
Introduction to the R Language
Data Types and Basic Operations

The R Language

Starting Up

Windows: Double-click on “R”

Mac OS X: Click on “R”

Unix: Type “R”

The R Language

Objects

R has five basic or “atomic” classes of objects:

character

numeric (real numbers)

integer

complex

logical (True/False)

The most basic object is a vector

A vector can only contain objects of the same class

BUT: The one exception is a list, which is represented as a
vector but can contain objects of different classes (indeed,
that’s usually why we use them)

Empty vectors can be created with the vector() function.

The R Language

Numbers

Numbers in R a generally treated as numeric objects (i.e.
double precision real numbers)

If you explicitly want an integer, you need to specify the L
suffix

Ex: Entering 1 gives you a numeric object; entering 1L
explicitly gives you an integer.

There is also a special number Inf which represents infinity;
e.g. 1 / 0; Inf can be used in ordinary calculations; e.g. 1 /
Inf is 0

The value NaN represents an undefined value (“not a
number”); e.g. 0 / 0; NaN can also be thought of as a missing
value (more on that later)

The R Language

Attributes

R objects can have attributes

names, dimnames

dimensions (e.g. matrices, arrays)

class

length

other user-defined attributes/metadata

Attributes of an object can be accessed using the attributes()
function.

The R Language

Entering Input

At the R prompt we type expressions. The <- symbol is the
assignment operator.

> x <- 1
> print(x)
[1] 1
> x
[1] 1
> msg <- "hello"

The grammar of the language determines whether an expression is
complete or not.

> x <- ## Incomplete expression

The # character indicates a comment. Anything to the right of the
(including the # itself) is ignored.

The R Language

Evaluation

When a complete expression is entered at the prompt, it is
evaluated and the result of the evaluated expression is returned.
The result may be auto-printed.

> x <- 5 ## nothing printed
> x ## auto-printing occurs
[1] 5
> print(x) ## explicit printing
[1] 5

The [1] indicates that x is a vector and 5 is the first element.

The R Language

Printing

> x <- 1:20
> x
[1] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
[16] 16 17 18 19 20

The : operator is used to create integer sequences.

The R Language

Creating Vectors

The c() function can be used to create vectors of objects.

> x <- c(0.5, 0.6) ## numeric
> x <- c(TRUE, FALSE) ## logical
> x <- c(T, F) ## logical
> x <- c("a", "b", "c") ## character
> x <- 9:29 ## integer
> x <- c(1+0i, 2+4i) ## complex

Using the vector() function

> x <- vector("numeric", length = 10)
> x
[1] 0 0 0 0 0 0 0 0 0 0

The R Language

Mixing Objects

What about the following?

> y <- c(1, "a") ## character
> y <- c(TRUE, 2) ## numeric
> y <- c("a", TRUE) ## character

When different objects are mixed in a vector, coercion occurs so
that every element in the vector is of the same class.

The R Language

Explicit Coercion

Objects can be explicitly coerced from one class to another using
the as.* functions, if available.

> x <- 0:6
> class(x)
[1] "integer"
> as.numeric(x)
[1] 0 1 2 3 4 5 6
> as.logical(x)
[1] FALSE TRUE TRUE TRUE TRUE TRUE TRUE
> as.character(x)
[1] "0" "1" "2" "3" "4" "5" "6"
> as.complex(x)
[1] 0+0i 1+0i 2+0i 3+0i 4+0i 5+0i 6+0i

The R Language

Explicit Coercion

Nonsensical coercion results in NAs.

> x <- c("a", "b", "c")
> as.numeric(x)
[1] NA NA NA
Warning message:
NAs introduced by coercion
> as.logical(x)
[1] NA NA NA

The R Language

Matrices

Matrices are vectors with a dimension attribute. The dimension
attribute is itself an integer vector of length 2 (nrow, ncol)

> m <- matrix(nrow = 2, ncol = 3)
> m

[,1] [,2] [,3]
[1,] NA NA NA
[2,] NA NA NA
> dim(m)
[1] 2 3
> attributes(m)
$dim
[1] 2 3

The R Language

Matrices (cont’d)

Matrices are constructed column-wise, so entries can be thought of
starting in the “upper left” corner and running down the columns.

> m <- matrix(1:6, nrow = 2, ncol = 3)
> m

[,1] [,2] [,3]
[1,] 1 3 5
[2,] 2 4 6

The R Language

Matrices (cont’d)

Matrices can also be created directly from vectors by adding a
dimension attribute.

> m <- 1:10
> m
[1] 1 2 3 4 5 6 7 8 9 10
> dim(m) <- c(2, 5)
> m

[,1] [,2] [,3] [,4] [,5]
[1,] 1 3 5 7 9
[2,] 2 4 6 8 10

The R Language

cbind-ing and rbind-ing

Matrices can be created by column-binding or row-binding with
cbind() and rbind().

> x <- 1:3
> y <- 10:12
> cbind(x, y)

x y
[1,] 1 10
[2,] 2 11
[3,] 3 12
> rbind(x, y)
[,1] [,2] [,3]

x 1 2 3
y 10 11 12

The R Language

Missing Values

Missing values are denoted by NA or NaN for undefined
mathematical operations.

is.na() is used to test objects if they are NA

is.nan() is used to test for NaN

NA values have a class also, so there are integer NA, character
NA, etc.

A NaN value is also NA but the converse is not true

The R Language

Missing Values

> x <- c(1, 2, NA, 10, 3)
> is.na(x)
[1] FALSE FALSE TRUE FALSE FALSE
> is.nan(x)
[1] FALSE FALSE FALSE FALSE FALSE
> x <- c(1, 2, NaN, NA, 4)
> is.na(x)
[1] FALSE FALSE TRUE TRUE FALSE
> is.nan(x)
[1] FALSE FALSE TRUE FALSE FALSE

The R Language

Lists

Lists are a special type of vector that can contain elements of
different classes. Lists are a very important data type in R and you
should get to know them well.

> x <- list(1, "a", TRUE, 1 + 4i)
> x
[[1]]
[1] 1

[[2]]
[1] "a"

[[3]]
[1] TRUE

[[4]]
[1] 1+4i

The R Language

Factors

Factors are used to represent categorical data. Factors can be
unordered or ordered. One can think of a factor as an integer
vector where each integer has a label.

Factors are treated specially by modelling functions like lm()
and glm()

Using factors with labels is better than using integers because
factors are self-describing; having a variable that has values
“Male” and “Female” is better than a variable that has values
1 and 2.

The R Language

Factors

> x <- factor(c("yes", "yes", "no", "yes", "no"))
> x
[1] yes yes no yes no
Levels: no yes
> table(x)
x
no yes
2 3

> unclass(x)
[1] 2 2 1 2 1
attr(,"levels")
[1] "no" "yes"

The R Language

Factors

The order of the levels can be set using the levels argument to
factor(). This can be important in linear modelling because the
first level is used as the baseline level.

> x <- factor(c("yes", "yes", "no", "yes", "no"),
levels = c("yes", "no"))

> x
[1] yes yes no yes no
Levels: yes no

The R Language

Data Frames

Data frames are used to store tabular data

They are represented as a special type of list where every
element of the list has to have the same length

Each element of the list can be thought of as a column and
the length of each element of the list is the number of rows

Unlike matrices, data frames can store different classes of
objects in each column (just like lists); matrices must have
every element be the same class

Data frames also have a special attribute called row.names

Data frames are usually created by calling read.table() or
read.csv()

Can be converted to a matrix by calling data.matrix()

The R Language

Data Frames

> x <- data.frame(foo = 1:4, bar = c(T, T, F, F))
> x
foo bar

1 1 TRUE
2 2 TRUE
3 3 FALSE
4 4 FALSE
> nrow(x)
[1] 4
> ncol(x)
[1] 2

The R Language

Names

R objects can also have names, which is very useful for writing
readable code and self-describing objects.

> x <- 1:3
> names(x)
NULL
> names(x) <- c("foo", "bar", "norf")
> x
foo bar norf
1 2 3

> names(x)
[1] "foo" "bar" "norf"

The R Language

Names

Lists can also have names.

> x <- list(a = 1, b = 2, c = 3)
> x
$a
[1] 1

$b
[1] 2

$c
[1] 3

The R Language

Names

And matrices.

> m <- matrix(1:4, nrow = 2, ncol = 2)
> dimnames(m) <- list(c("a", "b"), c("c", "d"))
> m
c d

a 1 3
b 2 4

The R Language

Subsetting

There are a number of operators that can be used to extract
subsets of R objects.

[always returns an object of the same class as the original;
can be used to select more than one element (there is one
exception)

[[is used to extract elements of a list or a data frame; it can
only be used to extract a single element and the class of the
returned object will not necessarily be a list or data frame

$ is used to extract elements of a list or data frame by name;
semantics are similar to hat of [[.

The R Language

Subsetting

> x <- c("a", "b", "c", "c", "d", "a")
> x[1]
[1] "a"
> x[2]
[1] "b"
> x[1:4]
[1] "a" "b" "c" "c"
> x[x > "a"]
[1] "b" "c" "c" "d"
> u <- x > "a"
> u
[1] FALSE TRUE TRUE TRUE TRUE FALSE
> x[u]
[1] "b" "c" "c" "d"

The R Language

Subsetting a Matrix

Matrices can be subsetted in the usual way with (i , j) type indices.

> x <- matrix(1:6, 2, 3)
> x[1, 2]
[1] 3
> x[2, 1]
[1] 2

Indices can also be missing.

> x[1,]
[1] 1 3 5
> x[, 2]
[1] 3 4

The R Language

Subsetting a Matrix

By default, when a single element of a matrix is retrieved, it is
returned as a vector of length 1 rather than a 1× 1 matrix. This
behavior can be turned off by setting drop = FALSE.

> x <- matrix(1:6, 2, 3)
> x[1, 2]
[1] 3

> x[1, 2, drop = FALSE]
[,1]

[1,] 3

The R Language

Subsetting a Matrix

Similarly, subsetting a single column or a single row will give you a
vector, not a matrix (by default).

> x <- matrix(1:6, 2, 3)
> x[1,]
[1] 1 3 5
> x[1, , drop = FALSE]

[,1] [,2] [,3]
[1,] 1 3 5

The R Language

Subsetting Lists

> x <- list(foo = 1:4, bar = 0.6)
> x[1]
$foo
[1] 1 2 3 4

> x[[1]]
[1] 1 2 3 4

> x$bar
[1] 0.6
> x[["bar"]]
[1] 0.6
> x["bar"]
$bar
[1] 0.6

The R Language

Subsetting Lists

Extracting multiple elements of a list.

> x <- list(foo = 1:4, bar = 0.6, baz = "hello")
> x[c(1, 3)]
$foo
[1] 1 2 3 4

$baz
[1] "hello"

The R Language

Subsetting Lists

The [[operator can be used with computed indices; $ can only be
used with literal names.

> x <- list(foo = 1:4, bar = 0.6, baz = "hello")
> name <- "foo"
> x[[name]] ## computed index for ‘foo’
[1] 1 2 3 4
> x$name ## element ‘name’ doesn’t exist!
NULL
> x$foo
[1] 1 2 3 4 ## element ‘foo’ does exist

The R Language

Subsetting Nested Elements of a List

The [[can take an integer sequence.

> x <- list(a = list(10, 12, 14), b = c(3.14, 2.81))
> x[[c(1, 3)]]
[1] 14
> x[[1]][[3]]
[1] 14

> x[[c(2, 1)]]
[1] 3.14

The R Language

Partial Matching

Partial matching of names is allowed with [[and $.

> x <- list(aardvark = 1:5)
> x$a
[1] 1 2 3 4 5
> x[["a"]]
[1] 1 2 3 4 5
Warning message:
In x[["a"]] : partial match of ’a’ to ’aardvark’

The R Language

Removing NA Values

A common task is to remove missing values (NAs).

> x <- c(1, 2, NA, 4, NA, 5)
> bad <- is.na(x)
> x[!bad]
[1] 1 2 4 5

The R Language

Removing NA Values

What if there are multiple things and you want to take the subset
with no missing values?

> x <- c(1, 2, NA, 4, NA, 5)
> y <- c("a", "b", NA, "d", NA, "f")
> good <- complete.cases(x, y)
> good
[1] TRUE TRUE FALSE TRUE FALSE TRUE
> x[good]
[1] 1 2 4 5
> y[good]
[1] "a" "b" "d" "f"

The R Language

Removing NA Values

> airquality[1:6,]
Ozone Solar.R Wind Temp Month Day

1 41 190 7.4 67 5 1
2 36 118 8.0 72 5 2
3 12 149 12.6 74 5 3
4 18 313 11.5 62 5 4
5 NA NA 14.3 56 5 5
6 28 NA 14.9 66 5 6
> good <- complete.cases(airquality)
> airquality[good,][1:6,]
Ozone Solar.R Wind Temp Month Day

1 41 190 7.4 67 5 1
2 36 118 8.0 72 5 2
3 12 149 12.6 74 5 3
4 18 313 11.5 62 5 4
7 23 299 8.6 65 5 7
8 19 99 13.8 59 5 8

The R Language

Vectorized Operations

Many operations in R are vectorized making code more efficient,
concise, and easier to read.

> x <- 1:4; y <- 6:9
> x + y
[1] 7 9 11 13
> x > 2
[1] FALSE FALSE TRUE TRUE
> x >= 2
[1] FALSE TRUE TRUE TRUE
> y == 8
[1] FALSE FALSE TRUE FALSE
> x * y
[1] 6 14 24 36
> x / y
[1] 0.1666667 0.2857143 0.3750000 0.4444444

The R Language

Vectorized Matrix Operations

> x <- matrix(1:4, 2, 2); y <- matrix(rep(10, 4), 2, 2)
> x * y ## element-wise multiplication

[,1] [,2]
[1,] 10 30
[2,] 20 40
> x / y

[,1] [,2]
[1,] 0.1 0.3
[2,] 0.2 0.4
> x %*% y ## true matrix multiplication

[,1] [,2]
[1,] 40 40
[2,] 60 60

The R Language

