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A new method called the neighbor-joining method is proposed for reconstructing 
phylogenetic trees from evolutionary distance data. The principle of this method 
is to find pairs of operational taxonomic units (OTUs [ =neighbors]) that minimize 
the total branch length at each stage of clustering of OTUs starting with a starlike 
tree. The branch lengths as well as the topology of a parsimonious tree can quickly 
be obtained by using this method. Using computer simulation, we studied the 
efficiency of this method in obtaining the correct unrooted tree in comparison with 
that of five other tree-making methods: the unweighted pair group method of anal- 
ysis, Far-r-is’s method, Sattath and Tversky’s method, Li’s method, and Tateno et 
al.‘s modified Fan-is method. The new, neighbor-joining method and Sattath and 
Tversky’s method are shown to be generally better than the other methods. 

Introduction 

In the construction of phylogenetic trees, the principle of minimum evolution 
or maximum parsimony is often used. The standard algorithm of the tree-making 
methods based on this principle is to examine all possible topologies (branching pat- 
terns) or a certain number of topologies that are likely to be close to the true tree and 
to choose one that shows the smallest amount of total evolutionary change as the final 
tree. This method is quite time consuming, and, when the number of operational 
taxonomic units (OTUs) is large, only a small proportion of all possible topologies is 
examined. However, there are methods in which the process of searching for the 
minimum evolution tree is built into the algorithm, so that a unique final topology is 
obtained automatically. Some examples are the distance Wagner (DW) method (Farris 
1972), modified Farris (MF) methods (Tateno et al. 1982; Faith 1985), and the neigh- 
borliness methods of Sattath and Tversky (ST method; 1977) and Fitch ( 198 1). These 
methods are not guaranteed to produce the minimum-evolution tree, but their effi- 
ciency in obtaining the correct tree is often better than that of the standard maximum- 
parsimony algorithm (Saitou and Nei 1986). In the following we would like to present 
a new method (the neighbor-joining [NJ] method) that produces a unique final tree 
under the principle of minimum evolution. This method also does not necessarily 
produce the minimum-evolution tree, but computer simulations have shown that it 
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is quite efficient in obtaining the correct tree topology. It is applicable to any type of 
evolutionary distance data. 

Algorithm 

The algorithm of the NJ method is similar to that of the ST method, whose 
objective is to construct the topology of a tree. Unlike this method, however, the NJ 
method provides not only the topology but also the branch lengths of the final tree. 

Before discussing the algorithm of the present method, let us first define the term 
“neighbors.” A pair of neighbors is a pair of OTUs connected through a single interior 
node in an unrooted, bifurcating tree. Thus, OTUs 1 and 2 in figure 1 are a pair of 
neighbors because they are connected through one interior node, A. There are two 
other pairs of neighbors in this tree (viz., [5, 61 and [7, 81). The number of pairs of 
neighbors in a tree depends on the tree topology. For a tree with N (24) OTUs, the 
minimum number is always two, whereas the maximum number is N/2 when N is 
an even number and (N - 1)/2 when N is an odd number. 

If we combine OTUs 1 and 2 in figure 1, this combined OTU ( l-2) and OTU 3 
become a new pair of neighbors. It is possible to define the topology of a tree by 
successively joining pairs of neighbors and producing new pairs of neighbors. For 
example, the topology of the tree in figure 1 can be described by the following pairs 
of neighbors: [l, 21, [5, 61, 17, 81, [l-2, 31, and [l-2-3, 41. Note that there is another 
pair of neighbors, [5-6,7-81, that is complementary to [l-2-3,4] in defining the topology. 
In general, N - 2 pairs of neighbors can be produced from a bifurcating tree of N 
OTUs. By finding these pairs of neighbors successively, we can obtain the tree topology. 

Our method of constructing a tree starts with a starlike tree, as given in figure 
2(a), which is produced under the assumption that there is no clustering of OTUs. In 

2 

6 

FIG. 1 .-An unrooted tree of eight OTUs, l-8. A-F are interior nodes, and italic numbers are branch 
lengths. 
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practice, some pairs of OTUs are more closely related to each other than other pairs 
are. Consider a tree that is of the form given in figure 2(b). In this tree there is only 
one interior branch, XY, which connects the paired OTUs (1 and 2) and the others 
(3, 4, . . . , N) that are connected by a single node, Y. Any pair of OTUs can take the 
positions of 1 and 2 in the tree, and there are N(N - 1)/2 ways of choosing them. 
Among these possible pairs of OTUs, we choose the one that gives the smallest sum 
of branch lengths. This pair of OTUs is then regarded as a single OTU, and the next 
pair of OTUs that gives the smallest sum of branch lengths is again chosen. This 
procedure is continued until all N - 3 interior branches are found. 

The sum of the branch lengths is computed as follows: Let us define Do and Lab 
as the distance between OTUs i and j and the branch length between nodes a and b, 
respectively. The sum of the branch lengths for the tree of figure 2(a) is then given by 

(1) 

since each branch is counted N - 1 times when all distances are added. On the other 
hand, the branch length between nodes X and Y (Lxr) in the tree of figure 2(b) is 
given by 

Lxy 
=-[ 5 (Dlk+D2k)-(N_2)(L1x+L2~)-2 5 &I- 

1 
2(N-2) k=3 (2) 

i=3 

The first term within the brackets of equation (2) is the sum of all distances that 
include Lxy, and the other two terms are for excluding irrelevant branch lengths. If 
we eliminate the interior branch (XY) from figure 2(b), two starlike topologies (one 
for OTUs 1 and 2 and the other for the remaining N - 2 OTUs) appear. Thus, Llx 
+ L2x and c: 3 Liy can be obtained by applying equation (1): 

Lx+L2x=D12, W 

8 

5 LiY=& 2 4. 
i=3 3si-cj 

8 

(3b) 

FIG. 2.-(a), A 
clustered. 

starlike tree with no hierarchical structure; and (b), a tree in which OTUs 1 and 2 are 
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Adding these branch lengths, we find that the sum (SIz) of all branch lengths of the 
tree in figure 2(b) becomes 

It can be shown that equation (4) is the sum of the least-squares estimates of branch 
lengths (see Appendix A). 

In general, we do not know which pairs of OTUs are true neighbors. Therefore, 
the sum of branch lengths (S,) is computed for all pairs of OTUs, and the pair that 
shows the smallest value of Sii is chosen (inferred) as a pair of neighbors. In practice, 
even this pair may not be a pair of true neighbors; but, for a purely additive tree with 
no backward and parallel substitutions, this method is known to choose pairs of true 
neighbors (see the following section- Criterion for Minimum-Evolution Tree-for 
detail). At any rate, if S12 is found to be smallest among all Sij values, OTUs 1 and 2 
are designated as a pair of neighbors, and these are joined to make a combined OTU 
(l-2). The distance between this combined OTU and another OTU j is given by 

Dc,-2)j = (Dlj + D2jU (3 5jIN). (5) 

Thus, the number of OTUs is reduced by one, and, for the new distance matrix, the 
above procedure is again applied to find the next pair of neighbors. This cycle is 
repeated until the number of OTUs becomes three, where there is only one un- 
rooted tree. 

The branch lengths of a tree can be estimated by using Fitch and Margoliash’s 
(1967) method. Suppose that OTUs 1 and 2 are the first pair to be joined in the tree 
of figure 1. Llx and L2X are then estimated by 

Lx = (012 + Dlz- DzzW, (64 

where D,z = (Cy= 3 Dli)/(N - 2) and D 2z = (2;’ 3 Dzi)/(N - 2). Here, 2 represents 
a group of OTUs including all but 1 and 2, and Dlz and Dzz are the distances between 
1 and 2 and 2 and 2, respectively (see Nei 1987, pp. 298-302, for an elementary 
exposition of this method). LIX and L2X are the least-squares estimates for the tree of 
figure 2(b) (see Appendix A), and they are estimates of LIA and Lu, respectively, in 
figure 1. Once L lA and Lu are estimated, OTUs 1 and 2 are combined as a single 
OTU (l-2), and the next neighbors are searched for. Suppose that (l-2) and 3 are the 
next neighbors to be joined, as in figure 1. Branch lengths Lt1_2jB and L3* are ob- 
tained by applying equations (6a) and (6b). Furthermore, LAB is estimated by 
L, 1_2)B - (D12)/2. The above procedure is applied repeatedly until all branch lengths 
are estimated. If a tree is purely additive, this method gives the correct branch lengths 
for all branches (see Appendix B). 

The principle of the NJ method can be extended to character-state data such as 
nucleotide or amino acid differences. In this case, one can use the total number of 
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Table 1 
Distance Matrix for the Tree in Figure 1 

OTU 

OTU 1 2 3 4 5 6 7 

2 . 
3 . 
4 . 
5 . 
6 
7 . 
8 

7 
8 5 

11 8 5 
13 10 7 8 
16 13 10 11 5 
13 10 7 8 6 9 
17 14 11 12 10 13 8 

substitutions in place of the sum of branch lengths ($), though the actual procedure 
is a little more complicated than that given above (Saitou 1986, pp. 90-98). However, 
since the algorithm turns out to be very similar to that of Hartigan (1973), we shall 
not present it here. Note also that most character-state data can be converted into 
distance data so that the above simpler algorithm applies. 

An example: consider the distance matrix given in table 1. The distance D, in 
this matrix is obtained by adding all relevant branch lengths between OTUs i and j 
in figure 1 under the assumption that there is no backward and parallel substitution. 
The result of application of the NJ method is presented in table 2 and figure 3. In the 

Table 2 
SC Matrices for Two Cycles of the NJ Method for the Data in Table 1 

A. Cycle 1: Neighbors = [ 1, 21 

OTU 

OTU 1 2 3 4 5 6 7 

2 
3 . 
4 . 
5 
6 . 
7 
8 . 

36.67 
38.33 38.33 
39.00 39.00 38.67 
40.33 40.33 40.00 39.67 
40.33 40.33 40.00 39.67 37.00 
40.17 40.17 39.83 39.50 38.83 38.83 
40.17 40.17 39.83 39.50 38.83 38.83 37.67 

B. Cycle 2: Neighbors = [5, 61 

OTU 

OTU 1-2 3 4 5 6 7 

3 . 
4 
5 . 
6 . 
7 . 
8 

31.50 
32.30 32.30 
33.90 33.90 33.70 
33.90 33.90 33.70 31.30 
33.70 33.70 33.50 33.10 33.10 
33.70 33.70 33.50 33.10 33.10 31.90 
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6 
5 

(a> (b) (c) 

5 

Cd) 

1 
2 8 

4 

(e) (f) 
FIG. 3.-Application of the neighbor-joining method to the distance matrix of table 1. Italic numbers 

branch lengths, and branches with thicker lines indicate that their lengths have been determined. 

search for the first pair of neighbors (cycle l), OTUs 1 and 2 are chosen because Si2 
is smallest among 28 &‘s (see table 2). Si2 (= 36.67) is smaller than the sum (SO 
= 39.28) of branch lengths of the starting starlike topology, but, interestingly, some 
&‘s are larger than S o. Diz and Dzz in equations (6a) and (6b) become 13 and 10, 
respectively. Thus, the branch lengths LIA and Lu are obtained to be (7 + 13 - lo)/ 
2 = 5 and (7 + 10 - 13)/2 = 2, respectively, which are identical with those of the 
true tree in figure 1 (fig. 3[a]). OTUs 1 and 2 are then combined, and the average 
distances (Dt1_2Jj; j = 3, . . . , 8) are computed by equation (5). In the next step (cycle 
2 in table 2), OTUs 5 and 6 are found to be a pair of neighbors, and L5E and LeE are 
estimated to be 1 and 4, respectively, which are again identical with those of the true 
tree (fig. 3[b]). In cycle 3, OTUs (l-2) and 3 are chosen as a pair of neighbors, and 
the branch lengths for LsB and LcI_2)B become 1 and 5.5, respectively. Thus, the branch 
length LAB is estimated to be 5.5 - y2 = 2. These are again the correct values (fig. 
3[c]). In cycle 4, [l-2-3, 41 is identified as a pair of neighbors (fig. 3[d]), and in cycle 
5 [l-2-3-4, 5-61 is chosen. The choice of the latter pair of neighbors automatically 
leads to the identification of the final pair of neighbors [7, 81. The Sij for [l-2-3-4, 5- 
6] is identical with that for [7, 81. The topology of the reconstructed tree is therefore 
given by figure 3(e), which is identical with that of figure 1. The branch lengths LTF 
(=LTz = 2) and LgF(=LgZ = 6) are obtained by using equations (6a) and (6b), whereas 
LDF becomes L, 1_2_3_4_5_6Jz - Do_2_3_4M5_6j/2 = 2 (fig. 3[f]). It is thus clear that all branch 
lengths as well as the topology are correctly reconstructed in the present case. 

Criterion for the Minimum-Evolution Tree 

In this section, we first show that the algorithm developed above produces the 
correct tree for a purely additive tree. We shall then discuss a criterion for the minimum- 
evolution tree. 
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Consider a tree for N (24) OTUs and assume that OTUs 1 and 2 are a pair of 
true neighbors. For an additive tree, we obviously have the following inequalities. 

D,,+Do<Dli+D2j, 012 + D, < D,j + Dzi, (7) 

where i and j are any OTUs (3 I i < j I N). Under this condition, it can be shown 
that S12 is smaller than Slj or ,S’zj (3 I j I N). To show this, let us consider the pairing 
of OTUs 1 and 3 as an example. The total length of the tree with this pairing can be 
written as 

-& ; Uhk+D3k,+&+3. 

k-2 
k23 

In a similar manner, 

-& i (D,*+D2k)+&D,2. 

k-3 
UW 

Hence, 

$3~&2 =&+,3-D,,)+ & $ @2k-D3k) 
k-4 

(9) 

=& t [(D13+Dzk)-(D12+D3& 
k-4 

If we note the inequalities in formula (7), Di2 + D3k < Di3 + D2k (4 I k I N). 
Therefore, S13 > S 12. The same inequality also holds for any other pairs involving 
OTUs 1 and 2: Sy > Si2 and S2j > Si2 (3 I j I N). Furthermore, in our algorithm 
we search for a pair of OTUs that shows the smallest Sti. Therefore, if OTUs 1 and 2 
are such a pair, Si2 must be smallest among all $‘s. However, this is not what we 
need in our algorithm. Our algorithm requires that if S12 is smallest among all &‘s, 
OTUs 1 and 2 are neighbors. Proof of this theorem is somewhat complicated, but it 
can be done (see Appendix C). Therefore, our algorithm produces the correct unrooted 
tree for a purely additive tree. 

Of course, actual data usually involve backward and parallel substitutions, so 
that there is no guarantee that the correct topology is obtained by the NJ method. 
However, computer simulations, which will be discussed below, have shown that, 
compared with other methods, the NJ method is efficient in obtaining the correct 
topology. 

In constructing the topology of a tree, Sattath and Tversky (1977) and Fitch 
(198 1) used the inequalities in formula (7). Their method is to count the number 
(neighborliness) of cases satisfying formula (7) for each pair of OTUs and choose the 
pair showing the largest number as neighbors. Since Sattath and Tversky’s (1977) 
algorithm uses equation (5) for making the new distance matrix, their method is 
expected to give a result similar to ours. Fitch ( 198 1) uses interior-distance matrices 
for constructing the topology, so that his algorithm is different from ours. Nevertheless, 
these three methods as well as some other tree-making methods require the same 
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An example: applying his neighborliness method to Case’s (1978) data on im- 
munological distance, Fitch ( 198 1) constructed a phylogenetic tree of nine frog (Rana) 
species. If we use the NJ method, a slightly different tree is obtained (fig. 5); that is, 
while the closest species to the R. aurora-R. boyhi group is R. cascadae in Fitch’s tree, 
it is R. muscosa in our tree. The latter topology is also obtained by the ST method. 
We can apply the minimality test in formula ( 10) to see which topology is more 
reasonable. The test can be done if we consider the four OTU groups, i.e., the aurora 
and boylii group, muscosa, cascadae, and the remaining five species. Application of 
the test supports the topology presented in figure 5 rather than Fitch’s. Comparison 
of the sum of branch lengths between the two topologies also supports the topology 
in figure 5. (This particular comparison was conducted under the condition that all 
branch lengths are nonnegative and that each estimated [patristic] distance is greater 
than or equal to the corresponding observed distance, because Fitch’s tree was con- 
structed under this condition.) We also note that the branch lengths estimated by the 
NJ method are close to those estimated by a linear programming method (see 
Fitch 198 1). 

Efficiency of the NJ Method in Recovering the Correct Topology 

Since the exact evolutionary pathways of extant organisms are usually unknown, 
it is not suitable to use real data for examining the efficiency of a tree-making method. 
Therefore, we employed a computer simulation, comparing reconstructed trees with 
their model trees. In this study we compared the efficiency of the NJ method with 
that of five other methods: UPGMA (Sokal and Sneath 1963), the DW method, the 
ST method, Li’s (LI; 198 1) method, and the MF method. The LI method is a trans- 
formed distance method (see Nei [ 1987, pp. 302-3051 for the explanation of the trans- 
formed distance method), and the MF method is a modification of Farris’s (1972) 
method. All these methods produce a unique parsimonious tree from distance data. 
We considered both cases of constant and varying (expected) rates of nucleotide sub- 
stitution. 

R. aurora 

R. boylii 

24.0 

muscosa 

cascadae 

temporaria 

pretiosa 

R. catesbeiana 

R. pipiens 

R. tarahwnarae 

FIG. 5.-Tree obtained by the NJ method from immunological distance data of Case (1978) 
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Constant Rate of Nucleotide Substitution 

To examine the effect of topological differences, we considered two different 
model trees (trees [A] and [B] of fig. 6), both of which consist of eight OTUs. Model 
tree (A) has two neighboring pairs ([ 1, 21 and [7, S]), whereas model tree (B) has four 
([l, 21, [3,41, 15,619 and [7, 81). To make the effect of branch lengths comparable for 
the two model trees, we assumed that the interior branch length (a) is the same for 
both trees. We also tried to make the average @) of all pairwise distances (0;s) nearly 
the same for the two trees. Hence, we set c = b + 3a or c = b + 3a, where a, b, and 
c are the expected branch lengths (expected numbers of nucleotide substitutions per 
site) given in figure 6. In a computer simulation conducted with the same topology 
as that of model tree (A), Tateno et al. (1982) set a = b. In the present study, we set 
a Q b in model tree (A) so that the differences between different Du’s were relatively 
smaller. This makes it more difficult to reconstruct the correct tree than in the case 
of Tateno et al.‘s simulation. 

The scheme of the computer simulation used is as follows: The ancestral sequence 
of a given number of nucleotides was generated by using pseudorandom numbers, 
and this sequence was assumed to evolve according to the predetermined branching 
pattern of the model tree. Random nucleotide substitutions were introduced in each 
branch of the tree following a Poisson distribution with the mean equal to the expected 
branch length. Although the expected rate of nucleotide substitution was the same for 
all lineages, the actual number of substitutions varied considerably with lineage because 
of stochastic errors. After the nucleotide sequences for eight OTUs were produced, 
nucleotide differences were counted for all pairs of sequences, and the evolutionary 
distance (Jukes and Cantor 1969) was computed for each pair of OTUs. With the six 
tree-making methods mentioned above, tree topologies were determined from data 
either on the proportion of different nucleotides between the two sequences compared 
(p) or on the Jukes-Cantor distance (d). Note that p is a metric, whereas d is not. The 
entire process of simulation was repeated 100 times. 

Two measures are used to quantify the efficiency of a tree-making method in 
recovering the topology of the model tree. One is the proportion (PC) of correct trees 
(topologies) obtained. The other is the average distortion index (Tateno et al. 1982) 
based on Robinson and Foulds’ (198 1) metric on tree comparison. The distortion 
index (&) is twice the number of branch interchanges required for a reconstructed 
tree to be converted to the true tree. Here, we consider only unrooted trees. 

a 
a 

Q 

i___ 6a+b i 

a C 

0.5a-I C 
I 

C 
2 
3 

C 
C 

4 

C 
5 

L 
0.502 C 

6 
7 P 

I b 8 
(B) 

FIG. 6.-Model trees (A) and (B) under the assumption of constant rate of nucleotide substitution 
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Table 3 
P, and dT (in parentheses) for Six Tree-making Methods for 
the Case of a = 0.01, b = 0.04, and c = 0.07 

MODEL TREE Aa MODEL TREE Ba 

METHOD 300 600 900 300 600 900 

UPGMA: 
pb . . . . . 
d” . . . . . . . 

MF: 
p . . . . . . . . 
d . . . . . 

DW: 
p . . . . . 
d . . . . . . . 

LI: 
p . . . . 
d . . . . . . . 

ST: 
p . . . . . . . 
d . . . . . . . . 

NJ: 
p . . , . . 
d . . . . , 

14 (3.18) 
15 (3.18) 

36 (1.72) 
34 (1.74) 

58 (0.98) 
56 (1.04) 

14 (4.54) 
13 (4.56) 

36 (2.74) 
35 (2.70) 

51 (1.68) 
52 (1.60) 

95 (0.10) 
95 (0.10) 

24 (2.86) 
19 (2.94) 

51 (1.30) 
48 (1.42) 

67 (0.76) 
64 (0.86) 

39 (1.76) 
38 (1.92) 

73 (0.58) 
72 (0.62) 

42 (1.70) 
37 (1.74) 

75 (0.54) 
74 (0.58) 

96 (0.08) 
95 (0.10) 

26 (2.36) 
28 (2.36) 

55 (1.12) 
58 (1.06) 

79 (0.48) 
79 (0.46) 

41 (1.58) 
36 (1.84) 

71 (0.70) 
66 (0.82) 

94 (0.12) 
89 (0.24) 

40 (2.04) 
39 (2.10) 

70 (0.78) 
70 (0.78) 

90 (0.22) 
90 (0.26) 

91 (0.22) 
91 (0.22) 

48 (1.26) 
44 (1.48) 

75 (0.54) 
70 (0.62) 

97 (0.06) 
96 (0.08) 

45 (1.66) 
43 (1.62) 

75 (0.62) 
74 (0.64) 

97 (0.06) 
96 (0.08) 

46 (1.64) 
45 (1.62) 

76 (0.60) 
75 (0.60) 

91 (0.20) 
91 (0.20) 

48 (1.36) 
41 (1.60) 

76 (0.54) 
70 (0.62) 

‘As shown in fig. 6. 
b Trees reconstructed from data on the proportion of different nucleotides between the sequences compared. 
’ Trees reconstructed from the Jukes-Cantor distance. 

Table 3 shows the results for the case of a = 0.01, b = 0.04, and c = 0.07, where 
the B for all OTUs is 0.16 for both model trees. It is clear that in all tree-making 
methods PC increases as the number of nucleotides used (n) increases, whereas dT 
decreases. This is of course due to the fact that the sampling error of the distance 
between a pair of OTUs decreases as n increases. The PC and dT values obtained by 
using p and d are nearly the same, though p tends to show a better performance in 
recovering the correct topology, particularly for model tree (A). 

In the case of model tree (A) UPGMA shows the poorest performance in terms 
of both criterion PC and criterion dr. Even when 900 nucleotides are used, the pro- 
portion of correct trees obtained is -57%. The other five tree-making methods show 
a much better performance than UPGMA, and when 900 nucleotides are used, PC is 
-95%. Interestingly, all of them show a similar performance for all n’s examined. In 
the case of model tree (B), UPGMA again shows a poorer performance than any other 
method. In this case, however, all the five methods do not show the same performance. 
Rather, the NJ and the ST methods are better than the LI method, which is in turn 
better than the DW and MF methods. 

The results for the case of a = 0.02, b = 0.13, and c = 0.19 are presented in table 
4. The D for this case is 0.42 for model tree (A) and 0.43 for model tree (B). For 
model tree (A), UPGMA shows an improved performance compared with the case in 
table 3. However, all other methods show a small value of PC and a larger value of dT 
than those in table 3. This is apparently due to the fact that there are more backward 
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Table 4 
P, and dT (in parentheses) for Six Tree-making Methods for 
the Case of a = 0.02, b = 0.13, and c = 0.19 

MODEL TREE Aa MODEL TREE Ba 

METHOD 300 600 900 300 600 900 

UPGMA: 
p . . . 
d . . . 

MF: 

15 (3.24) 50 (1.32) 62 (0.82) 11 (4.62) 28 (2.94) 54 (1.48) 
15 (3.28) 49 (1.34) 61 (0.84) 13 (4.50) 30 (2.90) 57 (1.44) 

p . . . . . . 
d . . . . . . 

DW: 

34 (2.38) 65 (0.82) 79 (0.44) 10 (4.00) 25 (2.22) 43 (1.48) 
30 (2.70) 62 (1.02) 76 (0.54) 9 (4.12) 22 (2.28) 43 (1.48) 

p . . . . . 
d . . . . . . . 

LI: 

P 

27 (2.40) 66 (0.96) 77 (0.54) 17 (3.54) 39 (1.92) 54 (1.10) 
27 (2.52) 62 (1.02) 70 (0.70) 18 (3.54) 36 (1.98) 53 (1.16) 

23 (2.60) 44 (1.34) 67 (0.80) 25 (3.54) 50 (1.52) 81 (0.52) 
20 (2.82) 33 (1.78) 55 (1.12) 20 (3.70) 49 (1.54) 81 (0.50) 

p . . . . 
d . . . . 

NJ: 

35 (2.06) 67 (0.74) 82 (0.38) 34 (2.40) 60 (1.08) 82 (0.38) 
26 (2.42) 61 (0.96) 78 (0.48) 31 (2.50) 58 (1.16) 83 (0.36) 

p . . . . 36 (2.14) 64 (0.88) 83 (0.34) 34 (2.32) 63 (0.96) 82 (0.36) 
d . . . . 26 (2.38) 58 (1.08) 78 (0.48) 33 (2.56) 61 (1.04) 83 (0.34) 

NOTE.-Notations are as in table 3. 
a As shown in fig. 6. 

and parallel substitutions involved in this case. Nevertheless, UPGMA still shows a 
poorer performance than all other methods except LI, which is less efficient than 
UPGMA for the case of n = 600. The NJ, ST, DW, and MF methods give similar 
results, though the first two methods give slightly better results than the others for n 
= 900. We also note that p gives a better result than d for all methods but UPGMA, 
for which both p and d give essentially the same results. In the case of model tree (B), 
the PC values for UPGMA are not necessarily higher than those in table 3, but they 
are higher than those for the MF method for the same case. The DW method also 
shows a rather poor performance, though it is slightly better than the UPGMA and 
MF methods. The NJ and ST methods again show the best performance, but their PC 
values are slightly lower than those for the case of table 3. The LI method is quite 
good but not as good as the NJ and ST methods. Interestingly, p and d give similar 
results for all methods, unlike the case of model tree (A). 

Table 5 shows the results for the case of a = 0.03, b = 0.34, c = 0.42, and D 
= 0.92 for tree (A) and 0.91 for tree (B). Compared with the two previous cases, the 
frequency of backward and parallel substitutions is expected to be much higher because 
of the larger D, values used. Therefore, we used n = 500, 1,000, and 2,000 for this 
case. Yet, the PC values are smaller than those for the two previous cases. The relative 
merits of different tree-making methods for the case of model tree (A) are more or 
less the same as those for the case of table 4, except that the LI method tends to show 
a poorer performance than UPGMA. When n = 500, the MF and DW methods show 
a slightly higher value of PC than the ST and NJ methods, but for the other two n 
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Table 5 
PC and dT (in parentheses) for Six Tree-making Methods for 
the Case of Q = 0.03, b = 0.34, and c = 0.42 

MODEL TREE Aa MODEL TREE Ba 

METHOD 500 1,000 2,000 500 1,000 2,000 

UPGMA: 

P . . . . 
d 

MF:“‘‘-” 

P 

p . . . . . . 
d . . . . . . 

LI: 
p . . . . . . 
d 

P 

p . . . . . 
d . . . . 

9 (3.78) 
9 (3.78) 

27 (2.10) 
27 (2.10) 

62 (0.86) 
62 (0.88) 

10 (5.20) 
11 (5.30) 

18 (3.76) 
18 (3.74) 

54 (1.32) 
55 (1.26) 

15 (4.02) 
13 (4.42) 

41 (1.82) 
34 (2.14) 

62 (0.92) 
55 (1.14) 

3 (5.68) 
3 (5.72) 

17 (3.64) 
13 (3.80) 

28 (2.40) 
26 (2.48) 

16 (3.78) 
15 (4.22) 

46 (1.54) 
40 (1.96) 

63 (0.82) 
58 (0.98) 

4 (5.42) 
5 (5.50) 

18 (3.28) 
18 (3.48) 

41 (1.72) 
35 (1.82) 

3 (4.26) 
3 (4.84) 

37 (2.00) 
25 (2.60) 

53 (1.18) 
39 (1.66) 

15 (4.48) 
12 (4.72) 

28 (2.98) 
27 (3.06) 

70 (0.90) 
66 (1.02) 

10 (3.56) 
6 (4.06) 

44 (1.62) 
40 (1.82) 

68 (0.76) 
56 (1.04) 

13 (4.00) 
10 (4.32) 

36 (2.34) 
34 (2.34) 

74 (0.62) 
71 (0.72) 

11 (3.70) 
5 (4.24) 

44 (1.68) 
38 (2.00) 

67 (0.80) 
57 (1.06) 

13 (4.46) 
14 (4.44) 

34 (2.38) 
32 (2.42) 

75 (0.62) 
73 (0.72) 

NOTE.--Notations are as in table 3. 

a As shown in fig. 6. 

values they show more or less the same performance. Data on p again give a better 
result for the five methods (except for UPGMA) than do those on d. In the case of 
model tree (B), the MF method shows a poorer performance than UPGMA, which 
now gives results similar to the DW method. However, the P, values for the LI, ST, 
and NJ methods are substantially higher than those for UPGMA and the DW methods. 

Although the above computer simulations were done for a limited number of 
cases, the results obtained may be summarized as follows: (1) The efficiency of the NJ 
method in recovering the true unrooted tree is virtually the same as that of the ST 
method. (2) The NJ and ST methods perform well for both model tree (A) and model 
tree (B), whereas the DW and MF methods are good only for tree (A) and the LI 
method is good only for tree (B). For both model trees, UPGMA is rather poor in 
recovering the true unrooted tree. (3) In the case of model tree (A), data on p tend to 
give slightly better results than those on d, except for UPGMA. For model tree (B), 
however, both p and d give similar results. 

Conclusion (3) above indicates that data on p are better than those on d for 
constructing a topology, particularly when the OTUs used form a topology similar to 
model tree (A). However, since p is not a linear function of nucleotide substitutions, 
it does not provide good estimates of branch lengths unless the p values are very small. 
It is therefore advised that once a topology is obtained by using data on p, branch 
lengths should be estimated by using data on d. 

Tateno et al. ( 1982) and Sourdis and Krimbas ( 1987) conducted similar computer- 
simulation studies, comparing the efficiency of the UPGMA and the DW and MF 
methods as well as Fitch and Margoliash’s ( 1967) method for model tree (A). Although 



Neighbor-joining Method 4 19 

the parameter values used in their simulations are different from ours, their 
with respect to unrooted trees are more or less the same as ours. 

conclusions 

Varying Rate of Nucleotide Substitution 

When the rate of nucleotide substitution varies from evolutionary lineage to 
evolutionary lineage, the probability of obtaining the correct tree is expected to be 
lower than that for the case of rate constancy. To see the effect of this factor on PC, 
we conducted another computer simulation. 

In this simulation, we used the two model trees ([A] and [B]) given in figure 7. 
The topologies of trees (A) and (B) in fig. 7 are identical, respectively, with those of 
trees (A) and (B) in figure 6. The value given for each branch of these trees is the 
expected branch length (the expected number of nucleotide substitutions per site). The 
expected branch lengths for tree (A) in figure 7 were obtained under the assumption 
that b in figure 6(A) varies according to the gamma distribution with mean 0.04 and 
variance 0.08 (see Tateno et al. 1982 for the justification of this procedure). Similarly, 
the expected branch lengths for tree (B) in figure 7 were obtained under the assumption 
that c in figure 6(B) varies according to the gamma distribution with mean 0.07 and 
variance 0.14. The value of a and the expectation of D over all branches were 0.01 
and 0.016, respectively. Therefore, the simulations for model trees (A) and (B) cor- 
respond, respectively, to those for trees (A) and (B) in table 3. Once the expected 
length of a particular branch was determined, the actual number of nucleotide sub- 
stitutions for that branch was obtained by using the Poisson distribution. The eight 
nucleotide sequences thus obtained were used for the construction of phylogenetic 
trees. This process was repeated 100 times. In this simulation, only the case of 600 
nucleotides was examined, and the trees were constructed by using the p values. 

The results of this simulation are presented in table 6. One striking feature in 
this simulation is that the performance of UPGMA was very poor and that in none 
of the 100 replications was the correct tree obtained for both model tree (A) and model 
tree (B). This is in sharp contrast to the case of rate constancy (table 3), in which the 
PC for UPGMA is 36% when n = 600. The effect of varying rate on the PC value is less 
noticeable for the other tree-making methods. The PC values for the LI method are 
somewhat lower than those for the case of constant rate (see tables 3 and 6). In the 
remaining four methods, the PC values are virtually the same for both cases of constant 

.ol I.04 
.ol 07 L .ol .05 

.16 
.09 

EU 
FIG. 7.-Model trees (A) and (B) under the assumption of varying rate of nucleotide substitution 
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Table 6 
P, and dT (in parentheses) for Six Tree-making Methods for 
the Case of Varying Rate of Nucleotide Substitution 

Method Model Tree Aa Model Tree B” 

UPGMA: p 
MF:p . . . . 
DW: p . . . 
LI: p . . . . 
ST:p . . . . 
NJ:p . . . . 

0 (8.06) 0 (9.74) 
77 (0.50) 57 (1.46) 
69 (0.72) 59 (1.26) 
46 (1.30) 45 (1.68) 
77 (0.50) 69 (0.82) 
75 (0.56) 72 (0.78) 

Nom.--Notations are as in table 3. 
‘As shown in fig. I. 

and varying rates of nucleotide substitution. Therefore, the conclusions obtained for 
the case of constant rate also apply to the case of varying rate as far as the NJ, ST, 
MF, and DW methods are concerned. 

Discussion Y 

Unlike the standard algorithm for minimum-evolution trees, the NJ method 
minimizes the sum of branch lengths at each stage of clustering of OTUs starting with 
a starlike tree. Therefore, the final tree produced may not be the minimum-evolution 
tree among all possible trees. However, it should be noted that the real minimum- 
evolution tree is not necessarily the true tree. Saitou and Nei (1986) have shown that 
the minimum-evolution or maximum-parsimony tree often has an erroneous topology 
and that the maximum-parsimony method of tree making is not always the best in 
recovering the true topology. It seems to us that the relative efficiencies of different 
tree-making methods should eventually be evaluated by computer simulation. Our 
computer simulation has shown that the NJ method is quite efficient compared with 
other tree-making methods that produce a single parsimonious tree. 

We have shown that the estimates of branch lengths of the tree obtained by the 
NJ method are least-squares estimates determined at each stage of clustering of OTUs. 
This does not mean that these estimates are identical with those that are obtainable 
by the least-squares method for all branches of the final tree topology. Nevertheless, 
this property gives some assurance about the reliability of the estimates of branch 
lengths. Particularly when the number of OTUs is four or less, the branch lengths are 
exactly least-squares estimates, as is clear from equation (A4) below. 

Our procedure of estimating branch lengths is essentially the same as that of 
Fitch and Margoliash ( 1967). Some estimates of branch lengths may therefore become 
negative. If one is reluctant to accept negative estimates, there are two ways to eliminate 
them. One is to impose the condition that all branches be positive and then to reestimate 
the branch lengths. The other is to assume that negative estimates are due to sampling 
error and that the real values are zero rather than negative. Under this assumption, 
one may simply convert all negative estimates to zero. The second method is justified 
if we note that the absolute values of negative estimates are usually very small. 

A computer program for constructing a tree by using the NJ method is available 
from the authors on request. 
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APPENDIX A 

Least-Squares Estimation of the Branch Lengths 

Let us consider the tree of figure 2(b). If we use matrix notation, the problem is 
to obtain the least-squares solution of the linear equation Ax = d, where x is a column 
vector of N + 1 branch lengths (x’ = [LIX, LzX, LsY, L4r, . . . , LNY, Lxr]), d is a 
column vector of N(N - 1)/2 pairwise distances (d’ = [I&, I&, Q4, D15, . . . DIN, 
023, 024, - - - D2iv, . . . D,,_ IJN]), and A is an [N(N - 1)/2] X (N + 1) matrix. The 
element of the ith row and the jth column of matrix A is given by 

1 

[ 

if the ith distance includes the jth branch 
au= . 

0 otherwise 

An example of A for N = 5 is shown below: 

A= 

-110000 
101001 
100101 
100011 
011001 
010101 
010011 
001100 
001010 

-0 0 0 1 10 

The least-squares solution of the equation Ax = d is given by solving the equation 
A’Ax = A’d. It becomes x L = B-‘A’d, where B = A’A. The general expressions of 
symmetric matrices B and B-’ are 

N-l 1 1 . . . 1 N-2 
1 N-l 1 ... 1 N-2 

! 1 . N-l . ... . 1 . 2 . . . . . . . 
i i i .:. N-l 2 

N-2 N-2 2 ..e 2 2(N - 2) 

a b 0 0 0 -0 0 e 
b a 0 0 0 l *. 0 e 
0 0 c d d l ** d f 

B-l= . . . . . . . . . . 
;, ;, >;;I.:.;j 
e e f f f l _ f g 

1 , (Al) 

WV 
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where a = N/4(N - 2), b = (N - 4)/4(N - 2), c = (2N2 - 11N + 16)/2(N - 2)2(N 
- 3), d = -(N - 4)/2(N - 2)2(N - 3), e = -V&f= -1/2(N - 2)(N - 3), and g = (N 
- 1)/4(N - 3). Therefore, xL becomes 

1 
Llx=-D,2+ 

2 j&P-Q>, 6434 

1 
L2x=-D,2+ 

2 g&Q-PI, WV 

N!ZU’ -‘(P+ Q)- 
N-4 

Li,=- 
’ (N-2)2 (N- 2)2(N- 3) ’ 

(3 5 is N) (A3c) 

Lxy= 2(N-2) i(P+Q)-fD”-(N_2;(N_3)K (A3d) 

where P = 25 3 D,j, Q = Zc 3 D,, Ui = 2;; D, (i 2 3), and V = C3 sj < k Djks Note 

that equations (A3a) and (A3b) are equivalent to equations (6a) and (6b), respectively. 
Thus, the sum of branch lengths (Si2) for the topology in which OTUs 1 and 2 are 
clustered becomes 

S12 = LlX+ L2X+ 5 Liy+ Lxy= &(p+~)++h+&v. bw 
i=3 

Equation (A4) is equivalent to equation (4). 

APPENDIX B 
Branch Lengths for a Purely Additive Tree 

Let us consider the tree given in figure 1. If the tree is purely additive, 012 = LIA 
+ Lu and Dlj - D, = LIA - La (3 I j I N). Substituting these equations into 
equation (6a), we have 

L~x=;(LIA+L4)+ $-+ W- WL4 - Ldl = LA. (A% 

The estimated branch length (Llx) is identical with the true one (LIA). The same thing 
can be proven for L 2x. Therefore, the node X is identical with the node A in the tree 
in figure 1. 

If OTUs 1 and 2 are neighbors, they are combined into a single OTU, ( l-2). 
Suppose that OTUs (l-2) and 3 are a new pair of neighbors. The estimates of branch 
lengths for AB and 3B can then be obtained correctly, as shown below. Since the tree 
is purely additive, 

D(,-2)3 = (03 +023)/z = [(&A + ~543) + &-I + L/13)1/2 = 012/z + P13 - LIA) (A64 

and 

D (1-W -D3j=D,2/2+(DU-LIA)-(L3B+LBj)=D12/2+LAB-L3B (j24). (A6b) 
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Substituting these into equation (6a), we have 

+ 2(N- 3) 1[(N-3)(D,2/2+L~~-L3~)1 =;D~z+h. 

Since LAX = Lt1_2jx - D&2, L AX = LAB. On the other hand, as before, it easily can be 
shown that L 3x = LjB. Therefore, X = B. 

The above argument can be applied to any situation if the additivity of branch 
lengths is maintained. 

APPENDIX C 
The Smallest Sii Gives the True Neighbors 

In the following, we show that for a purely additive tree OTUs 1 and 2 are true 
neighbors when Si2 is smallest among all &‘s. We first show this for the case of four 
OTUs and then use the principle of induction to prove that it is generally true. 

Using the results presented in the Criterion for the Minimum-Evolution Tree 
section, we can state that the condition for S12 to be smallest among the six Sij’s for 
four OTUs is 

and 

Our task is to show that if Si2 is smallest, OTUs 1 and 2 are true neighbors. In the 
case of four OTUs, OTUs 3 and 4 are also neighbors if OTUs 1 and 2 are neighbors 
(see fig. 4). We prove our assertion by showing that when S12 is smallest, only OTUs 
1 and 2 (and OTUs 3 and 4) are neighbors. To prove this, we first assume that OTUs 
1 and 3 (and 2 and 4) are neighbors. We then should have 

03 + 024 = @‘I + b3) + @‘2 + b4), 

from formula (7), in which bi is the branch length between the ith OTU and its nearest 
interior node and a is the length between two interior nodes. Since a > 0, (D13 + 024) 
should be smaller than (Di2 + D34). However, this contradicts formula (A8). Therefore, 
OTUs 1 and 3 cannot be neighbors. Similarly, it can be shown that OTUs 1 and 4 
are not neighbors. Therefore, only OTUs 1 and 2 (and OTUs 3 and 4) are the neighbors. 

For the cases of more than four OTUs, we use the induction principle. Assuming 
that OTUs 1 and 2 are true neighbors when S12 is smallest among all &‘s for the case 
of N - 1 OTUs, we prove that the same rule applies in the case of N OTUs. 

Suppose that S12 is smallest among all &‘s when there are N OTUs. If we ignore 
the Nth OTU, OTUs 1 and 2 are, by assumption, neighbors for the remaining N - 1 
OTUs. Therefore, there are three possible pairs of neighbors when the Nth OTU is 
added: OTUs 1 and 2, OTUs 1 and N, and OTUs 2 and N. From equation (9), we 
have 

N-l 

&N - &2 = 2 [(DIN + D2d - CD12 + DN~I/[~(N- 91. 
k=3 
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C ___- k 

FIG. A 1 .-A possible relationship for four OTUs (1, 2, N, and k). a, b, , bZ, and c are branch lengths 

If OTUs 1 and N are neighbors, D 1N = bl -t bN, DZk = b2 + c, D12 = bl + bZ + a, and 
DNk = bN + a + c (see fig. Al). Thus, (DIN + Dxk) - (D12 + DNk) = -2a irrespective 
of k, and & - S12 should be negative. This is contradictory to our assumption that 
S12 is smallest. Therefore, OTUs I, and N are not neighbors. Similarly, it can be shown 
that OTUs 2 and N are not neighbors-and thus that OTUs 1 and 2 should be the 
neighbors. Since we know that our assertion is true for N = 4, it is true for any 
N (24). 
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