Introduction to the R Language

Reading and Writing Data

Biostatistics 140.776

The R Language

Reading Data

There are a few principal functions reading data into R.
@ read.table, read.csv, for reading tabular data
readLines, for reading lines of a text file

source, for reading in R code files (inverse of dump)

°
°
@ dget, for reading in R code files (inverse of dput)
@ load, for reading in saved workspaces

°

unserialize, for reading single R objects in binary form

The R Language

There are analogous functions for writing data to files
@ write.table
@ writelLines
@ dump
@ dput
@ save
°

serialize

The R Language

Interfaces to the Outside World

Data are read in using connection interfaces. Connections can be
made to files (most common) or to other more exotic things.

e file, opens a connection to a file
@ gzfile, opens a connection to a file compressed with gzip
@ bzfile, opens a connection to a file compressed with bzip2

@ url, opens a connection to a webpage

The R Language

File Connections

> str(file)
function (description = "", open = "", blocking = TRUE,

encoding = getOption("encoding"))

@ description is the name of the file

@ open is a code indicating

e “r" read only

“w" writing (and initializing a new file)

“a" appending

“rb", “wb”, “ab" reading, writing, or appending in binary

mode (Windows)

The R Language

Connections

In general, connections are powerful tools that let you navigate
files or other external objects. In practice, we often don't need to
deal with the connection interface directly.

con <- file("foo.txt", "r")
data <- read.csv(con)
close(con)

is the same as

data <- read.csv("foo.txt")

The R Language

Reading Data Files with read.table

The read.table function is one of the most commonly used
functions for reading data. It has a few important arguments:

@ file, the name of a file, or a connection

@ header, logical indicating if the file has a header line
@ sep, a string indicating how the columns are separated
°

colClasses, a character vector indicating the class of each
column in the dataset

nrows, the number of rows in the dataset

@ comment.char, a character string indicating the comment
character

o skip, the number of lines to skip from the beginning

o stringsAsFactors, should character variables be coded as
factors?

The R Language

read.table

For small to moderately sized datasets, you can usually call
read.table without specifying any other arguments

data <- read.table("foo.txt")

R will automatically
@ skip lines that begin with a #

@ figure out how many rows there are (and how much memory
needs to be allocated)

o figure what type of variable is in each column of the table

Telling R all these things directly makes R run faster and more
efficiently.

@ read.csv is identical to read.table except that the default
separator is a comma.

The R Language

Reading in Larger Datasets with read.table

With much larger datasets, doing the following things will make
your life easier and will prevent R from choking.
@ Read the help page for read.table, which contains many
hints

@ Make a rough calculation of the memory required to store
your dataset. If the dataset is larger than the amount of RAM
on your computer, you can probably stop right here.

@ Set comment.char = "" if there are no commented lines in
your file.

The R Language

Reading in Larger Datasets with read.table

@ Use the colClasses argument. Specifying this option instead
of using the default can make 'read.table’ run MUCH faster,
often twice as fast. In order to use this option, you have to
know the class of each column in your data frame. If all of the
columns are “numeric”, for example, then you can just set
colClasses = "numeric". A quick an dirty way to figure
out the classes of each column is the following:
initial <- read.table("datatable.txt", nrows = 100)
classes <- sapply(initial, class)
tabAll <- read.table("datatable.txt",

colClasses = classes)

@ Set nrows. This doesn’t make R run faster but it helps with
memory usage. A mild overestimate is okay. You can use the
Unix tool wc to calculate the number of lines in a file.

The R Language

Know Thy System

In general, when using R with larger datasets, it's useful to know a
few things about your system.

@ How much memory is available?

What other applications are in use?

Are there other users logged into the same system?
What operating system?

Is the OS 32 or 64 bit?

The R Language

Calculating Memory Requirements

| have a data frame with 1,500,000 rows and 120 columns, all of
which are numeric data. Roughly, how much memory is required to
store this data frame?

1,500,000 x 120 x 8 bytes/numeric = 1440000000 bytes
1440000000/2% bytes/MB
1,373.29 MB

= 134 GB

The R Language

Saving Data in Non-tabular Forms

For temporary storage or for transport, it is more efficient to save
data in (compressed) binary form using save or save.image.

x <-1

y <- data.frame(a = 1, b = "a")

save(x, y, file = "data.RData")

load("data.RData") ## overwrites existing x and y!

Binary formats are not great for long-term storage because if they
are corrupted, recovery is usually not possible.

The R Language

Deparsing R Objects

Another way to pass data around is by deparsing the R object with
dput and reading it back in using dget.

> y <- data.frame(a = 1, b = "a")
> dput(y)
structure(list(a = 1,
b = structure(iL, .Label = "a",
class = "factor")),
.Names = c("a", "b"), row.names = c(NA, -1L),
class = "data.frame")

> dput(y, file = "y.R")
> new.y <- dget("y.R")
> new.y

ab
11a

The R Language

Dumping R Objects

Multiple objects can be deparsed using the dump function and read
back in using source.

> x <= "foo"
> y <- data.frame(a = 1, b = "a")
> dump(c("x", "y"), file = "data.R")
> rm(x, y)
> source("data.R")
>y
ab
11a
> x
[1] "foo"

The R Language

Textual Formats

@ dumping and dputing are useful because the resulting textual
format is edit-able, and in the case of corruption, potentially
recoverable.

@ Unlike writing out a table or csv file, dump and dput preserve
the metadata (sacrificing some readability), so that another
user doesn't have to specify it all over again.

@ Textual formats work much better with programs like git
which can only track changes meaningfully in text files

o Textual formats adhere to the “Unix philosophy”

The R Language

Reading Lines of a Text File

The readLines function can be used to simply read lines of a text
file and store them in a character vector.

> con <- gzfile("words.gz")
> x <- readLines(con, 10)

> x
[1] "1080" "10-point" "10th" "11-point"
[6] "12-point" "16-point" "18-point" "1st"
[9] non "ZO—point n

writeLines takes a character vector and writes each element one
line at a time to a text file.

The R Language

Reading Lines of a Text File

readLines can be useful for reading in lines of webpages

This might take time
con <- url("http://www.jhsph.edu", "r")
x <- readLines(con)

> head(x)

[1] "<!DOCTYPE HTML PUBLIC \"-//W3C//DTD HTML 4.0 Transitic
[2] "

[3] "<html>"

[4] "<head>"

[6] "\t<meta http-equiv=\"Content-Type\" content=\"text/htr

The R Language

Serialization

Serialization is the process of taking an R object and converting
into a representation as a “series” of bytes.

@ The save and save.image functions serialize R objects and
then save them to files

@ The serialize function can be used to serialize an R object
to an arbitrary connection (database, socket, pipe, etc.)

@ unserialize reads from an arbitrary connection and inverts
a serialization, returning an R object

The R Language

Serialization

> x <- list(1, 2, 3)
> serialize(x, NULL)

[1] 58 0a 00 00 00 02 00 02 06 01 00 02 03 00 00
[16] 00 00 13 00 00 00 03 00 00 00 Oe 00 00 00 O1
[31] 3f £O0 00 00 00 00 00 00 00 00 00 Oe 00 00 00
[46] 01 40 00 00 00 00 00 00 00 00 00 00 Oe 00 00
[61] 00 01 40 08 00 00 00 00 00 00

The R Language

Serialization

> con <- gzfile("foo.gz", "wb")
> serialize(x, con)

NULL

close(con)

con <- gzfile("foo.gz", "rb")
y <- unserialize(con)
identical(x, y)

[1] TRUE

V V V V V

The R Language

Data Output Summary

@ write.table, write.csv — readable output, textual, little
metadata

@ save, save.image, serialize — exact representation,
efficient storage if compressed, not recoverable if corrupted

@ dput, dump — textual format, somewhat readable, metadata
retained, not usable for more exotic objects (environments)

The R Language

