

Sn
(coding)

Sp
(coding)

chr13 82% 0.73 0.78 93% 0.83 0.90
chr14 80% 0.69 0.77 90% 0.78 0.88
chr6 80% 0.73 0.76 92% 0.85 0.89

Only exons that are part of a transcript-pair are compared with each
other. An annotated exon is considered found if there is at least one
predicted exon with exact matching boundaries in a given transcript-
pair. The second and fourth columns give the percentage of exact
exon matches from the total number of exon-pairs formed within the
transcript-pairs for all-exons and for coding exons, respectively. The
sensitivity and specificity values are also given. The values are higher
for coding exons, which indicates that UTR annotation remains a
difficult problem.

Table 4. Base-Pair Level Comparison to Manual Annotations

Sn Sp Sn (coding) Sp (coding)

chr13 0.64 0.87 0.90 0.85
chr14 0.70 0.86 0.89 0.84
chr6 0.72 0.73 0.94 0.72

We took the projections of the exon predictions and annotations over
the genomic sequence and compare the overlap of both. The first two
columns give the results for the sensitivity and specificity when all the
exons are considered; the other two columns give these values for
coding-exons only.
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2. False negatives. Because the closest organism is 250 mya, we
estimate that the Similarity build currently misses 20% of the
genes.

3. Incomplete gene structure. As 5� and 3� exons are less con-
served, they may be missed.

4. To reduce the number of false positives, a new set of Anopheles
repeats has been created, and the ab initio gene predictor
SNAP (I. Korf, unpubl.), has been trained using selected Anoph-
eles ESTGenes.

Future Directions
Future developments will improve the annotations in two direc-
tions. As new genomes are sequenced, methods of gene predic-
tion based on comparative analysis will be incorporated, includ-
ing the use of gene orthology to improve our predictions. This
will help us to find both genes in virgin genomes and new genes
in well studied genomes. We also plan to extend our annotation
to incorporate other biological features of clear interest for the
research community, including noncoding mRNAs, nonproc-
essed pseudogenes, regulatory elements and transcription start
sites, and antisense transcripts, and we plan to make these results
available through the Web site.
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