O’REILLY”

By Randal Schwartz, Tom Christiansen & Larry Wall; ISBN 1-56592-284-0, 302 pages.
Second Edition, July 1997.
(See the catalog page for this book.)

Search the text of Learning Perl.

Index

Table of Contents

Foreword

Preface

Chapter 1: Introduction

Chapter 2: Scalar Data

Chapter 3: Arrays and List Data

Chapter 4: Control Structures

Chapter 5: Hashes

Chapter 6: Basic 1/0

Chapter 7: Regular Expressions

Chapter 8: Functions

Chapter 9: Miscellaneous Control Structures
Chapter 10: Filehandles and File Tests
Chapter 11: Formats

Chapter 12: Directory Access

Chapter 13: File and Directory Manipulation
Chapter 14: Process Management

Chapter 15: Other Data Transformation
Chapter 16: System Database Access
Chapter 17: User Database Manipulation
Chapter 18: Converting Other Languages to Perl
Chapter 19: CGI Programming

Appendix A: Exercise Answers
Appendix B: Libraries and Modules

Appendix C: Networking Clients
Appendix D: Topics We Didn't Mention

Examples

The Perl CD Bookshelf
Navigation

Copyright © 1999 O'Reilly & Associates. All Rights Reserved.

W Learning Per! —

Foreword Next:
Preface

Foreword

Contents:
Second Edition Update

Attention, class! Attention! Thank you.

Greetings, aspiring magicians. I hope your summer vacations were enjoyable, if too short. Allow me to
be the first to welcome you to the College of Wizardry and, more particularly, to this introductory class
in the Magic of Perl. I am not your regular instructor, but Professor Schwartz was unavoidably delayed,
and has asked me, as the creator of Perl, to step in today and give a few introductory remarks.

Let's see now. Where to begin? How many of you are taking this course as freshmen? I see. Hmmm, I've
seen worse in my days. Occasionally. Very occasionally.

Eh? That was a joke. Really! Ah well. No sense of humor, these freshmen.

Well now, what shall I talk about? There are, of course, any number of things I could talk about. I could
take the egotistical approach and talk about myself, elucidating all those quirks of genetics and
upbringing that brought me to the place of creating Perl, as well as making a fool of myself in general.
That might be entertaining, at least to me.

Or I could talk instead about Professor Schwartz, without whose ongoing efforts the world of Perl would
be much impoverished, up to and including the fact that this course of instruction wouldn't exist.

That might be enlightening, though I have the feeling you'll know more of Professor Schwartz by the end
of this course than I do.

Or, putting aside all this personal puffery, I could simply talk about Perl itself, which is, after all, the
subject of this course.

Or is 1it? Hmmm... .

When the curriculum committee discussed this course, it reached the conclusion that this class isn't so
much about Perl as it is about you! This shouldn't be too surprising, because Perl is itself also about you -
at least in the abstract. Perl was created for someone like you, by someone like you, with the
collaboration of many other someones like you. The Magic of Perl was sewn together, stitch by stitch
and swatch by swatch, around the rather peculiar shape of your psyche. If you think Perl is a bit odd,

perhaps that's why.

Some computer scientists (the reductionists, in particular) would like to deny it, but people have
funny-shaped minds. Mental geography is not linear, and cannot be mapped onto a flat surface without
severe distortion. But for the last score years or so, computer reductionists have been first bowing down
at the Temple of Orthogonality, then rising up to preach their ideas of ascetic rectitude to any who would
listen.

Their fervent but misguided desire was simply to squash your mind to fit their mindset, to smush your
patterns of thought into some sort of hyperdimensional flatland. It's a joyless existence, being smushed.

Nevertheless, your native common sense has shown through in spots. You and your conceptual ancestors
have transcended the dreary landscape to compose many lovely computer incantations. (Some of which,
at times, actually did what you wanted them to.) The most blessed of these incantations were canonized
as Standards, because they managed to tap into something mystical and magical, performing the miracle
of Doing What You Expect.

What nobody noticed in all the excitement was that the computer reductionists were still busily trying to
smush your minds flat, albeit on a slightly higher plane of existence. The decree, therefore, went out (I'm
sure you've heard of it) that computer incantations were only allowed to perform one miracle apiece. "Do
one thing and do it well" was the rallying cry, and with one stroke, shell programmers were condemned
to a life of muttering and counting beads on strings (which in these latter days have come to be known as
pipelines).

This was when I made my small contribution to saving the world. I was rolling some of those very beads
around in my fingers one day and pondering the hopelessness (and haplessness) of my existence, when it
occurred to me that it might be interesting to melt down some of those mystical beads and see what
would happen to their Magic if I made a single, slightly larger bead out of them. So I fired up the old
Bunsen burner, picked out some of my favorite beads, and let them melt together however they would.
And lo! the new Magic was more powerful than the sum of its parts and parcels.

That's odd, thought I. Why should it be that the Sedulous Bead of Regular Expressions, when bonded
together with the Shellacious Bead of Gnostic Interpolation, and the Awkward Bead of Simple Data
Typology, should produce more Magic, pound for pound, than they do when strung out on strings? I said
to myself, could it be that the beads can exchange power with each other because they no longer have to
commune with each other through that skinny little string? Could the pipeline be holding back the flow
of information, much as wine doth resist flowing through the neck of Doctor von Neumann's famous
bottle?

This demanded (of me) more scrutiny (of it).

So I melted that larger bead together with a few more of my favorite beads, and the same thing happened,
only more so. It was practically a combinatorial explosion of potential incantations: the Basic Bead of
Output Formats and the Lispery Bead of Dynamic Scoping bonded themselves with the C-rationalized
Bead of Operators Galore, and together they put forth a brilliant pulse of power that spread to thousands
of machines throughout the entire civilized world. That message cost the Net hundreds if not thousands
of dollars to send everywhere. Obviously I was either onto something, or on something.

I then gathered my courage about me and showed my new magical bead to some of you, and you then

began to give me your favorite beads to add in as well. The Magic grew yet more powerful, as yet more
synergy was imbued in the silly thing. It was as if the Computational Elementals summoned by each
bead were cooperating on your behalf to solve your problems for you. Why the sudden peace on earth
and good will toward mentality? Perhaps it was because the beads were your favorite beads? Perhaps it
was because I'm just a good bead picker?

Perhaps I just got lucky.

Whatever, the magical bead eventually grew into this rather odd-looking Amulet you see before you
today. See it glitter, almost like a pearl.

That was another joke. Really! I assure you! Ah well. I was a freshman once too... The Amulet isn't
exactly beautiful though; in fact, up close it still looks like a bunch of beads melted together. Well, all
right, I admit it. It's downright ugly. But never mind that. It's the Magic that counts. Speaking of Magic,
look who just walked in the door! My good buddy Merlyn, er, I should say, Professor Schwartz, is here
just in the nick of time to begin telling you how to perform miracles with this little Amulet, if you're
willing to learn the proper mysterious incantations. And you're in good hands; I must admit that there's
no one better at muttering mysterious incantations than Professor Schwartz. Eh, Merlyn?

Anyway, to sum up. What you'll need most is courage. It is not an easy path that you've set your foot
upon. You're learning a new language: a language full of strange runes and ancient chants, some easy and
some difficult, many of which sound familiar, and some of which don't. You may be tempted to become
discouraged and quit. But think you upon this: consider how long it took you to learn your own native
tongue. Was it worth it? I think so. And have you finished learning it? I think not. Then do not expect to
learn all the mysteries of Perl in a moment, as though you were consuming a mere peanut, or an olive.
Rather, think of it as though you were consuming, say, a banana. Consider how this works. You do not
wait to enjoy the banana until after you have eaten the whole thing. No, of course not. You enjoy each
bite as you take it. And each bite motivates you to take the next bite, and the next.

So then, speaking now of the fruit of Merlyn's labors, I would urge you to enjoy this, um, course. The
fruit course, of course. Ahem, that was a joke too. Ah well.

Here then, Professor, I present to you your new class. They seem to have no sense of humor whatsoever,
but I expect you'll manage somehow.

Class, I present to you Professor Randal L. Schwartz, Doctor of Syntax, Wizard at Large, and of course,
Just Another Perl Hacker. He has my blessings, just as you have my blessings. May you Learn Perl. May
you do Good Magic with Perl. And above all, may you have Lots of Fun with Perl. So be it!

So do it!

Larry Wall
September, 1993

Second Edition Update

You too, Tom.

Larry Wall

May, 1997

Learning Next:
Perl Preface
Book Preface
Index

[Library Home | Perl in a Nutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl
Programming | Perl Cookbook]

W Learning Per! —

Previous: Second Edition Preface | Next: Retrieving Exercises
Update

Preface

Contents:
What This Book Is About

Retrieving Exercises

Additional Resources

How to Get Perl

Conventions Used in This Book

Support

Acknowledgments for the First Edition
Acknowledgments for the Second Edition
We'd Like to Hear from You

What This Book Is About

Among other things, this book is about 260 pages long. It is also a gentle introduction to Perl. By the
time you've gone through this book, you'll have touched on the majority of the simpler operations and
common language 1dioms found in most Perl programs.

This book is not intended as a comprehensive guide to Perl; on the contrary, in order to keep the book
from growing unmanageably large, we've been selective about covering only those constructs and issues
that you're most likely to use early in your Perl programming career.

As a prelude to your more advanced study, however, we've included a heavier chapter at the end of the
book. It's about CGI programming, but along the way, it touches upon library modules, references, and
object-oriented programming in Perl. We hope it whets your appetite for these more advanced topics.

Each chapter ends with a series of exercises designed to help you practice what you have just read. If you
read at a typical pace and do all the exercises, you should be able to get through each chapter in about
two to three hours, or about 30 to 40 hours for the entire book.

This book is meant to be a companion volume to the classic Programming Perl, Second Edition, by Larry

Wall, Randal L. Schwartz, and Tom Christiansen, published by O'Reilly & Associates, the complete
reference book on the language.

Initially designed as a glue language under the UNIX operating system, Perl now runs virtually
everywhere, including MS-DOS, VMS, OS/2, Plan 9, Macintosh, and any variety of Windows you care
to mention. It is one of the most portable programming languages available today. With the exception of
those few sections related to UNIX systems administration, the vast majority of this book is applicable to
any platform Perl runs on.

Previous: Second Edition Learning | Next: Retrieving Exercises]|
Update Perl

Second Edition Update Book Retrieving Exercises
Index

[Library Home | Perl in a Nutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl
Programming | Perl CookbooKk]

W Learning Perl —

Previous: What This Book Is Preface [Next: Additional Resources
About

Retrieving Exercises

The exercises in this book are available electronically in a number of ways: by FTP, FTPMAIL, BITFTP, and UUCP.
The cheapest, fastest, and easiest ways are listed first. If you read from the top down, the first one that works is probably
the best. Use FTP if you are directly on the Internet. Use FTPMAIL if you are not on the Internet but can send and
receive electronic mail to Internet sites. Use BITFTP if you send electronic mail via BITNET. Use UUCP if none of the
above works.

Note: The exercises were prepared using a UNIX system. If you are running UNIX, you can use them without
modification. If you are running on another platform, you may need to modify these exercises slightly. For example,
whereas under UNIX every line ends with a line-feed character (the carriage return is implicit), under DOS every line
must end with explicit line-feed and carriage-return characters. Depending upon your own configuration and transfer
method, you may need to append carriage returns. See the README file accompanying the exercises for additional
information.

FTP

To use FTP, you need a machine with direct access to the Internet. A sample session is shown below.

o)

% ftp ftp.oreilly.com
Connected to ftp.uu.net.
220 ftp.oreilly.com FTP server (Version 6.34 Thu Oct 22 14:32:01 EDT 1992) ready.

Name (ftp.oreilly.com:username): anonymous
331 Guest login ok, send e-mail address as password.
Password: username(@hostname Use your username and host here

230 Guest login ok, access restrictions apply.

ftp> ecd /published/oreilly/nutshell/learning_perl2

250 CWD command successful.

ftp> get README

200 PORT command successful.

150 Opening ASCII mode data connection for README (xxxx bytes).
226 Transfer complete.

local: README remote: README

XXXX bytes received in xxx seconds (xxx Kbytes/s)

ftp> binary

200 Type set to I.

ftp> get examples.tar.gz

200 PORT command successful.

150 Opening BINARY mode data connection for examples.tar.gz (xxxx bytes).
226 Transfer complete. local: exercises remote: exercises

xxxx bytes received in xxx seconds (xxx Kbytes/s)

ftp> quit

221 Goodbye.

)
°

FTPMAIL

FTPMALIL is a mail server available to anyone who can send electronic mail to and receive it from Internet sites. This
includes any company or service provider that allows email connections to the Internet. Here's how you do it.

You send mail to ftpmail @online.oreilly.com. In the message body, give the FTP commands you want to run. The server
will run anonymous FTP for you and mail the files back to you. To get a complete help file, send a message with no
subject and the single word "help" in the body. The following is an example of a UNIX mail session that gets the
examples. This command sends you a listing of the files in the selected directory and the requested example files. The
listing is useful if there's a later version of the examples you're interested in.

o

% mail ftpmail@online.oreilly.com

Subject:

reply-to username@hostname Where you want files mailed
open

cd /published/oreilly/nutshell/learning_perl2
dir

get README

mode binary

uuencode

get examples.tar.gz

quit

A signature at the end of the message is acceptable as long as it appears after "quit."
BITFTP

BITFTP is a mail server for BITNET users. You send it electronic mail messages requesting files, and it sends you back
the files by electronic mail. BITFTP currently serves only users who send it mail from nodes that are directly on
BITNET, EARN, or NetNorth. BITFTP is a public service of Princeton University. Here's how it works.

To use BITFTP, send mail containing your FTP commands to BITFTP@PUCC. For a complete help file, send HELP as
the message body.

The following is the message body you should send to BITFTP:

FTP ftp.oreilly.com NETDATA

USER anonymous

PASS your Internet e-mail address (not your BITNET address)
CD /published/oreilly/nutshell/perl/learning_perl?2

DIR

GET README

GET examples.tar.gz

QUIT

Questions about BITFTP can be directed to MAINT@PUCC on BITNET.

UUCP

If you or your company has an account with UUNET, you will have a system with a direct UUCP connection to
UUNET. Find that system, and type (as one line):

uucp uunet\!~/published/oreilly/nutshell/learning_perl2/examples.tar.gz
yourhost\!~/yourname/

The backslashes can be omitted if you use the Bourne shell (sh) instead of csh. The example file should appear some
time later (up to a day or more) in the directory /usr/spool /uucppublic / yourname.

Previous: What This Book Is Learning [Next: Additional Resources]
About Perl
What This Book Is About Book Additional Resources
Index

[Library Home | Perl in a Nutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl Programming | Perl
Cookbook]

W Learning Per! —

Previous: Retrieving Preface Next: How to
Exercises Get Perl

Additional Resources

Perl Manpages

The online documentation for Perl, called manpages due to their UNIX origin, has been divided into
separate sections so you can easily find what you are looking for without wading through hundreds of
pages of text. Since the top-level manpage is simply called perl, the UNIX command man perl should
take you to it.[1] That page in turn directs you to more specific pages. For example, man perlre displays
the manpage for Perl's regular expressions. The perldoc command may work when the man (1) command
won't, especially on module documentation that your system administrator may not have felt comfortable
installing with the ordinary manpages. On the other hand, your system administrator may have installed
the Perl documentation in hypertext markup language (HTML) format, especially on systems other than
UNIX. If all else fails, you can always retrieve the Perl documentation from CPAN; look for this
information in Section 0.5, "How to Get Per]"."

[1] If you still get a humongous page when you do that, you're probably picking up the
ancient Release 4 manpage. You may need to change your MANPATH environment
variable.

Here are the principal manpages included with the 5.004 distribution of Perl:

Manpage |Topic

perl Overview of documentation

perldelta |Changes since previous version

perlfaq Frequently asked questions

perldata | Data structures

perlsyn Syntax

perlop Operators and precedence
perlre Regular expressions
perlrun Execution and options

perlfunc | Built-in functions

perlvar Predefined variables

perlsub Subroutines

perlmod | Modules: how they work

perlmodlib | Lib modules: how to write and use
perlform |Formats

perllocale |Locale support

perlref References

perldsc Data structures intro

perllol Data structures: lists of lists

perltoot Tutorial of object-oriented programming
perlobj Objects

perltie Objects hidden behind simple variables
perlbot Object tricks and examples

perlipc Interprocess communication

perldebug | Debugging

perldiag | Diagnostic messages

perlsec Security

perltrap | Traps for the unwary

perlstyle | Style guide

perlpod Plain old documentation

perlbook | Book information

perlembed |Ways to embed Perl in your C or C++ application
perlapio |Internal IO abstraction interface

perlxs XS application programming interface
perlxstut | XS tutorial

perlguts | Internal functions for those doing extensions
perlcall Calling conventions from C

Usenet Newsgroups

The Perl newsgroups are a great, if sometimes cluttered, source of information about Perl.
comp.lang.perl.announce is a moderated, low-traffic newsgroup for Perl-related announcements. These

often deal with new version releases, bug fixes, new extensions and modules, and Frequently Asked
Questions (FAQs).

The high-traffic comp.lang.perl.misc group discusses everything from technical issues to Perl philosophy
to Perl games and Perl poetry. Like Perl itself, comp.lang.perl.misc is meant to be useful, and no question
is too silly to ask.[2]

[2] Of course, some questions are too silly to answer, especially those already answered in
the FAQ.

The comp.lang.perl.tk group discusses how to use the popular Tk toolkit from Perl. The
comp.lang.perl.modules group is about the development and use of Perl modules, which are the best way

to get reusable code. There may be other comp.lang.perl.whatever newsgroups by the time you read this;
look around.

One other newsgroup you might want to check out, at least if you're doing CGI programming on the
Web, is comp.infosystems.www.authoring.cgi. While it isn't strictly speaking a Perl group, most of the

programs discussed there are written in Perl. It's the right place to go for web-related Perl issues.

The Perl Home Page

If you have access to the World Wide Web, visit the Perl home page at http://www.perl.com/perl/. It tells

what's new in the Perl world, and contains source code and ports, documentation, third-party modules,
the Perl bugs database, mailing list information, and more. This site also provides the CPAN multiplexer,
described later.

Frequently Asked Questions List

The Perl Frequently Asked Questions (FAQ) is a collection of questions and answers that often show up
on comp.lang.perl.misc. In many respects it's a companion to the available books, explaining concepts
that people may not have understood and maintaining up-to-date information about such things as the
latest release level and the best place to get the Perl source.

The FAQ is periodically posted to comp.lang.perl.announce, and can also be found on the Web at
http://www.perl.com/perl/faq.

Since the 5.004 release of Perl, the FAQ has been included with the standard distribution's
documentation. Here are the main sections, each available as its own manpage:

perlfaq

Structural overview of the FAQ.
perlfaql

Very general, high-level information about Perl.
perlfaq2

Where to find source and documentation to Perl, support and training, and related matters.

perlfaq3

Programmer tools and programming support.
perlfaq4

Manipulating numbers, dates, strings, arrays, hashes, and miscellaneous data issues.
perlfaq5

I/O and the "f " issues: filehandles, flushing, formats, and footers.

perlfaq6

Pattern matching and regular expressions.
perlfaq7

General Perl language issues that don't clearly fit into any of the other sections.
perlfaq8

Interprocess communication (IPC), control over the user-interface: keyboard, screen, and pointing
devices.

perlfaq9

Networking, the Internet, and a few on the Web.

Bug Reports

In the unlikely event that you should encounter a bug that's in Perl proper and not just in your own
program, you should try to reduce it to a minimal test case and then report it with the perlbug program
that comes with Perl.

The Perl Distribution

Perl is distributed under either of two licenses (your choice). The first is the standard GNU Copyleft,
which means, briefly, that if you can execute Perl on your system, you should have access to the full
source of Perl for no additional charge. Alternately, Perl may also be distributed under the Artistic
License, which some people find less threatening than the Copyleft (especially lawyers).

Within the Perl distribution, you will find some example programs in the eg / directory. You may also
find other tidbits. Poke around in there on some rainy afternoon. Study the Perl source (if you're a C
hacker with a masochistic streak). Look at the test suite. See how Configure determines whether you
have the mkdir (2) system call. Figure out how Perl does dynamic loading of C modules. Or whatever
else suits your fancy.

Other Books

Programming Perl is the definitive reference book on Perl, whereas this book is more of a tutorial. If you

want to learn more about Perl's regular expressions, we suggest Mastering Regular Expressions, by
Jeffrey E.F. Friedl (also published by O'Reilly & Associates).

Also check out O'Reilly and Associates' CGI Programming on the World Wide Web by Shishir
Gundavaram; Web Client Programming with Perl by Clinton Wong; and HTML: The Definitive Guide,
Second Edition, by Chuck Musciano and Bill Kennedy.

The AWK Programming Language, by Aho, Kernighan, and Weinberger (published by
Addison-Wesley), and sed & awk, by Dale Dougherty (published by O'Reilly & Associates), provide an
essential background in such things as associative arrays, regular expressions, and the general world view
that gave rise to Perl. They also contain many examples that can be translated into Perl by the
awk-to-perl translator, a2p, or by the sed-to-perl translator, s2p. These translators won't produce
idiomatic Perl, of course, but if you can't figure out how to imitate one of those examples in Perl, the
translator output will give you a good place to start.

For webmasters, we recommend the second edition of How to Setup and Maintain a Web Site, by
Lincoln Stein, M.D., Ph.D. (published by Addison-Wesley). Dr. Stein, renowned author of Perl's CGL.pm
module (described in Chapter 19, CGI Programming), delivers a professional and comprehensive

treatment of all issues related to administering a web site on UNIX, Mac, and Windows platforms.

We also recommend Johan Vromans's convenient and thorough quick reference booklet, called Perl 5
Desktop Reference, published by O'Reilly & Associates.

Previous: Retrieving Learning Next: How to
Exercises Perl Get Perl
Retrieving Exercises Book How to Get Perl
Index

[Library Home | Perl in a Nutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl
Programming | Perl Cookbook]

W Learning Perl —

Previous: Additional Preface Next: Conventions Used in
Resources This Book

How to Get Perl

The main distribution point for Perl is the Comprehensive Perl Archive Network, or CPAN. This archive contains not only
the source code, but also just about everything you could ever want that's Perl-related. CPAN is mirrored by dozens of sites
all over the world, as well as a few down under. The main site is ftp.funet.fi (128.214.248.6). You can find a more local

CPAN site by getting the file /pub/languages/perl/CPAN/MIRRORS from ftp.funet.fi. Or you can use your web browser to
access the CPAN multiplex service at www.perl.com. Whenever you ask this web server for a file starting with /CPAN/, it

connects you to a CPAN site, which it chooses by looking at your domain name. Here are some popular universal resource
locators (URLs) out of CPAN:

http://www.perl.com/CPAN/
http://www.perl.com/CPAN/README.html
http://www.perl.com/CPAN/modules/
http://www.perl.com/CPAN/ports/
http://www.perl.com/CPAN/doc/
http://www.perl.com/CPAN/src/latest.tar.gz

The CPAN multiplex service tries to connect you to a local, fast machine on a large bandwidth hub. This doesn't always
work, however, because domain names may not reflect network connections. For example, you might have a hostname
ending in .se, but you may actually be better connected to North America than to Sweden. If so, you can use the following
URL to choose your own site:

http://www.perl.com/CPAN

Note the absence of a slash at the end of the URL. When you omit the trailing slash, the CPAN multiplexer presents a menu
of CPAN mirrors from which you can select a site. So long as your web browser supports cookies, the CPAN multiplexer
will automatically remember your choice next time.

The following machines should have the Perl source code plus a copy of the CPAN mirror list - both available via
anonymous FTP. (Try to use the machine names rather than the numbers, since the numbers may change.)

ftp.perl.com 199.45.129.30

ftp.cs.colorado.edu | 128.138.243.20

ftp.funet.fi 128.214.248.6
ftp.cs.ruu.nl 131.211.80.17

The location of the top directory of the CPAN mirror differs on these machines, so look around once you get there. It's often
something like /pub/perl/CPAN.

Where the Files Are

Under the main CPAN directory, you'll see at least the following subdirectories:
authors

This directory contains numerous subdirectories, one for each contributor of software. For example, if you wanted to
find Lincoln Stein's great CGI.pm module, and you knew for a fact that he wrote it, you could look in
authors/Lincoln_Stein. If you didn't know he wrote it, you could look in the modules directory explained below.

doc
A directory containing all manner of Perl documentation. This includes all official documentation (manpages) in
several formats (such as ASCII text, HTML, PostScript, and Perl's native POD format), plus the FAQs and interesting
supplementary documents.

modules

This directory contains unbundled modules written in C, Perl, or both. Extensions allow you to emulate or access the
functionality of other software, such as Tk graphical facilities, the UNIX curses library, and math libraries. They also
give you a way to interact with databases (Oracle, Sybase, etc.), and to manage HTML files and CGI scripts.

ports

This directory contains the source code and/or binaries for Perl ports to operating systems not directly supported in
the standard distribution. These ports are the individual efforts of their respective authors, and may not all function
precisely as described in this book.

scripts

A collection of diverse scripts from all over the world. If you need to find out how to do something, or if you just
want to see how other people write programs, check this out. The subdirectory nutshell contains the examples from
this book. (You can also find these sources at the O'Reilly & Associates ftp.ora.com site, in
/published/oreilly/nutshell/learning_perl2/.

N(Y

Within this directory you will find the source for the standard Perl distribution. The current production release is
always in the file that is called src/latest.tar.gz.[3] This large file contains full source and documentation for Perl.
Configuration and installation should be relatively straightforward on UNIX and UNIX-like systems, as well as VMS
and OS/2. Starting with Version 5.004, Perl also builds on 32-bit Windows systems.

[3] The trailing .tar.gz means that it's in the standard Internet format of a GNU-zipped, far archive.
Using Anonymous FTP

In the event you've never used anonymous FTP, here is a quick primer in the form of a sample session with comments. Text
in bold typewriter font is what you should type; comments are in italics. The % represents your prompt, and should not be
typed.

% ftp ftp.CPAN.org (ftp.CPAN.org 1is not a real site)

Connected to ftp.CPAN.org.

220 CPAN FTP server (Version wu-2.4(1l) Fri Dec 1 00:00:00 EST 1995) ready.
Name (ftp.CPAN.org:CPAN): anonymous

331 Guest login ok, send your complete e-mail address as password.
Password: camel@nutshell.com (Use your username and host here)

230 Guest login ok, access restrictions apply.

ftp> cd pub/perl/CPAN/src 250 CWD command successful.

ftp> binary (You must specify binary transfer for compressed files) 200 Type set to
I.

ftp> get latest.tar.gz

200 PORT command successful.
150 Opening BINARY mode data connection for FILE.
226 Transfer complete.

(repeat this step for each file you want)

ftp> quit 221 Goodbye.

o)
°

Once you have the files, first unzip and untar them, and then configure, build, and install Perl:

% gunzip < latest.tar.gz | tar xvf -

% cd perl5.003 (Use actual directory name)

Now either one of these next two lines:

% sh configure (Lowercase "c" for automatic configuration)
% sh Configure (Capital "C" for manual configuration)

% make (Build all of Perl)

% make test (Make sure it works)

% make install (You should be the superuser for this)

Fetching modules

For retrieving and building unbundled Perl modules, the process is slightly different. Let's say you want to build and install
a module named CoolMod. You'd first fetch it via ftp (1), or you could use your web browser to access the module service
from http://www.perl.com/, which always retrieves the most up-to-date version of a particular registered module. The

address to feed your browser would be similar to:

hitp://mwww.perl.com/cgi-bin/cpan_mod ?module=CoolMod

Once you've gotten the file, do this:

o\°

gunzip < CoolMod-2.34.tar.gz | tar xvf -

cd CoolMod-2.34

perl Makefile.PL (Creates the real Makefile)
make (Build the whole module)

make test (Make sure it works)

make install (Probably should be the superuser)

o® o o o°

o°

When the CoolMod module has been successfully installed (it is automatically placed in your system's Perl library path),
your programs can say:

use CoolMod;

and you should be able to run man CoolMod (or maybe perldoc CoolMod) to read the module's documentation.

Previous: Additional Learning Next: Conventions Used in

Resources Perl This Book
Additional Resources Book Conventions Used in This
Index Book

[Library Home | Perl in a Nutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl Programming | Perl Cookbook

]

W Learning Per! —

Previous: How Preface Next:
to Get Perl Support

Conventions Used in This Book

The following typographic conventions appear in this book:

Italic
is used for file and command names. It is also used to highlight comments in command examples,
and to define terms the first time they appear.

Constant Width
is used in examples and in regular text to show operators, variables, and the output from
commands or programs.

Constant Bold

is used in examples to show the user's actual input at the terminal.

Constant Italic
is used in examples to show variables for which a context-specific substitution should be made.
The variable £i1ename, for example, would be replaced by some actual filename.

Footnotes
are used to attach parenthetical notes which you should not read on your first reading of this book.
Sometimes, lies are spoken to simplify the discussion, and the footnotes restore the lie to truth.

Often, the material in the footnote will be advanced information that may not even be discussed
anywhere else in the book.

Previous: How Learning Next:
to Get Perl Perl Support
How to Get Perl Book Support
Index

[Library Home | Perl in a Nutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl
Programming | Perl Cookbook]

W Learning Per! —

Previous: Conventions Used Preface Next: Acknowledgments for
in This Book the First Edition

Support

Perl is the child of Larry Wall, and is still being coddled by him. Bug reports and requests for
enhancements generally get fixed in later releases, but he is under no obligation to do anything with
them. Nevertheless, Larry really does enjoy hearing from all of us, and does truly like to see Perl be
useful to the world at large. Direct email generally gets a response (even if it is merely his email
answering machine), and sometimes a personal response. These days, Larry is actually acting as an
architect to the "Perl 5 Porters" group, a bunch of very clever people that have had a lot to do with the
last few Perl releases. If Larry got hit by a bus, everyone would be very sad for a long time, but Perl
would still continue to mature under the direction of this group.

If you have a bug, Perl is shipped with a perlbug command that gathers pertinent information (including
the problem as you see it) and emails it off to perlbug @perl.com. At the moment, the Perl 5 Porters read
this mail (along with the 20 to 100 messages they send each other every day) and sometimes answer if it
really is a bug. If you try to use this address just for support, you'll get flamed, so please keep your table
talk to an absolute minimum and refrain from calling out to the performers.

More useful than writing Larry directly, or sending it off as a bug, is the worldwide online Perl support
group, communicating through the Usenet newsgroup comp.lang.perl.misc. If you are emailable to the

Internet, but not amenable to Usenet, you can also wire yourself into this group by sending a request to
perl-users-request@cs.orst.edu, which will reach a human who can connect you to a two-way email

gateway into the group and give you guidelines on how it works.

When you subscribe to the newsgroup, you'll find roughly 50 to 200 "postings" a day (at the time of this
writing) on all manner of subjects from beginner questions to complicated porting issues and interface
problems, and even a fairly large program or two.

The newsgroup is almost constantly monitored by many Perl experts. Most of the time, your question
gets answered within minutes of your news article reaching a major Usenet hub. Just try getting that level
of support from your favorite software vendor for free! If you'd like to purchase a commercial support
contract for Perl, see the Perl FAQ (described earlier in "Additional Resources") for directions and
availability.

Previous: Conventions Used Learning Next: Acknowledgments for
in This Book Perl the First Edition

Conventions Used in This Book Acknowledgments for the
Book Index First Edition

[Library Home | Perl in a Nutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl
Programming | Perl Cookbook]

W Learning Per! —

Previous: Preface Next: Acknowledgments for
Support the Second Edition

Acknowledgments for the First Edition

First, I wholeheartedly thank Chick Webb and Taos Mountain Software (in Silicon Valley). The folks at
TMS offered me an opportunity to write an introductory Perl course for them (with substantial assistance
from Chick), and a chance to present their course a few times. From that experience, I gained the
motivation and resources to write and repeatedly present a new course of my own, from which this book
is derived. Without them, I don't think I'd be doing this, and I wish them continued success at marketing
their course. (And if they're looking for a good text for a revision of their course, I just may have a
suggestion...)

Thanks also to the reviewers: Perl Godfather Larry Wall (of course), Larry Kistler (Director of
Education, Pyramid), fellow Perl trainer Tom Christiansen, and the students of the Learning Perl classes I
taught at Intel and Pyramid, and - from O'Reilly & Associates: Tanya Herlick, Lar Kaufman, Lenny
Muellner, Linda Mui, and Andy Oram.

This book was created and edited entirely on my personal Apple Macintosh Powerbook (first the 140,
and now the 160 model). More often than not, I was away from my office while writing - sometimes in a
park, sometimes in a hotel, sometimes waiting for the weather to clear so I could continue to snow-ski,
but most often in restaurants. In fact, I wrote a substantial portion of this book at the Beaverton
McMenamin's just down the road from my house. The McM's chain of brewpubs make and serve the
finest microbrew and best cheesecake and greasiest sandwiches in my hometown area. I consumed many
pints of ale and pieces of cheesecake in this ideal work environment, while my Powerbook swallowed
many kilowatt hours of electricity at their four tables with power outlets. For the electricity, and the
generous hospitality and courtesy (and rent-free booth-office space), I thank the exceptional staff at the
Beaverton McM's. I also hacked some early work on the book at the Beaverton Chili's Restaurant, to
which I am also grateful. (But they didn't have any outlets near the bar, so I switched when I found
McM'’s, to save the wear and tear on my batteries.)

Thanks to "the Net" (especially the subscribers to comp.lang.perl) for their continued support of Larry
and me, and their unending curiosity about getting Perl to work for them.

Thanks also to Tim O'Reilly, for Taoistically being.

And especially, a huge personal thanks to my friend Steve Talbott, who guided me through every step of
the way (especially suggesting the stroll at the end of the first chapter). His editorial criticisms were
always right on, and his incessant talent for beating me over the head ever so gently allowed me to make
this book a piece of art with which I'm extremely pleased.

As always, a special thank you to both Lyle and Jack, for teaching me nearly everything I know about
writing.

And finally, an immeasurable thank you to my friend and partner, Larry Wall, for giving Perl to us all in
the first place.

A one L Randal wrote a book,
A two L llama for the look,
But to whom we owe it all

Is the three L Larry Wall!
Randal
Previous: Learning Next: Acknowledgments for
Support Perl the Second Edition
Support Book Acknowledgments for the

Index Second Edition

[Library Home | Perl in a Nutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl
Programming | Perl Cookbook |

ﬁ Learning Perl —

Previous: Acknowledgments Preface Next: We'd Like to Hear from
for the First Edition You

Acknowledgments for the Second Edition

I'd like to thank Larry Wall for writing Perl, the Perl Porters for their continued maintenance efforts, and
the entire Perl community for their helpfulnesss toward one another.

Thanks also to Jon Orwant, Nate Torkington, and Larry Wall for reviewing the CGI chapter.

Tom
Previous: Acknowledgments Learning Next: We'd Like to Hear from
for the First Edition Perl You
Acknowledgments for the Book We'd Like to Hear from You
First Edition Index

[Library Home | Perl in a Nutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl
Programming | Perl Cookbook]

ﬁ Learning Perl —

Previous: Acknowledgments Preface Next: 1.
for the Second Edition Introduction

Wed Like to Hear from You

Please address comments and questions concerning this book to the publisher:
O'Reilly & Associates

101 Morris Street

Sebastopol, CA 95472

1-800-998-9938 (in United States or Canada)

1-707-829-0515 (international or local)

1-707-829-0104 (Fax)

You can also send us messages electronically. To be put on the mailing list or request a catalog, send
email to nuts@oreilly.com.

To ask technical questions or comment on the book, send email to: bookquestions @oreilly.com.

Previous: Acknowledgments Learning Next: 1.
for the Second Edition Perl Introduction
Acknowledgments for the Book 1. Introduction

Second Edition Index

[Library Home | Perl in a Nutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl
Programming | Perl Cookbook]

W Learning Per! —

Previous: We'd Like to Hear Chapter 1 [Next: 1.2 Purpose of Perl]
from You

1. Introduction

Contents:
History of Perl

Purpose of Perl
Availability

Basic Concepts

A Stroll Through Perl
Exercise

1.1 History of Perl

Perl is short for "Practical Extraction and Report Language," although it has also been called a
"Pathologically Eclectic Rubbish Lister." There's no point in arguing which one is more correct, because
both are endorsed by Larry Wall, Perl's creator and chief architect, implementor, and maintainer. He
created Perl when he was trying to produce some reports from a Usenet-news-like hierarchy of files for a
bug-reporting system, and awk ran out of steam. Larry, being the lazy programmer that he is, decided to
over-kill the problem with a general-purpose tool that he could use in at least one other place. The result
was the first version of Perl.

After playing with this version of Perl a bit, adding stuff here and there, Larry released it to the
community of Usenet readers, commonly known as "the Net." The users on this ragtag fugitive fleet of
systems around the world (tens of thousands of them) gave him feedback, asking for ways to do this,
that, or the other, many of which Larry had never envisioned his little Perl handling.

But as a result, Perl grew, and grew, and grew, at about the same rate as the UNIX operating system. (For
you newcomers, the entire UNIX kernel used to fit in 32K! And now we're lucky if we can get it in under
a few meg.) It grew in features. It grew in portability. What was once a little language now had over a
thousand pages of documentation split across dozens of different manpages, a 600-page Nutshell
reference book, a handful of Usenet newsgroups with 200,000 subscribers, and now this gentle
introduction.

Larry is no longer the sole maintainer of Perl, but retains his executive title of chief architect. And Perl is
still growing.

This book was tested with Perl version 5.0 patchlevel 4 (the most recent release as I write this).
Everything here should work with 5.0 and future releases of Perl. In fact, Perl 1.0 programs work rather
well with recent releases, except for a few odd changes made necessary in the name of progress.

Previous: We'd Like to Hear
from You

We'd Like to Hear from You

Learning
Perl

Book
Index

| Next: 1.2 Purpose of Perl]

1.2 Purpose of Perl

[Library Home | Perl in a Nutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl

Programming | Perl Cookbook]

W Learning Per! —

Previous: 1.1 Chapter 1 Next: 1.3
History of Perl Introduction Availability

1.2 Purpose of Perl

Perl is designed to assist the programmer with common tasks that are probably too heavy or too
portability-sensitive for the shell, and yet too weird or short-lived or complicated to code in C or some
other UNIX glue language.

Once you become familiar with Perl, you may find yourself spending less time trying to get shell quoting
(or C declarations) right, and more time reading Usenet news and downhill snowboarding, because Perl
is a great tool for leverage. Perl's powerful constructs allow you to create (with minimal fuss) some very
cool one-up solutions or general tools. Also, you can drag those tools along to your next job, because
Perl 1s highly portable and readily available, so you'll have even more time there to read Usenet news and
annoy your friends at karaoke bars.

Like any language, Perl can be "write-only"; it's possible to write programs that are impossible to read.
But with proper care, you can avoid this common accusation. Yes, sometimes Perl looks like line noise to
the uninitiated, but to the seasoned Perl programmer, it looks like checksummed line noise with a
mission in life. If you follow the guidelines of this book, your programs should be easy to read and easy
to maintain, but they probably won't win any obfuscated Perl contests.

Previous: 1.1 Learning Next: 1.3
History of Perl Perl Availability
1.1 History of Perl Book 1.3 Availability
Index

[Library Home | Perl in a Nutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl
Programming | Perl Cookbook]

W Learning Per! —

[Previous: 1.2 Purpose of Perl] Chapter 1 [Next: 1.4 Basic Concepts]
Introduction

1.3 Availability

If you get

perl: not found

when you try to invoke Perl from the shell, your system administrator hasn't caught the fever yet. But
even if it's not on your system, you can get it for free (or nearly so).

Perl is distributed under the GNU Public License,[1] which says something like, "you can distribute

binaries of Perl only if you make the source code available at no cost, and if you modify Perl, you have
to distribute the source to your modifications as well." And that's essentially free. You can get the source
to Perl for the cost of a blank tape or a few megabytes over a wire. And no one can lock Perl up and sell
you just binaries for their particular idea of "supported hardware configurations."

[1] Or the slightly more liberal Artistic License, found in the distribution sources.

In fact, it's not only free, but it runs rather nicely on nearly everything that calls itself UNIX or
UNIX-like and has a C compiler. This is because the package comes with an arcane configuration script
called Configure that pokes and prods the system directories looking for things it requires, and adjusts
the include files and defined symbols accordingly, turning to you for verification of its findings.

Besides UNIX or UNIX-like systems, people have also been addicted enough to Perl to port it to the
Amiga, the Atari ST, the Macintosh family, VMS, OS/2, even MS/DOS and Windows NT and Windows
95 - and probably even more by the time you read this. The sources for Perl (and many precompiled
binaries for non-UNIX architectures) are available from the Comprehensive Perl Archive Network (the
CPAN). If you are web-savvy, visit http://www.perl.com/CPAN for one of the many mirrors. If you're

absolutely stumped, write bookquestions @oreilly.com and say "Where can I get Perl?!7!"

| Previous: 1.2 Purpose of Perl| Learning | Next: 1.4 Basic Concepts|
Perl

1.2 Purpose of Perl Book 1.4 Basic Concepts
Index

[Library Home | Perl in a Nutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl
Programming | Perl Cookbook]

W Learning Per! —

Previous: 1.3 Chapter 1 Next: 1.5 A Stroll Through
Availability Introduction Perl

1.4 Basic Concepts

A shell script is nothing more than a sequence of shell commands stuffed into a text file. The file is then
"made executable" by turning on the execute bit (via chmod +x filename) and then the name of the file is
typed at a shell prompt. Bingo, one shell program. For example, a script to run the date command
followed by the who command can be created and executed like this:

o\°

echo date >somescript

echo who >>somescript

cat somescript

date

ho

chmod +x somescript
somescript

output of date followed by who]

o\

o\°

o0 — o oP° =

Similarly, a Perl program is a bunch of Perl statements and definitions thrown into a file. You then turn
on the execute bit[2] and type the name of the file at a shell prompt. However, the file has to indicate that

this is a Perl program and not a shell program, so you need an additional step.

[2] On UNIX systems, that is. For directions on how to render your scripts executable on
non-UNIX systems, see the Perl FAQ or your port's release notes.

Most of the time, this step involves placing the line

#!/usr/bin/perl

as the first line of the file. But if your Perl is stuck in some nonstandard place, or your system doesn't
understand the #! line, you'll have a little more work to do. Check with your Perl installer about this.
The examples in this book assume that you use this common mechanism.

Perl is mostly a free-format language like C - whitespace between tokens (elements of the program, like
print or +) is optional, unless two tokens put together can be mistaken for another token, in which case
whitespace of some kind is mandatory. (Whitespace consists of spaces, tabs, newlines, returns, or
formfeeds.) There are a few constructs that require a certain kind of whitespace in a certain place, but
they'll be pointed out when we get to them. You can assume that the kind and amount of whitespace
between tokens is otherwise arbitrary.

Although nearly any Perl program can be written all on one line, typically a Perl program is indented
much like a C program, with nested parts of statements indented more than the surrounding parts. You'll
see plenty of examples showing a typical indentation style throughout this book.

Just like a shell script, a Perl program consists of all of the Perl statements of the file taken collectively as
one big routine to execute. There's no concept of a "main" routine as in C.

Perl comments are like (modern) shell comments. Anything from an unquoted pound sign (#) to the end
of the line is a comment. There are no C-like multiline comments.

Unlike most shells (but like awk and sed), the Perl interpreter completely parses and compiles the
program into an internal format before executing any of it. This means that you can never get a syntax
error from the program once the program has started, and that the whitespace and comments simply
disappear and won't slow the program down. This compilation phase ensures the rapid execution of Perl
operations once it is started, and it provides additional motivation for dropping C as a systems utility
language merely on the grounds that C is compiled.

This compilation does take time; it's inefficient to have a voluminous Perl program that does one small
quick task (out of many potential tasks) and then exits, because the run-time for the program will be
dwarfed by the compile-time.

So Perl is like a compiler and an interpreter. It's a compiler because the program is completely read and
parsed before the first statement is executed. It's an interpreter because there is no object code sitting
around filling up disk space. In some ways, it's the best of both worlds. Admittedly, a caching of the
compiled object code between invocations, or even translation into native machine code, would be nice.
Actually, a working version of such a compiler already exists and is currently scheduled to be bundled
into the 5.005 release. See the Perl FAQ for current status.

Previous: 1.3 Learning Next: 1.5 A Stroll Through
Availability Perl Perl
1.3 Availability Book 1.5 A Stroll Through Perl
Index

[Library Home | Perl in a Nutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl
Programming | Perl Cookbook]

W Learning Perl —

[Previous: 1.4 Basic Concepts] Chapter 1 Next: 1.6
Introduction Exercise

1.5 A Stroll Through Perl

We begin our journey through Perl by taking a little stroll. This stroll presents a number of different
features by hacking on a small application. The explanations here are extremely brief; each subject area is
discussed in much greater detail later in this book. But this little stroll should give you a quick taste for the
language, and you can decide if you really want to finish this book rather than read some more Usenet
news or run off to the ski slopes.

1.5.1 The "Hello, World" Program

Let's look at a little program that actually does something. Here is your basic "Hello, world" program:

#!/usr/bin/perl -w
print ("Hello, world!\n");

The first line is the incantation that says this is a Perl program. It's also a comment for Perl; remember that
a comment is anything from a pound sign to the end of that line, as in many interpreter programming
languages. Unlike all other comments in the program, the one on the first line is special: Perl looks at that
line for any optional arguments. In this case, the -w switch was used. This very important switch tells Perl
to produce extra warning messages about potentially dangerous constructs. You should always develop
your programs under -w.

The second line is the entire executable part of this program. Here we see a print function. The built-in
function print starts it off, and in this case has just one argument, a C-like text string. Within this string,
the character combination \n stands for a newline character. The print statement is terminated by a
semicolon (;). As in C, all simple statements in Perl are terminated by a semicolon.[3]

[3] The semicolon can be omitted when the statement is the last statement of a block or file
oreval.

When you invoke this program, the kernel fires up a Perl interpreter, which parses the entire program (all
two lines of it, counting the first, comment line) and then executes the compiled form. The first and only
operation is the execution of the print function, which sends its arguments to the output. After the
program has completed, the Perl process exits, returning back a successful exit code to the parent shell.

Soon you'll see Perl programs where print and other functions are sometimes called with parentheses,
other times without them. The rule is simple: in Perl, parentheses for built-in functions are never required
nor forbidden. Their use can help or hinder clarity, so use your own judgment.

1.5.2 Asking Questions and Remembering the Result

Let's add a bit more sophistication. The Hello, world greeting is a touch cold and inflexible. Let's
have the program call you by your name. To do this, we need a place to hold the name, a way to ask for
the name, and a way to get a response.

One kind of place to hold values (like a name) is a scalar variable. For this program, we'll use the scalar
variable $name to hold your name. We'll go into more detail in Chapter 2, Scalar Data, about what these
variables can hold, and what you can do with them. For now, assume that you can hold a single number or
string (sequence of characters) in a scalar variable.

The program needs to ask for the name. To do that, we need a way to prompt and a way to accept input.
The previous program showed us how to prompt: use the print function. And the way to get a line from
the terminal is with the <STDIN> construct, which (as we're using it here) grabs one line of input. We
assign this input to the $name variable. This gives us the program:

print "What is your name? ";
Sname = <STDIN>;

The value of $name at this point has a terminating newline (Randal comes in as Randal\n). To get
rid of that, we use the chomp function, which takes a scalar variable as its sole argument and removes the
trailing newline (record separator), if present, from the string value of the variable:

chomp ($name) ;

Now all we need to do is say Hel 1o, followed by the value of the $name variable, which we can do in a
shell-like fashion by embedding the variable inside the quoted string:

print "Hello, S$name!\n";

As with the shell, if we want a dollar sign rather than a scalar variable reference, we can precede the
dollar sign with a backslash.

Putting it all together, we get:

#!/usr/bin/perl -w

print "What 1is your name? ";
Sname = <STDIN>;

chomp ($name) ;

print "Hello, S$name!\n";

1.5.3 Adding Choices

Now, let's say we have a special greeting for Randal, but want an ordinary greeting for anyone else. To do
this, we need to compare the name that was entered with the string Randal, and if it's the same, do
something special. Let's add a C-like if-then-else branch and a comparison to the program:
#!/usr/bin/perl

print "What is your name? ";

Sname = <STDIN>;

chomp ($name) ;

if ($name eq "Randal") {

print "Hello, Randal! How good of you to be here!\n";
} else {

print "Hello, $name!\n"; # ordinary greeting

}

The eq operator compares two strings. If they are equal (character-for-character, and have the same
length), the result is true. (There's no comparable operator[4] in C or C++.)

[4] Well, OK, there's a standard 1 ibc subroutine. But that's not an operator.

The 1 f statement selects which block of statements (between matching curly braces) is executed; if the
expression is true, it's the first block, otherwise it's the second block.

1.5.4 Guessing the Secret Word

Well, now that we have the name, let's have the person running the program guess a secret word. For
everyone except Randal, we'll have the program repeatedly ask for guesses until the person guesses
properly. First the program, and then an explanation:

#!/usr/bin/perl -w
Ssecretword = "llama"; # the secret word
print "What is your name? ";
Sname = <STDIN>;
chomp $name;
if ($name eq "Randal") {
print "Hello, Randal! How good of you to be here!\n";
} else {
print "Hello, $name!\n"; # ordinary greeting
print "What is the secret word? ";
Sqguess = <STDIN>;
chomp (Sguess);
while ($guess ne S$secretword) {
print "Wrong, try again. What is the secret word? ";
Sguess = <STDIN>;
chomp (Sguess);

}

First, we define the secret word by putting it into another scalar variable, $secretword. After the
greeting the (non-Randal) person is asked (with another print) for the guess. The guess is compared
with the secret word using the ne operator, which returns true if the strings are not equal (this is the
logical opposite of the eq operator). The result of the comparison controls a while loop, which executes
the block as long as the comparison is true.

Of course, this is not a very secure program, because anyone who is tired of guessing can merely interrupt
the program and get back to the prompt, or even look at the source to determine the word. But, we weren't
trying to write a security system, just an example for this section.

1.5.5 More than One Secret Word

Let's see how we can modify this to allow more than one valid secret word. Using what we've already
seen, we could compare the guess repeatedly against a series of good answers stored in separate scalar
variables. However, such a list would be hard to modify or read in from a file or compute based on the
day of the week.

A better solution is to store all possible answers in a data structure called a list, or (preferably) an array.
Each element of the array is a separate scalar variable that can be independently set or accessed. The
entire array can also be given a value in one fell swoop. We can assign a value to the entire array named
@words so that it contains three possible good passwords:

@words = ("camel","llama", "alpaca");

Array variable names begin with @, so they are distinct from scalar variable names. Another way to write
this so that we don't have to put all those quote marks there is with the gw () operator, like so:

@words = gw(camel llama alpaca);
These mean exactly the same thing; the gw makes it as if we had quoted each of three strings.

Once the array is assigned, we can access each element using a subscript reference. So $words [0] is
camel, Swords[1] is 11lama, and Swords [2] is alpaca. The subscript can be an expression as
well, so if we set $1i to 2, then Swords [$1] is alpaca. (Subscript references start with $ rather than @
because they refer to a single element of the array rather than the whole array.) Going back to our
previous example:

#!/usr/bin/perl -w
@words = gw(camel llama alpaca);
print "What is your name? ";
Sname = <STDIN>;
chomp ($name) ;
if ($name eq "Randal") {
print "Hello, Randal! How good of you to be here!\n";
} else {
print "Hello, S$name!\n"; # ordinary greeting
print "What is the secret word? ";
Sqguess = <STDIN>;
chomp (Sguess);
$i = 0; # try this word first

Scorrect = "maybe"; # 1is the guess correct or not?
while ($correct eq "maybe") { # keep checking til we know
if (Swords[$i] eqg Sguess) { # right?
Scorrect = "yes"; # yes!
} elsif ($i < 2) { # more words to look at?
Si = S1i + 1; # look at the next word next time
} else { # no more words, must be bad

print "Wrong, try again. What 1s the secret word?";
Sguess = <STDIN>;

chomp (Sguess);
Si = 0; # start checking at the first word again
}
} # end of while not correct
} # end of "not Randal"

You'll notice we're using the scalar variable $correct to indicate that we are either still looking for a
good password or that we've found one.

This program also shows the e1sif block of the 1 f-then-else statement. This exact construct is not
present in all programming languages; it's an abbreviation of the e1se block together with a new if
condition, but without nesting inside yet another pair of curly braces. It's a very Perl-like thing to compare
a set of conditions in a cascaded 1 f-elsif-elsif-elsif-else chain. Perl doesn't really have the

equivalent of C's "switch" or Pascal's "case" statement, although you can build one yourself without too
much trouble. See Chapter 2 of Programming Perl or the perlsyn (1) manpage for details.

1.5.6 Giving Each Person a Different Secret Word

In the previous program, any person who comes along could guess any of the three words and be
successful. If we want the secret word to be different for each person, we'll need a table that matches up
people with words:

Person [Secret Word

Fred camel

Barney |llama

Betty |alpaca

Wilma |alpaca

Notice that both Betty and Wilma have the same secret word. This is fine.

The easiest way to store such a table in Perl is with a hash. Each element of the hash holds a separate
scalar value (just like the other type of array), but the hashes are referenced by a key, which can be any
scalar value (any string or number, including noninteger and negative values). To create a hash called
$words (notice the % rather than @) with the keys and values given in the table above, we assign a value
to $words (much as we did earlier with the array):

Swords = gw (
fred camel
barney llama
betty alpaca
wilma alpaca

) 7

Each pair of values in the list represents one key and its corresponding value in the hash. Note that we
broke this assignment over many lines without any sort of line-continuation character, because whitespace
is generally insignificant in a Perl program.

To find the secret word for Betty, we need to use Betty as the key in a reference to the hash $words, via
some expression such as Swords{"betty"}. The value of this reference is alpaca, similar to what
we had before with the other array. Also as before, the key can be any expression, so setting $person to
betty and evaluating Swords {$person} gives alpaca as well.

Putting all this together, we get a program like this:
#!/usr/bin/perl

swords = gqw (
fred camel
barney llama
betty alpaca
wilma alpaca

)i
print "What is your name? ";
Sname = <STDIN>;
chomp (Sname) ;
if (Sname eqg "Randal") {
print "Hello, Randal! How good of you to be here!\n";
} else {
print "Hello, Sname!\n"; # ordinary greeting
Ssecretword = Swords{$name}; # get the secret word
print "What is the secret word? ";
Sguess = <STDIN>;
chomp (Sguess);
while ($guess ne S$secretword) {
print "Wrong, try again. What is the secret word? ";
Sguess = <STDIN>;
chomp (Sguess);

}

Note the lookup of the secret word. If the name is not found, the value of $secretword will be an
empty string,[5] which we can then check for if we want to define a default secret word for everyone else.
Here's how that looks:

[... rest of program deleted ...]

Ssecretword = Swords{S$name}; # get the secret word
if ($secretword eq "") { # oops, not found
Ssecretword = "groucho"; # sure, why a duck?

}
print "What is the secret word? ";
[... rest of program deleted ...]

[5] Well, OK, it's the unde f value, but it looks like an empty string to the eq operator.
You'd get a warning about this if you used -w on the command line, which is why we
omitted it here.

1.5.7 Handling Varying Input Formats

If I enter Randal L. Schwartz or randal rather than Randal, I'm lumped in with the rest of the
users, because the eq comparison is an exact equality. Let's look at one way to handle that.

Suppose I wanted to look for any string that began with Randal, rather than just a string that was equal
to Randal. I could do this in sed, awk, or grep with a regular expression: a template that defines a
collection of strings that match. As in sed, awk, or grep, the regular expression in Perl that matches any
string that begins with Randal i1s “"Randal. To match this against the string in $name, we use the
match operator as follows:

if (Sname =~ /”Randal/) {
yes, it matches
} else {

no, it doesn't

}

Note that the regular expression is delimited by slashes. Within the slashes, spaces and other whitespace
are significant, just as they are within strings.

This almost does it, but it doesn't handle selecting randal or rejecting Randall. To accept randal,
we add the ignore-case option, a small i appended after the closing slash. To reject Randall, we add a
word boundary special marker (similar to vi and some versions of grep) in the form of \b in the regular
expression. This ensures that the character following the first 1 in the regular expression is not another
letter. This changes the regular expression to be /*randal\b/1i, which means "randal at the
beginning of the string, no letter or digit following, and OK to be in either case."

When put together with the rest of the program, it looks like this:
#!/usr/bin/perl

swords = gw (
fred camel
barney llama
betty alpaca
wilma alpaca

)i
print "What 1is your name? ";
Sname = <STDIN>;
chomp ($name) ;
if (Sname =~ /"“randal\b/i) {
print "Hello, Randal! How good of you to be here!\n";
} else {
print "Hello, $name!\n"; # ordinary greeting

Ssecretword = Swords{S$name}; # get the secret word
if (Ssecretword egqg "") { # oops, not found
Ssecretword = "groucho"; # sure, why a duck?

}
print "What is the secret word? ";
Sguess = <STDIN>;

chomp (Sguess);

while ($Sguess ne S$secretword) {
print "Wrong, try again. What is the secret word? ";
Sguess = <STDIN>;
chomp (Sguess);

}

As you can see, the program is a far cry from the simple Hello, world, but it's still very small and
workable, and does quite a bit for being so short. This is The Perl Way.

Perl provides every regular expression feature found in every standard UNIX utility (and even some
nonstandard ones). Not only that, but the way Perl handles string matching is about the fastest on the
planet, so you don't lose performance. (A grep-like program written in Perl often beats the
vendor-supplied[6] C-coded grep for most inputs. This means that grep doesn't even do its one thing very

well.)
[6] GNU egrep tends to be much faster than Perl at this.

1.5.8 Making It Fair for the Rest

So, now I can enter Randal or randal or Randal L. Schwart z, but what about everyone else?
Barney still has to say exactly barney (not even barney followed by a space).

To be fair to Barney, we need to grab the first word of whatever's entered, and then convert it to
lowercase before we look up the name in the table. We do this with two operators: the substitute operator,
which finds a regular expression and replaces it with a string, and the translate operator, to put the string
in lowercase.

First, the substitute operator: we want to take the contents of $name, find the first nonword character, and
zap everything from there to the end of the string. /\W. * / is the regular expression we are looking for:
the \W stands for a nonword character (something besides a letter, digit, or underscore), and . * means
any characters from there to the end of the line. Now, to zap these characters away, we need to take
whatever part of the string matches this regular expression and replace it with nothing:

Sname =~ s/\W.*//;

We're using the same =~ operator that we did before, but now on the right we have a substitute operator:
the letter s followed by a slash-delimited regular expression and string. (The string in this example is the
empty string between the second and third slashes.) This operator looks and acts very much like the
substitutions of the various editors.

Now, to get whatever's left into lowercase, we translate the string using the t r operator.[7] It looks a lot
like a UNIX #r command, taking a list of characters to find and a list of characters to replace them with.
For our example, to put the contents of $name in lowercase, we use:

Sname =~ tr/A-Z/a-z/;

[7] This doesn't work for characters with accent marks, although the uc function would. See
the perllocale (1) manpage first distributed with the 5.004 release of Perl for details.

The slashes delimit the searched-for and replacement character lists. The dash between A and Z stands for
all the characters in between, so we have two lists that are each 26 characters long. When the t r operator
finds a character from the string in the first list, the character is replaced with the corresponding character
in the second list. So all uppercase A's become lowercase a's, and so on.[8]

[8] Experts will note that we could have also constructed something like
s/ (\S*) .*/\L$1/ to do this all in one fell swoop, but experts probably won't be reading
this section.

Putting that together with everything else results in:
#!/usr/bin/perl

swords = gqw (
fred camel
barney llama
betty alpaca
wilma alpaca

)i

print "What is your name? ";
Sname = <STDIN>;

chomp ($name) ;

Soriginal_name = Sname; #save for greeting

Sname =~ s/\W.*//; # get rid of everything after first word
Sname =~ tr/A-Z/a-z/; # lowercase everything

if ($name eq "randal") { # ok to compare this way now

print "Hello, Randal! How good of you to be here!\n";
} else {
print "Hello, $original_name!\n"; # ordinary greeting

Ssecretword = Swords{$name}; # get the secret word
if ($Ssecretword eg "") { # oops, not found
Ssecretword = "groucho"; # sure, why a duck?

}

print "What is the secret word? ";

Sguess = <STDIN>;

chomp (Sguess);

while ($guess ne S$secretword) {
print "Wrong, try again. What 1s the secret word? ";
Sqguess = <STDIN>;
chomp (Sguess);

}

Notice how the regular expression match for Randal became a simple comparison again. After all, both
Randal L. Schwartz and Randal become randal after the substitution and translation. And
everyone else gets a fair ride, because Fred and Fred Flintstone both become fred; Barney
Rubble and Barney, the 1little guy become barney, and so on.

With just a few statements, we've made the program much more user-friendly. You'll find that expressing

complicated string manipulation with a few keystrokes is one of Perl's many strong points.

However, hacking away at the name so that we could compare it and look it up in the table destroyed the
name that was entered. So, before the program hacks on the name, it saves itin Soriginal_name.
(Like C symbols, Perl variable names consist of letters, digits, and underscores and can be of nearly
unlimited length.) We can then make references to Soriginal_name later.

Perl has many ways to monitor and mangle strings. You'll find out about most of them in Chapter 7,
Regular Expressions, and Chapter 15, Other Data Transformation.

1.5.9 Making It a Bit More Modular

Now that we've added so much to the code, we have to scan through many detailed lines before we can
get the overall flow of the program. What we need is to separate the high-level logic (asking for a name,
looping based on entered secret words) from the details (comparing a secret word to a known good word).
We might do this for clarity, or maybe because one person is writing the high-level part and another is
writing (or has already written) the detailed parts.

Perl provides subroutines that have parameters and return values. A subroutine is defined once in a
program, and can be used repeatedly by being invoked from within any expression.

For our small-but-rapidly-growing program, let's create a subroutine called good_word that takes a
name and a guessed word, and returns true if the word is correct and false if not. The definition of such a
subroutine looks like this:

sub good_word {

my (Ssomename, Ssomeguess) = (@_; # name the parameters
Ssomename =~ s/\W.*//; # get rid of everything after first word
Ssomename =~ tr/A-Z/a-z/; # lowercase everything

if ($somename eq "randal") { # should not need to guess
return 1; # return value 1s true

} elsif (($words{S$somename} || "groucho") eg $someguess) {
return 1; # return value 1s true
} else {

return 0; # return value is false

}

First, the definition of a subroutine consists of the reserved word sub followed by the subroutine name
followed by a block of code (delimited by curly braces). This definition can go anywhere in the program
file, though most people put it at the end.

The first line within this particular definition is an assignment that copies the values of the two parameters
of this subroutine into two local variables named $somename and $someguess. (The my () defines
the two variables as private to the enclosing block - in this case, the entire subroutine - and the parameters
are initially in a special local array called @_.)

The next two lines clean up the name, just like the previous version of the program.

The i f-elsif-else statement decides whether the guessed word ($someguess) is correct for the
name ($somename). Randal should not make it into this subroutine, but even if it does, whatever word
was guessed is OK.

A return statement can be used to make the subroutine immediately return to its caller with the supplied
value. In the absence of an explicit return statement, the last expression evaluated in a subroutine is the
return value. We'll see how the return value is used after we finish describing the subroutine definition.

The test for the e1s1if part looks a little complicated; let's break it apart:

(Swords{$somename} || "groucho") eqg S$someguess

The first thing inside the parentheses is our familiar hash lookup, yielding some value from $words
based on a key of $somename. The operator between that value and the string groucho is the | |
(logical-or) operator similar to that used in C and awk and the various shells. If the lookup from the hash
has a value (meaning that the key $somename was in the hash), the value of the expression is that value.
If the key could not be found, the string of groucho is used instead. This is a very Perl-like thing to do:
specify some expression, and then provide a default value using | | in case the expression turns out to be
false.

In any case, whether it's a value from the hash, or the default value groucho, we compare it to whatever
was guessed. If the comparison is true, we return 1, otherwise we return 0.

So, expressed as a rule, if the name is randal, or the guess matches the lookup in $words based on the
name (with a default of groucho if not found), then the subroutine returns 1, otherwise it returns O.

Now let's integrate all this with the rest of the program:
#!/usr/bin/perl

swords = gqw (
fred camel
barney llama
betty alpaca
wilma alpaca

) 7
print "What is your name? ";
Sname = <STDIN>;
chomp ($name) ;
if (Sname =~ /"“randal\b/i) { # back to the other way :-)
print "Hello, Randal! How good of you to be here!\n";
} else {
print "Hello, $name!\n"; # ordinary greeting
print "What is the secret word? ";
Sguess = <STDIN>;
chomp (Sguess);
while (! good_word ($name, Sguess)) {
print "Wrong, try again. What is the secret word? ";
Sguess = <STDIN>;
chomp (Sguess);

}

[... insert definition of good_word() here ...]

Notice that we've gone back to the regular expression to check for Randal, because now there's no need
to pull apart the first name and convert it to lowercase, as far as the main program is concerned.

The big difference is the while loop containing the subroutine good_word. Here, we see an invocation
of the subroutine, passing it two parameters, $name and $guess. Within the subroutine, the value of
$somename is set from the first parameter, in this case $name. Likewise, $someguess is set from the
second parameter, Sguess.

The value returned by the subroutine (either 1 or 0, recalling the definition given earlier) is logically
inverted with the prefix ! (logical not) operator. This operator returns true if the expression following is
false, and returns false if the expression following is true. The result of this negation controls the while
loop. You can read this as "while it's not a good word...". Many well-written Perl programs read very
much like English, provided you take a few liberties with either Perl or English. (But you certainly won't
win a Pulitzer that way.)

Note that the subroutine assumes that the value of the $words hash is set by the main program.

Such a cavalier approach to global variables doesn't scale very well, of course. Generally speaking,
variables not created with my are global to the whole program, while those my creates last only until the
block in which they were declared exits. Don't worry: Perl does in fact support a rich variety of other
kinds of variables, including those private to a file (or package), as well as variables private to a function
that retain their values between invocations, which is what we could really use here. However, at this
stage in your Perl education, explaining these would only complicate your life. When you're ready for it,
check out what Programming Perl has to say about scoping, subroutines, modules, and objects, or see the

online documentation in the perlsub (1), perlmod (1), perlobj (1), and peritoot (1) manpages.

1.5.10 Moving the Secret Word List into a Separate File

Suppose we wanted to share the secret word list among three programs. If we store the word list as we
have done already, we will need to change all three programs when Betty decides that her secret word
should be swine rather than alpaca. This can get to be a hassle, especially if Betty changes her mind
often.

So, let's put the word list into a file and then read the file to get the word list into the program. To do this,
we need to create an I/O channel called a filehandle. Your Perl program automatically gets three
filehandles called STDIN, STDOUT, and STDERR, corresponding to the three standard I/O channels in
most programming environments. We've already been using the STDIN handle to read data from the
person running the program. Now, it's just a matter of getting another handle attached to a file of our own
choice.

Here's a small chunk of code to do that:

sub init_words {
open (WORDSLIST, "wordslist");
while ($name = <WORDSLIST>) {
chomp (S$name) ;

Sword = <WORDSLIST>;
chomp (Sword);
Swords{$name} = S$Sword;
}
close (WORDSLIST);
}

We're putting it into a subroutine so that we can keep the main part of the program uncluttered. This also
means that at a later time (hint: a few revisions down in this stroll), we can change where the word list is
stored, or even the format of the list.

The arbitrarily chosen format of the word list is one item per line, with names and words, alternating. So,
for our current database, we'd have something like this:

fred
camel
barney
llama
betty
alpaca
wilma
alpaca

The open function initializes a filehandle named WORDSLIST by associating it with a file named
wordslist in the current directory. Note that the filehandle doesn't have a funny character in front of it
as the three variable types do. Also, filehandles are generally uppercase - although they aren't required to
be - for reasons detailed later.

The while loop reads lines from the words1ist file (via the WORDSLIST filehandle) one line at a
time. Each line is stored into the $name variable. At the end of the file, the value returned by the
<WORDSLIST> operation is the empty string,[9] which looks false to the while loop, and terminates it.

That's how we get out at the end.
[9] Well, technically it's unde £, but close enough for this discussion.

If you were running with -w, you would have to check that the return value read in was actually defined.
The empty string returned by the <WORDLI ST> operation isn't merely empty: it's unde f again. The
defined function is how you test for unde £ when this matters. When reading lines from a file, you'd
do the test this way:

while (defined (Sname = <WORDLIST>)) {

But if you were being that careful, you'd probably also have checked to make sure that open returned a
true value. You know, that's probably not a bad idea either. The built-in die function is frequently used
to exit the program with an error message in case something goes wrong. We'll see an example of it in the
next revision of the program.

On the other hand, the normal case is that we've read a line (including the newline) into $name. First, off
comes the newline using the chomp function. Then, we have to read the next line to get the secret word,
holding that in the $word variable. It, too, gets the newline hacked off.

The final line of the while loop puts Sword into $words with a key of $name, so that the rest of the
program can access it later.

Once the file has been read, the filehandle can be recycled with the c1ose function. (Filehandles are
automatically closed anyway when the program exits, but we're trying to be tidy. If we were really tidy,
we'd even check for a true return value from close in case the disk partition the file was on went south,
its network filesystem became unreachable, or some other catastrophe occurred. Yes, these things really
do happen. Murphy will always be with us.)

This subroutine definition can go after or before the other one. And we invoke the subroutine instead of
setting $words in the beginning of the program, so one way to wrap up all of this might look like:

#!/usr/bin/perl
init_words () ;
print "What 1s your name? ";
Sname = <STDIN>;
chomp $name;
if (Sname =~ /"“randal\b/i) { # back to the other way :-)
print "Hello, Randal! How good of you to be here!\n";
} else {
print "Hello, S$name!\n"; # ordinary greeting
print "What is the secret word? ";
Sqguess = <STDIN>;
chomp (Sguess);
while (! good_word ($Sname, Sguess)) {
print "Wrong, try again. What is the secret word? ";
Sguess = <STDIN>;
chomp (Sguess);
}
}
subroutines from here down
sub init_words {
open (WORDSLIST, "wordslist") ||
die "can't open wordlist: S$!";
while (defined ($Sname = <WORDSLIST>)) {
chomp (S$name) ;
Sword = <WORDSLIST>;
chomp S$word;
Swords{$name} = S$Sword;
}
close (WORDSLIST) || die "couldn't close wordlist: $!";

sub good_word {

my ($somename, $someguess) = (@_; # name the parameters

Ssomename =~ s/\W.*//; # delete everything after
first word

Ssomename =~ tr/A-Z/a-z/; # lowercase everything

if ($somename eq "randal") { # should not need to guess

return 1; # return value is true

} elsif ((Swords{S$Ssomename} || "groucho") eq $someguess) {
return 1; # return value is true

} else {
return 0; # return value is false

}

Now it's starting to look like a full grown program. Notice the first executable line is an invocation of
init_words (). The return value is not used in a further calculation, which is good because we didn't
return anything remarkable. In this case, it's guaranteed to be a true value (the value 1, in particular),
because if the c1ose had failed, the die would have printed a message to STDERR and exited the
program. The die function is fully explained in Chapter 10, Filehandles and File Tests, but because it's
essential to check the return values of anything that might fail, we'll get into the habit of using it right
from the start. The $! variable (also explained in Chapter 10), contains the system error message

explaining why the system call failed.

The open function is also used to open files for output, or open programs as files (demonstrated
shortly). The full scoop on open comes much later in this book, however, in Chapter 10.

1.5.11 Ensuring a Modest Amount of Security

"That secret word list has got to change at least once a week!" cries the Chief Director of Secret Word
Lists. Well, we can't force the list to be different, but we can at least issue a warning if the secret word list
has not been modified in more than a week.

The best place to do this is in the init_woxrds () subroutine; we're already looking at the file there. The
Perl operator —M returns the age in days since a file or filehandle has last been modified, so we just need
to see whether this is greater than seven for the WORDSLIST filehandle:

sub init words {
open (WORDSLIST, "wordslist") ||
die "can't open wordlist: $!";
if (=M WORDSLIST >= 7.0) { # comply with bureaucratic policy
die "Sorry, the wordslist is older than seven days.";
}
while ($name = <WORDSLIST>) {
chomp (S$name) ;
Sword = <WORDSLIST>;
chomp (Sword) ;
Swords{Sname} = Sword;
}
close (WORDSLIST) || die "couldn't close wordlist: $!";
}

The value of -M WORDSLIST is compared to seven, and if greater, bingo, we've violated policy.

The rest of the program remains unchanged, so in the interest of saving a few trees, I won't repeat it here.

Besides getting the age of a file, we can also find out its owner, size, access time, and everything else that
the system maintains about a file. More on that in Chapter 10.

1.5.12 Warning Someone When Things Go Astray

Let's see how much we can bog down the system by sending a piece of email each time someone guesses
their secret word incorrectly. We need to modify only the good_word () subroutine (thanks to
modularity) because we have all the information right there.

The mail will be sent to you if you type your own mail address where the code says
"YOUR_ADDRESS_HERE." Here's what we have to do: just before we return O from the subroutine, we
create a filehandle that is actually a process (mail), like so:

sub good_word {

my ($somename, Ssomeguess) = @_; # name the parameters
Ssomename =~ s/\W.*//; # get rid of stuff after
first word

Ssomename =~ tr/A-Z/a-z/; # lowercase everything

if ($Ssomename eq "randal") { # should not need to guess
return 1; # return value is true

} elsif ((Swords{S$Ssomename} ||"groucho") eqg S$Ssomeguess) {
return 1; # return value is true

} else {

open MAIL,"|mail YOUR_ADDRESS_HERE";
print MAIL "bad news: Ssomename guessed S$someguess\n";
close MAIL;

return 0; # return value is false

}

The first new statement here is open, which has a pipe symbol (|) at the beginning of its second
argument. This is a special indication that we are opening a command rather than a file. Because the pipe
is at the beginning of the command, we are opening a command so that we can write to it. (If you put the
pipe at the end rather than the beginning, you can read the output of a command instead.)

The next statement, a print, shows that a filehandle between the print keyword and the values to be
printed selects that filehandle for output, rather than STDOUT.[10] This means that the message will end
up as the input to the mail command.

[10] Well, technically, the currently selected filehandle. That's covered much later, though.
Finally, we close the filehandle, which starts mail sending its data merrily on its way.

To be proper, we could have sent the correct response as well as the error response, but then someone
reading over my shoulder (or lurking in the mail system) while I'm reading my mail might get too much
useful information.

Perl can also open filehandles, invoke commands with precise control over argument lists, or even fork
off a copy of the current program, and execute two (or more) copies in parallel. Backquotes (like the
shell's backquotes) give an easy way to grab the output of a command as data. All of this gets described in
Chapter 14, Process Management, so keep reading.

1.5.13 Many Secret Word Files in the Current Directory

Let's change the definition of the secret word filename slightly. Instead of just the file named
wordslist, let's look for anything in the current directory that ends in . secret. To the shell, we say

echo *.secret

to get a brief listing of all of these names. As you'll see in a moment, Perl uses a similar wildcard-name
syntax.

Pulling out the init_words () definition again:

sub init words {
while (defined($Sfilename = glob ("*.secret"))) {
open (WORDSLIST, $filename) ||
die
if (M WORDSLIST < 7.0) {
while ($Sname = <WORDSLIST>) {
chomp $name;
Sword = <WORDSLIST>;
chomp S$word;

Swords{$name} = S$Sword;

"can't open wordlist: $!";

}

}
close (WORDSLIST) || die "couldn't close wordlist: S$!";

}

First, we've wrapped a new while loop around the bulk of the routine from the previous version. The
new thing here is the g1lob function. This is called a filename glob, for historical reasons. It works much
like <STDIN>, in that each time it is accessed, it returns the next value: successive filenames that match
the shell pattern, in this case * . secret. When there are no additional filenames to be returned, the
filename glob returns an empty string.[11]

[11] Yeah, yeah, undef again.

So if the current directory contains fred. secret and barney.secret, then $filename is
barney.secret on the first pass through the while loop (the names come out in alphabetically
sorted order). On the second pass, $filename is fred. secret. And there is no third pass because
the glob returns an empty string the third time it is called, perceived by the while loop to be false,
causing an exit from the subroutine.

Within the while loop, we open the file and verify that it is recent enough (less than seven days since the
last modification). For the recent-enough files, we scan through as before.

Note that if there are no files that match * . secret and are less than seven days old, the subroutine will
exit without having set any secret words into the $words array. That means that everyone will have to
use the word groucho. Oh well. (For real code, I would have added some check on the number of
entries in $words before returning, and die'd if it weren't good. See the key s function when we get to
hashes in Chapter 5, Hashes.)

1.5.14 Listing the Secret Words

Well, the Chief Director of Secret Word Lists wants a report of all the secret words currently in use and
how old they are. If we set aside the secret word program for a moment, we'll have time to write a
reporting program for the Director.

First, let's get all of the secret words, by stealing some code from the init_words () subroutine:

while (defined($filename = glob("*.secret"))) {
open (WORDSLIST, S$filename) || die "can't open wordlist: $!";
if (=M WORDSLIST < 7.0) {
while ($name = <WORDSLIST>) {
chomp (Sname) ;
Sword = <WORDSLIST>;
chomp (Sword);
new stuff will go here
}
}
close (WORDSLIST) || die "couldn't close wordlist: S$!";
}

At the point marked "new stuff will go here," we know three things: the name of the file (in
$filename), someone's name (in $name), and that person's secret word (in Sword). Here's a place to
use Perl's report generating tools. We define a format somewhere in the program (usually near the end,
like a subroutine):

format STDOUT =
<< A< gk

Sfilename, S$name, S$Sword

The format definition begins with format STDOUT =, and ends with a single period. The two lines
between are the format itself. The first line of this format is a field definition line that specifies the
number, length, and type of the fields. For this format, we have three fields. The line following a field
definition line is always a field value line. The value line gives a list of expressions that will be evaluated
when this format is used, and the results of those expressions will be plugged into the fields defined in the
previous line.

We invoke this format with the wr ite function, like so:

#!/usr/bin/perl
while (defined($filename = glob ("*.secret"))) {
open (WORDSLIST, S$filename) || die "can't open wordlist: S$!";

if (-M WORDSLIST < 7.0) {
while ($Sname = <WORDSLIST>) {
chomp (S$name) ;
Sword = <WORDSLIST>;
chomp (Sword);
write; # invoke format STDOUT to STDOUT

}
close (WORDSLIST) || die "couldn't close wordlist: $!";

}
format STDOUT =
@<L Rl Rk

Sfilename, S$name, Sword

When the format is invoked, Perl evaluates the field expressions and generates a line that it sends to the
STDOUT filehandle. Because write is invoked once each time through the loop, we'll get a series of
lines with text in columns, one line for each secret word entry.

Hmm. We haven't labeled the columns. That's easy enough. We just need to add a top-of-page format,
like so:

format STDOUT_TOP =
Page (<<
$%

Filename Name Word

This format is named STDOUT_TOP, and will be used initially at the first invocation of the STDOUT
format, and again every time 60 lines of output to STDOUT have been generated. The column headings
here line up with the columns from the STDOUT format, so everything comes out tidy.

The first line of this format shows some constant text (Page) along with a three-character field definition.
The following line is a field value line, here with one expression. This expression is the $% variable,[12]

which holds the number of pages printed - a very useful value in top-of-page formats.

[12] More mnemonic aliases for these predefined scalar variables are available via the
English module.

The third line of the format is blank. Because this line does not contain any fields, the line following it is
not a field value line. This blank line is copied directly to the output, creating a blank line between the
page number and the column headers below.

The last two lines of the format also contain no fields, so they are copied as is directly to the output. So
this format generates four lines, one of which has a part that changes from page to page.

Just tack this definition onto the previous program to get it to work. Perl notices the top-of-page format

automatically.

Perl also has fields that are centered or right-justified, and supports a filled paragraph area as well. More
on this when we get to formats in Chapter 11, Formats.

1.5.15 Making Those Old Word Lists More Noticeable

As we are scanning through the * . secret files in the current directory, we may find files that are too
old. So far, we are simply skipping over those files. Let's go one step more: we'll rename them to
* .secret .old so that a directory listing will quickly show us which files are too old, simply by name.

Here's how the init_words () subroutine looks with this modification:

sub init_words {
while (defined($Sfilename = glob ("*.secret"))) {
open (WORDSLIST, S$filename) ||
die "can't open wordlist: S!";
if (=M WORDSLIST < 7.0) {
while ($name = <WORDSLIST>) {
chomp ($name) ;
Sword = <WORDSLIST>;
chomp (Sword);
Swords{$name} = S$Sword;
}
} else { # rename the file so it gets noticed
rename ($filename,"$filename.old") ||
die "can't rename $filename to S$filename.old: $!";
}
close (WORDSLIST) || die "couldn't close wordlist: S$!";

}

Notice the new e1se part of the file age check. If the file is older than seven days, it gets renamed with
the rename function. This function takes two parameters, renaming the file named by the first parameter
to the name given in the second parameter.

Perl has a complete range of file manipulation operators; anything you can do to a file from a C program,
you can also do from Perl.

1.5.16 Maintaining a Last-Good-Guess Database

Let's keep track of when the most recent correct guess has been made for each user. One data structure
that might seem to work at first glance is a hash. For example, the statement

Slast_good{Sname} = time;

assigns the current time in internal format (some large integer above 800 million, incrementing one
number per second) to an element of $1ast_good that has the name for a key. Over time, this would
seem to give us a database indicating the most recent time the secret word was guessed properly for each

of the users who had invoked the program.

But, the hash doesn't have an existence between invocations of the program. Each time the program is
invoked, a new hash is formed. So at most, we create a one-element hash and then immediately forget it
when the program exits.

The dbmopen function[13] maps a hash out into a disk file (actually a pair of disk files) known as a
DBM. It's used like this:

dbmopen (%last_good,"lastdb",0666) ||
die "can't dbmopen lastdb: $!";

Slast_good{S$name} = time;
dbmclose (%last_good) || die "can't dbmclose lastdb: S$!";

[13] Or using the more low-level t ie function on a specific database, as detailed in Chapters
5 and 7 of Programming Perl, or in the peritie (1) and AnyDBM_File (3) manpages.

The first statement performs the mapping, using the disk filenames of lastdb.dir and lastdb.pag
(these names are the normal names for a DBM called 1astdb). The file permissions used for these two
files if the files must be created (as they will the first time through) is 066 6.[14] This mode means that

anyone can read or write the files. If you're on a UNIX system, file permission bits are described in the
chmod (2) manpage. On non-UNIX systems, chmod () may or may not work the same way. For example,
under MS-DOS, files have no permissions, whereas under WindowsNT, they do. See your port's release
notes about this if you're unsure.

[14] The actual permissions of the files will be the logical AND of 0666 and your process's
current umask.

The second statement shows that we use this mapped hash just like a normal hash. However, creating or
updating an element of the hash automatically updates the disk files that form the DBM. And, when the
hash is later accessed, the values within the hash come directly from the disk image. This gives the hash a
life beyond the current invocation of the program - a persistence of its own.

The third statement disconnects the hash from the DBM, much like a file c1ose operation.

Although the inserted statements maintain the database just fine (and even create it the first time), we
don't have any way of examining the information yet. To do that, we can create a separate little program
that looks something like this:

#!/usr/bin/perl -w
dbmopen (%last_good,"lastdb",0666) ||
die "can't dbmopen lastdb: $!";
foreach S$name (sort keys (%last_good)) {
Swhen = S$last_good{Sname};
Shours = (time () - Swhen) / 3600; # compute hours ago
write;

}

format STDOUT =
User @<<<<<<K<<<<<: last correct guess was @<<< hours ago.

Sname, Shours

We've got a few new operations here: a foreach loop, sorting a list, and getting the keys of an array.

First, the keys function takes a hash name as an argument and returns a list of all the keys of that hash in
some unspecified order. For the $words hash defined earlier, the result is something like fred,
barney, betty, wilma, in some unspecified order. For the $1ast_good hash, the result will be a list
of all users who have guessed their own secret word successfully.

The sort function sorts the list alphabetically (just as if you passed a text file through the sort
command). This makes sure that the list processed by the foreach statement is always in alphabetical
order.

Finally, the Perl foreach statement is a lot like the C-shell foreach statement. It takes a list of values
and assigns each one in turn to a scalar variable (here, $name) executing the body of the loop (a block)
once for each value. So, for five names in the $1ast_good list, we get five passes through the loop,
with $name being a different value each time.

The body of the foreach loop loads up a couple of variables used within the STDOUT format and
invokes the format. Note that we figure out the age of the entry by subtracting the stored system time (in
the array) from the current time (as returned by t ime) and then divide that by 3600 (to convert seconds to
hours).

Perl also provides easy ways to create and maintain text-oriented databases (like the Password file) and
fixed-length-record databases (like the "last login" database maintained by the login program). These are
described in Chapter 17, User Database Manipulation.

1.5.17 The Final Programs

Here are the programs from this stroll in their final form so you can play with them.

First, the "say hello" program:

#!/usr/bin/perl
init_words () ;
print "what is your name? ";
Sname = <STDIN>;
chomp ($name) ;
if (Sname =~ /"“randal\b/i) { # back to the other way :-)
print "Hello, Randal! How good of you to be here!\n";
} else {
print "Hello, S$name!\n"; # ordinary greeting
print "What is the secret word? ";
Sguess = <STDIN>;
chomp $guess;
while (! good_word(Sname, Sguess)) {
print "Wrong, try again. What is the secret word? ";
Sguess = <STDIN>;

chomp $guess;

}
dbmopen (%last_good,"lastdb",0666);
Slast_good{$name} = time;
dbmclose (%last_good);
sub init_words {
while ($filename = <*,secret>) {
open (WORDSLIST, $filename) | |

die "can't open $filename:

if (-M WORDSLIST < 7.0) {
while ($Sname = <WORDSLIST>) {
chomp ($name) ;
Sword = <WORDSLIST>;
chomp ($word);
Swords{S$Sname} = Sword;
}
} else { # rename the file so it gets noticed
rename ($filename,"S$filename.old") ||
die "can't rename S$filename:

}
close WORDSLIST;

}

sub good_word {

my ($Ssomename, Ssomeguess) = (@_; # name the parameters

$!";

$!";

Ssomename =~ s/\W.*//; # delete everything after first word

$somename =~ tr/A-Z/a-z/; # lowercase everything

if ($somename eq "randal") { # should not need to guess

return 1; # return value is true

} elsif ((Swords{S$Ssomename} || "groucho") eq $someguess) {

return 1; # return value is true
} else {
open (MAIL, "|mail YOUR_ADDRESS_HERE") ;

print MAIL "bad news: S$Ssomename guessed S$someguess\n";

close MAIL;
return 0; # return value is false

}

Next, we have the secret word lister:

#!/usr/bin/perl
while ($filename = <*.,secret>) {
open (WORDSLIST, S$filename) ||
die "can't open S$filename:

$!";

if (-M WORDSLIST < 7.0) {
while ($Sname = <WORDSLIST>) {
chomp (S$name) ;
Sword = <WORDSLIST>;
chomp (Sword);
write; # invoke format STDOUT to STDOUT

}
close (WORDSLIST);

}
format STDOUT =
@<L Rl Rk

Sfilename, S$name, Sword

format STDOUT_TOP =
Page (<<

$%

Filename Name Word

And finally, the last-time-a-word-was-used display program:

#!/usr/bin/perl

dbmopen (%last_good,"lastdb",0666);

foreach S$name (sort keys %last_good) {
Swhen = S$last_good{Sname};
Shours = (time - $when) / 3600; # compute hours ago
write;

format STDOUT =
User (@<<<<<K<K<<<<<: last correct guess was (@<<< hours ago.
Sname, S$hours

Together with the secret word lists (files named somet hing.secret in the current directory) and the
database lastdb.dir and lastdb.pag, you'll have all you need.

| Previous: 1.4 Basic Concepts| Learning Next: 1.6
Perl Exercise

1.4 Basic Concepts Book 1.6 Exercise
Index

[Library Home | Perl in a Nutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl
Programming | Perl Cookbook]

ﬁ Learning Perl —

Previous: 1.5 A Stroll Chapter 1 Next: 2. Scalar
Through Perl Introduction Data

1.6 Exercise

Most chapters end with some exercises, for which answers are found in Appendix A, Exercise Answers.
For this stroll, the answers have already been given above.

1. Type in the example programs, and get them to work. (You'll need to create the secret-word lists as
well.) Consult your local Perl guru if you need assistance.

Previous: 1.5 A Stroll Learning Next: 2. Scalar
Through Perl Perl Data
1.5 A Stroll Through Perl Book 2. Scalar Data
Index

[Library Home | Perl in a Nutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl
Programming | Perl Cookbook]

ﬁ Learning Perl

Previous: 1.6 Chapter 2
Exercise

Next: 2.2
Numbers

2. Scalar Data

Contents:
What Is Scalar Data?

Numbers

Strings

Scalar Operators

Scalar Variables

Scalar Operators and Functions
<STDIN> as a Scalar Value
Output with print

The Undefined Value
Exercises

2.1 What Is Scalar Data?

A scalar 1s the simplest kind of data that Perl manipulates. A scalar is either a number (like 4 or 3.25e20)
or a string of characters (like hel1o or the Gettysburg Address). Although you may think of numbers
and strings as very different things, Perl uses them nearly interchangeably, so we'll describe them

together.

A scalar value can be acted upon with operators (like plus or concatenate), generally yielding a scalar
result. A scalar value can be stored into a scalar variable. Scalars can be read from files and devices and

written out as well.

Previous: 1.6 Learning
Exercise Perl
1.6 Exercise Book
Index

Next: 2.2
Numbers

2.2 Numbers

[Library Home | Perl in a Nutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl

Programming | Perl Cookbook]

W Learning Per! —

Previous: 2.1 What Is Scalar Chapter 2 Next: 2.3
Data? Scalar Data Strings

2.2 Numbers

Although a scalar is either a number or a string,[1] it's useful to look at numbers and strings separately
for the moment. Numbers first, strings in a minute... .

[1] Or a reference, but that's an advanced topic.

2.2.1 All Numbers Use the Same Format Internally

As you'll see in the next few paragraphs, you can specify both integers (whole numbers, like 17 or 342)
and floating-point numbers (real numbers with decimal points, like 3.14, or 1.35 times 1025). But
internally, Perl computes only with double-precision floating-point values.[2] This means that there are
no integer values internal to Perl; an integer constant in the program is treated as the equivalent
floating-point value.[3] You probably won't notice the conversion (or care much), but you should stop

looking for integer operations (as opposed to floating-point operations), because there aren't any.

[2] A "double-precision floating-point value" is whatever the C compiler that compiled Perl
used for a double declaration.

[3] Unless you use "integer mode," but that's not on by default.

2.2.2 Float Literals

A literal 1s the way a value is represented in the text of the Perl program. You could also call this a
constant in your program, but we'll use the term liferal. Literals are the way data is represented in the
source code of your program as input to the Perl compiler. (Data that is read from or written to files is
treated similarly, but not identically.)

Perl accepts the complete set of floating-point literals available to C programmers. Numbers with and
without decimal points are allowed (including an optional plus or minus prefix), as well as tacking on a
power-of-10 indicator (exponential notation) with E notation. For example:

1.25 # about 1 and a quarter
7.25e45 # 7.25 times 10 to the 45th power (a big number)
-6.5e24 # negative 6.5 times 10 to the 24th

(a "big" negative number)

#

—-12e-24 negative 12 times 10 to the -24th

(a very small negative number)
-1.2E-23 # another way to say that

2.2.3 Integer Literals

Integer literals are also straightforward, as in:

12

15
-2004
3485

Don't start the number with a 0, because Perl supports octal and hexadecimal (hex) literals. Octal
numbers start with a leading 0, and hex numbers start with a leading 0x or 0X.[4] The hex digits A

through F (in either case) represent the conventional digit values of 10 through 15. For example:

0377 # 377 octal, same as 255 decimal
-0xff # negative FF hex, same as -255 decimal

[4] The "leading zero" indicator works only for literals, not for automatic string-to-number
conversion. You can convert a data string that looks like an octal or hex value into a number
with oct or hex.

Previous: 2.1 What Is Scalar Learning Next: 2.3
Data? Perl Strings
2.1 What Is Scalar Data? Book 2.3 Strings
Index

[Library Home | Perl in a Nutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl
Programming | Perl Cookbook]

W Learning Per! —

Previous: 2.2 Chapter 2 [Next: 2.4 Scalar Operators|
Numbers Scalar Data

2.3 Strings

Strings are sequences of characters (like he110). Each character is an 8-bit value from the entire 256
character set (there's nothing special about the NUL character as in some languages).

The shortest possible string has no characters. The longest string fills all of your available memory
(although you wouldn't be able to do much with that). This is in accordance with the principle of "no
built-in limits" that Perl follows at every opportunity. Typical strings are printable sequences of letters
and digits and punctuation in the ASCII 32 to ASCII 126 range. However, the ability to have any
character from 0O to 255 in a string means you can create, scan, and manipulate raw binary data as
strings - something with which most other utilities would have great difficulty. (For example, you can
patch your operating system by reading it into a Perl string, making the change, and writing the result
back out.)

Like numbers, strings have a literal representation (the way you represent the string in a Perl program).
Literal strings come in two different flavors: single-quoted strings and double-quoted strings.[S] Another

form that looks rather like these two is the back-quoted string ("like this™). This isn't so much a literal
string as a way to run external commands and get back their output. This is covered in Chapter 14,

Process Management.

[5] There are also the here strings, similar to the shell's here documents. They are explained
in Chapter 19, CGI Programming. See also Chapter 2 of Programming Perl, and perldata (1)

2.3.1 Single-Quoted Strings

A single-quoted string is a sequence of characters enclosed in single quotes. The single quotes are not
part of the string itself; they're just there to let Perl identify the beginning and the ending of the string.
Any character between the quote marks (including newline characters, if the string continues onto
successive lines) is legal inside a string. Two exceptions: to get a single quote into a single-quoted string,
precede it by a backslash. And to get a backslash into a double-quoted string, precede the backslash by a
backslash. In other pictures:

'hello' # five characters: h, e, 1, 1, o

'don\"'t' # five characters: d, o, n, single—-quote, t

" # the null string (no characters)

'silly\\me' # silly, followed by backslash, followed by me
'hello\n' # hello followed by backslash followed by n

'hello
there' # hello, newline, there (11 characters total)

Note that the \n within a single-quoted string is not interpreted as a newline, but as the two characters
backslash and n. (Only when the backslash is followed by another backslash or a single quote does it
have special meaning.)

2.3.2 Double-Quoted Strings

A double-quoted string acts a lot like a C string. Once again, it's a sequence of characters, although this
time enclosed in double quotes. But now the backslash takes on its full power to specify certain control
characters, or even any character at all through octal and hex representations. Here are some
double-quoted strings:

"hello world\n" # hello world, and a newline
"new \177" # new, space, and the delete character (octal 177)
"coke\tsprite" # a coke, a tab, and a sprite

The backslash can precede many different characters to mean different things (typically called a
backslash escape). The complete list of double-quoted string escapes is given in Table 2.1.

Table 2.1: Double-Quoted String Representations

Construct | Meaning

\n Newline
\r Return

\t Tab

\f Formfeed
\Db Backspace
\a Bell

\e Escape

\N007 Any octal ASCII value (here, 007 = bell)
\x7f Any hex ASCII value (here, 7f = delete)

\cC Any "control" character (here, CTRL-C)
AN\ Backslash

\" Double quote

\1 Lowercase next letter

\L Lowercase all following letters until \E

\u Uppercase next letter

\U Uppercase all following letters until \E

\Q Backslash-quote all nonalphanumerics until \E
\E Terminate \L, \U, or \Q

Another feature of double-quoted strings is that they are variable interpolated, meaning that scalar and
array variables within the strings are replaced with their current values when the strings are used. We
haven't formally been introduced to what a variable looks like yet (except in the stroll), so I'll get back to
this later.

Previous: 2.2 Learning | Next: 2.4 Scalar Operators|
Numbers Perl

2.2 Numbers Book 2.4 Scalar Operators
Index

[Library Home | Perl in a Nutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl
Programming | Perl Cookbook]

W Learning Perl —

Previous: 2.3 Chapter 2 [Next: 2.5 Scalar Variables|
Strings Scalar Data

2.4 Scalar Operators

An operator produces a new value (the result) from one or more other values (the operands). For
example, + 1s an operator because it takes two numbers (the operands, like 5 and 6), and produces a new
value (11, the result).

Perl's operators and expressions are generally a superset of those provided in most other
ALGOL/Pascal-like programming languages, such as C or Java. An operator expects either numeric or
string operands (or possibly a combination of both). If you provide a string operand where a number is
expected, or vice versa, Perl automatically converts the operand using fairly intuitive rules, which will be
detailed in Section 2.4.4, "Conversion Between Numbers and Strings," below.

2.4.1 Operators for Numbers

Perl provides the typical ordinary addition, subtraction, multiplication, and division operators, and so on.
For example:

2 + 3 # 2 plus 3, or 5

5.1 - 2.4 # 5.1 minus 2.4, or approximately 2.7
3 * 12 # 3 times 12 = 36

14 / 2 # 14 divided by 2, or 7

10.2 / 0.3 # 10.2 divided by 0.3, or approximately 34
10 / 3 # always floating point divide, so approximately 3.3333333...

Additionally, Perl provides the FORTRAN-like exponentiation operator, which many have yearned for in
Pascal and C. The operator is represented by the double asterisk, such as 2** 3, which is two to the third
power, or eight. (If the result can't fit into a double-precision floating-point number, such as a negative
number to a noninteger exponent, or a large number to a large exponent, you'll get a fatal error.)

Perl also supports a modulus operator. The value of the expression 10 % 3 is the remainder when 10 is
divided by 3, which is 1. Both values are first reduced to their integer values, so 10.5 % 3.2 is
computed as 10 % 3.

The logical comparison operators are < <= == >= > !=these compare two values numerically,
returning a true or false value. For example, 3 > 2 returns true because three is greater than two, while
5 !'= 5 returns false because it's not true that 5 is not equal to 5. The definitions of true and false are
covered later, but for now, think of the return values as one for true, and zero for false. (These operators
are revisited in Table 2.2.)

You may be wondering about the word "approximately" in the code comments at the start of this section.
Don't you get exactly 2.7 when subtracting 2.4 from 5.1? In math class you do, but on computers you
usually don't. Instead, you get an approximation that's only accurate to a certain number of decimal
places. Computers don't store numbers the same way a mathematician thinks of them. But unless you are
doing something extreme, you'll usually see the results you expect to see.

Comparing the following statements, you'll see what the computer really got as the result of the
subtraction (the print £ function is described in Chapter 6, Basic 1/0):

printf("$.51f\n", 5.1 - 2.4)
2.699999999999999733546474089962430298328399658203125

print (5.1 - 2.4, "\n");
2.7

Don't worry too much about this: the print function's default format for printing floating-point numbers
usually hides such minor representational inaccuracies. If this ends up being a problem, the Math::Biglnt
and Math::BigFloat object modules provide infinite-precision arithmetic for integers and floating-point
numbers at the cost of somewhat slower execution. For details, see Chapter 7 of Programming Perl or the

online documentation on these modules.

2.4.2 Operators for Strings

String values can be concatenated with the " . " operator. (Yes, that's a single period.) This does not alter
either string, any more than 2+3 alters either 2 or 3. The resulting (longer) string is then available for

further computation or to be stored into a variable.

"hello"™ . "world" # same as "helloworld"
'hello world' . "\n" # same as "hello world\n"
"fred" . " " . "barney" # same as "fred barney"

" n

Note that the concatenation must be explicitly called for with the "." operator. You can't just stick the two
values close to each other.

Another set of operators for strings are the string comparison operators. These operators are
FORTRAN:-like, as in 1t for less-than, and so on. The operators compare the ASCII values of the
characters of the strings in the usual fashion. The complete set of comparison operators (for both numbers
and strings) is given in Table 2.2.

Table 2.2: Numeric and String Comparison
Operators

Comparison Numeric | String

Equal == eq

Not equal ! ne

Less than < 1t

Greater than > gt

Less than or equal to <= le

Greater than or equal to | >= ge

You may wonder why there are separate operators for numbers and strings, if numbers and strings are
automatically converted back and forth. Consider the two values 7 and 30. If compared as numbers, 7 is
obviously less than 30, but if compared as strings, the string "30" comes before the string " 7" (because
the ASCII value for 3 is less than the value for 7), and hence is less. Perl always requires you to specify
the proper type of comparison, whether it be numeric or string.

Note that if you come from a UNIX shell programming background, the numeric and string comparisons
are roughly opposite of what they are for the UNIX test command, which uses —eqg for numeric
comparison and = for string comparison.

Still another string operator is the string repetition operator, consisting of the single lowercase letter x.
This operator takes its left operand (a string), and makes as many concatenated copies of that string as
indicated by its right operand (a number). For example:

"fred" x 3 # is "fredfredfred"
"barney" x (4+1) # is "barney" x 5, or
"barneybarneybarneybarneybarney"
(3+2) x 4 # is 5 x 4, or really "5" x 4, which is "5555"

That last example is worth spelling out slowly. The parentheses on (3+2) force this part of the
expression to be evaluated first, yielding five. (The parentheses here are working as in standard math.)
But the string repetition operator wants a string for a left operand, so the number 5 is converted to the
string "5" (using rules described in detail later), a one-character string. This new string is then copied
four times, yielding the four-character string 5555. If we had reversed the order of the operands, we
would have made five copies of the string 4, yielding 4444 4. This shows that string repetition is not
commutative.

If necessary, the copy count (the right operand) is first truncated to an integer value (4.8 becomes 4)
before being used. A copy count of less than one results in an empty (zero-length) string.

2.4.3 Operator Precedence and Associativity

Operator precedence defines how to resolve the ambiguous case where two operators are trying to operate
on three operands. For example, in the expression 2+3*4, do we perform the addition first or the
multiplication first? If we did the addition first, we'd get 5*4, or 20. But if we did the multiplication first
(as we were taught in math class) we'd get 2+12, or 14. Fortunately, Perl chooses the common
mathematical definition, performing the multiplication first. Because of this, we say multiplication has a
higher precedence than addition.

You can override the order defined by precedence using parentheses. Anything in parentheses is
completely computed before the operator outside of the parentheses is applied (just as you learned in math
class). So if you really want the addition before the multiplication, you can say (2+3) *4, yielding 20.
Also, if you want to demonstrate that multiplication is performed before addition, you could add a

decorative but functionless set of parentheses in 2+ (3*4) .

While precedence is intuitive for addition and multiplication,[6] we start running into problems when
faced with, say, string concatenation compared with exponentiation. The proper way to resolve this is to
consult the official, accept-no-substitutes Perl operator precedence chart, shown in Table 2.3. (Note that
some of the operators have not yet been described, and in fact, may not even appear anywhere in this
book, but don't let that scare you from reading about them.) Operators that are also found in C have the

same precedence as in C.

[6] You recall your high-school algebra class? If not, there's nothing wrong with using
parentheses to improve clarity.

Table 2.3: Associativity and Precedence of Operators: Highest to Lowest

Associativity |Operator

Left The "list" operators (leftward)

Left —> (method call, dereference)

Nonassociative | ++ —— (autoincrement, autodecrement)

Right ** (exponentiation)

Right ! ~\ + - (logical not, bit-not, reference operator, unary plus, unary minus)
Left =~ | ~ (matches, doesn't match)

Left * / % x (multiply, divide, modulus, string replicate)
Left + — . (add, subtract, string concatenate)

Left << >>

Nonassociative | Named unary operators (like chomp)
Nonassociative |< > <=>=1t gt le ge

Nonassociative |== != <=>eq ne cmp

Left & (bit-and)

Left | ~ (bit-or, bit-xor)

Left & & (logical and)

Left | | (logical or)

Nonassociative (noninclusive and inclusive range)

Right ? . (if-then-else)

Right = += —= *=, etc. (assignment and binary-assignment)
Left , => (comma and comma-arrow)

Nonassociative ‘List operators (rightward)
Right not (logical not)

Left and (logical and)

Left or xor (logical or, logical xor)

In the chart, any given operator has higher precedence than those listed below it, and lower precedence
than all of the operators listed above it.

Operators at the same precedence level resolve according to rules of associativity instead. Just like
precedence, associativity resolves the order of operations when two operators of the same precedence
compete for three operands:

2 ** 3 xx 4 # 2 <% (3 ** 4), or 2 ** 81, or approx 2.41le24
72/ 12 / 3 # (72 / 12) / 3, or 6/3, or 2
30 / 6 * 3 # (30/6)*3, or 15

In the first case, the ** operator has right associativity, so the parentheses are implied on the right.
Comparatively, the * and / operators have left associativity, yielding a set of implied parentheses on the
left.

2.4.4 Conversion Between Numbers and Strings

If a string value is used as an operand for a numeric operator (say, +), Perl automatically converts the
string to its equivalent numeric value, as if it had been entered as a decimal floating-point value.[7]
Trailing nonnumerics and leading whitespace are politely and quietly ignored, so" 123.45fred" (with
a leading space) converts to 123 .45 with nary a warning.[8] At the extreme end of this, something that
isn't a number at all converts to zero without warning (such as the string f red used as a number).

[7] Hex and octal values are not supported in this automatic conversion. Use hex and oct to
interpret hex and octal values.

[8] Unless you turn on the —w option from the command line, which you should always do
for safety's sake.

Likewise, if a numeric value is given when a string value is needed (for the string concatenate operator,
for example), the numeric value is expanded into whatever string would have been printed for that
number. For example, if you want to concatenate an X followed by the results of 4 multiplied by 5, you
can say this simply as:

"X" . (4 * 5) # same as "X" . 20, or "X20"

(Remember that the parentheses force 4* 5 to be computed first, before considering the string
concatenation operator.)

In other words, you don't have to worry about whether you have a number or a string (most of the time).
Perl performs all the conversions for you.

Previous: 2.3 Learning [Next: 2.5 Scalar Variables|
Strings Perl

2.3 Strings Book 2.5 Scalar Variables
Index

[Library Home | Perl in a Nutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl
Programming | Perl Cookbook]

ﬁ Learning Perl —

Previous: 2.4 Scalar Chapter 2 Next: 2.6 Scalar Operators
Operators Scalar Data and Functions

2.5 Scalar Variables

A variable is a name for a container that holds one or more values. The name of the variable is constant
throughout the program, but the value or values contained in that variable typically change over and over
again throughout the execution of the program.

A scalar variable holds a single scalar value (representing a number, a string, or a reference). Scalar
variable names begin with a dollar sign followed by a letter, and then possibly more letters, or digits, or
underscores.[9] Upper- and lowercase letters are distinct: the variable $A is a different variable from $a.

And all of the letters, digits, and underscores are significant, so:
Sa_very_long_variable_that_ends_in_1
1s different from:

Sa_very_long_variable_that_ends_in_2
[9] Limited to 255 characters, however. We hope that suffices.

You should generally select variable names that mean something regarding the value of the variable. For
example, $xyz123 is probably not very descriptive but $1ine_length is.

Previous: 2.4 Scalar Learning Next: 2.6 Scalar Operators
Operators Perl and Functions

2.4 Scalar Operators Book 2.6 Scalar Operators and

Index Functions

[Library Home | Perl in a Nutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl
Programming | Perl Cookbook]

W Learning Perl —

Previous: 2.5 Scalar Chapter 2 Next: 2.7 <STDIN> as a
Variables Scalar Data Scalar Value

2.6 Scalar Operators and Functions

The most common operation on a scalar variable is assignment, which is the way to give a value to a
variable. The Perl assignment operator is the equal sign (much like C or FORTRAN), which takes a
variable name on the left side and gives it the value of the expression on the right, like so:

Sa = 17; # give $a the value of 17
Sb = $a + 3; # give S$b the current value of S$Sa plus 3 (20)
Sb = $b * 2; # give S$b the value of S$Sb multiplied by 2 (40)

Notice that last line uses the $b variable twice: once to get its value (on the right side of the =), and once
to define where to put the computed expression (on the left side of the =). This is legal, safe, and in fact,
rather common. In fact, it's so common that we'll see in a minute that we can write this using a convenient
shorthand.

You may have noticed that scalar variables are always specified with the leading $. In shell programming,
you use $ to get the value, but leave the $ off to assign a new value. In Java or C, you leave the $ off

entirely. If you bounce back and forth a lot, you'll find yourself typing the wrong things occasionally. This
is expected. (Our solution was to stop writing shell, awk, and C programs, but that may not work for you.)

A scalar assignment may be used as a value as well as an operation, as in C. In other words, $a=3 has a
value, just as $a+3 has a value. The value is the value assigned, so the value of $a=3 is 3. Although this
may seem odd at first glance, using an assignment as a value is useful if you wish to assign an
intermediate value in an expression to a variable, or if you simply wish to copy the same value to more
than one variable. For example:

Sb = 4 + ($Sa = 3); # assign 3 to $a, then add 4 to that
resulting in $b getting 7
Sd = ($c = 5); # copy 5 into $c, and then also into $d

$d = Sc = 5; # the same thing without parentheses

That last example works because assignment is right-associative.

2.6.1 Binary Assignment Operators

Expressions like Sa = $a + 5 (where the same variable appears on both sides of an assignment) occur
frequently enough that Perl has a shorthand for the operation of altering a variable: the binary assignment
operator. Nearly all binary operators that compute a value have a corresponding binary assignment form
with an appended equal sign. For example, the following two lines are equivalent:

Sa = $a + 5; # without the binary assignment operator
Sa += 5; # with the binary assignment operator

And so are these:
Sb = Sb * 3;
$b *= 3;

In each case, the operator causes the existing value of the variable to be altered in some way, rather than
simply overwriting the value with the result of some new expression.

Another common assignment operator is the string concatenate operator:
Sstr = $str . " "; # append a space to $str

Sstr .= " "; # same thing with assignment operator

Nearly all binary operators are valid this way. For example, a raise to the power of operator is written as
**=_S0, $a **= 3 means "raise the number in $a to the third power, placing the result back in $a".

Like the simple assignment operator, these operators have a value as well: the new value of the variable.
For example:

Sa = 3;

Sb = (Sa += 4); # Sa and $Sb are both now 7

2.6.2 Autoincrement and Autodecrement

As if it weren't already easy enough to add one to $a by saying $a += 1, Perl goes one further and
shortens even this up. The ++ operator (called the autoincrement operator) adds one to its operand, and
returns the incremented value, like so:

Sa += 1; # with assignment operator
++8a; # with prefix autoincrement
sd = 17;

Se = ++3d; # Se and $d are both 18 now

Here, the ++ operator is being used as a prefix operator; that is, the operator appears to the left of its
operand. The autoincrement may also be used in a suffix form (to the right of its operand). In this case, the
result of the expression is the old value of the variable before the variable is incremented. For example:
Sc = 17;

Sd = Sc++; # $d is 17, but $c is now 18

Because the value of the operand changes, the operand must be a scalar variable, not just an expression.
You cannot say ++16 to get 17, nor can you say ++ ($a+S$b) to somehow get one more than the sum of
$a and Sb.

The autodecrement operator (——) is similar to the autoincrement operator, but subtracts one rather than
adding one. Like the autoincrement operator, the autodecrement operator has a prefix and suffix form. For
example:

Sx = 12;

——-Sx; # Sx is now 11

Sy = $x——; # Sy is 11, and S$x is now 10

The autoincrement and autodecrement operators also work on floating-point values. So autoincrementing
a variable with the value 4 . 2 yields 5. 2 as expected.[10]

[10] Autoincrement even works on strings. See Programming Perl or perlop (1) for that.

2.6.3 The chop and chomp Functions

A useful built-in function is chop. This function takes a single argument within its parentheses - the
name of a scalar variable - and removes the last character from the string value of that variable. For
example:

Sx = "hello world";
chop($x); # $x is now "hello worl"

Note that the value of the argument is altered here, hence the requirement for a scalar variable, rather than
simply a scalar value. It would not make sense, for example, to write chop ('suey') to change it to
'sue', because there is no place in which to save the value. Besides, you could have just written ' sue'
instead.

The value returned is the discarded character (the letter d in wor1d above). This means that the following
code is probably wrong:

$Sx = chop ($x) ; # WRONG: replaces $x with its last character
chop ($x) ; # RIGHT: as above, removes the last character

If chop is given an empty string, it does nothing, and returns nothing, and doesn't raise an error or even
whimper a bit.[11] Most operations in Perl have sensible boundary conditions; in other words, you can

use them right up to the edges (and beyond), frequently without complaint. Some have argued that this is
one of Perl's fundamental flaws, while others write screaming programs without having to worry about
the fringes. You decide which camp you wish to join.

[11] Unless you are using the sanity-saving -w switch

When you chop a string that has already been chopped, another character disappears off into "bit heaven."
For example:

Sa = "hello world\n";
chop $a; # $a is now "hello world"
chop S$a; # oops! $a is now "hello worl"

If you're not sure whether the variable has a newline on the end, you can use the slightly safer chomp
operator, which removes only a newline character,[12] like so:

Sa = "hello world\n";
chomp ($Sa); # $a is now "hello world"
chomp ($a); # aha! no change in $Sa

[12] Or whatever the input record separator $/is set to.

2.6.4 Interpolation of Scalars into Strings

When a string literal is double-quoted, it is subject to variable interpolation (besides being checked for
backslash escapes). This means that the string is scanned for possible scalar variable[13] names - namely,
a dollar sign followed by letters, digits, and underscores. When a variable reference is found, it is replaced
with its current value (or an empty string if the variable has not yet been assigned a value). For example:

Sa = "fred";
Sb = "some text $a"; # Sb is now "some text fred"
$c = "no such variable Swhat"; # Sc 1s "no such variable "

[13] And array variables, but we won't discuss those until Chapter 3, Arrays and List Data.

The text that replaces the variable is not rescanned; that is, even if there are dollar signs in the replaced
value, no further replacement occurs:

$Sx = 'Sfred'; # literally a dollar sign followed by "fred"
Sy = "hey $x"; # value is 'hey S$fred': no double substitution

To prevent the substitution of a variable with its value, you must either alter that part of the string so that
it appears in single quotes, or precede the dollar sign with a backslash, which turns off the dollar sign's
special significance:

Sfred = 'hi';
Sbarney = "a test of " . 'Sfred'; # literally: 'a test of $fred'
Sbarney2= "a test of \$fred"; # same thing

The variable name will be the longest possible variable name that makes sense at that part of the string.
This can be a problem if you want to follow the replaced value immediately with some constant text that
begins with a letter, digit, or underscore. As Perl scans for variable names, it would consider those
characters to be additional name charac