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Abstract 

The objective of this tutorial is to introduce basic concepts of a Hidden Markov Model 
(HMM). The tutorial is intended for the practicing engineer, biologist, linguist or programmer 
who would like to learn more about the above mentioned fascinating mathematical models 
and include them into one’s repertoire. This part of the tutorial is devoted to the basic 
concepts of a Hidden Markov Model. You will see how a Markov chain and Gaussian mixture 
models fuse together to form an HMM.  

3 Introduction into Hidden Markov Models 

3.1 Matrimonial contest problem 
Welcome to the Emperor’s palace! The elder daughter of Probabil the Great, beautiful 
Princess Variance, reached the 2-pi-square age that is considered as a mean of a normal 
distribution for the age when maidens of the Empire get married. Today, the traditional 
matrimonial contest will be held in the Palace. The winner will marry the Princess.  

The contest has ancient roots. When a princess is born, the Emperor assigns her a special 
servant. Every day from the day of the princess’ birth to the day of her 2-pi-square age her 
servant must visit four ponds in the Emperor’s Garden, in accordance to a Markov process, 
and catch one hundred fishes. The servant must record fish colors (red, blue, or green) and 
then return the fish back to the ponds. Each pond is strictly maintained and has its own 
proportion of fish of different colors. Every day, the Emperor’s mass media announced the 
results of the fishing. 

Ten days before the princess comes of age, her servant will put every caught fish into a 
transparent numbered jar and send it to the Palace. (It is assumed that taking out 1,000 fishes 
does not change the statistical properties of the ponds.)  In order to win the Princess’ hand in 
marriage, a contestant has to guess as accurately as possible from which pond each fish came. 

As time went by, however, the contest procedure changed due to the protests of the Wild 
Animal Protection Society and increasing pond maintenance expenses. Four temples replaced 
the four ponds. A big golden vat filled with perfume was placed in the middle of each temple. 
Artificial fishes of different colors were put in each vat. Each fish was made of precious 
stones of different colors as a mixture of three Gaussian components. Each temple had its own 
mixture and Gaussian distribution parameters that were kept secret. The results of every day’s 
“fishing” of 100 fishes – the wavelength of reflected light for each fish – were available to the 
public in press, radio, TV, and the computer network, EmpirNet, at the site eww.emperor.gov. 



Thus we have two problems: 
(1)    Decoding the sequence of ponds problem. 
(2)    Decoding the sequence of temples problem. 

Let us consider the first problem. Our data is a sequence of observations O of length L=1000. 
Every data element is a color of a fish from a finite set of colors (or a finite alphabet of 
symbols). In our case the set contains three symbols: “red”, “blue”, and “green”.  Each fish 
was taken out of some pond, or we can say “a data point was emitted in some state q”. A first-
order Markov chain determines the sequence of states (see formulas (3.1) and (3.2)). 

 Every state has its own discrete probability distribution for fish color. We shall call this 
distribution a symbol emission vector in i-th state. Collecting all vectors as columns of the 
matrix, we can get a symbol emission matrix (see formula (3.3)). A model of this sort is called 
a discrete Hidden Markov Model (HMM) because the sequence of state that produces the 
observable data is not available (hidden). HMM can also be considered as a double stochastic 
process or a partially observed stochastic process. Figure 3.1 shows an example of a discrete 
HMM. 

 

 

 
Now, let us consider the decoding the sequence of temples problem. It only differs from the 
previous problem in that the emission probability distribution for color of artificial fishes is 
continuous in each state and can be represented by a Gaussian mixture model. In the case 
where every mixture has only one component, we get an emission probability density function 
(3.4). Returning to the general case of a Gaussian mixture probability density function we can 
transform a state with a mixture density into a net of multiple single-density states (see Figure 
3.2). This model is called a continuous HMM or, speaking accurately, – a continuous 
observation HMM. Figure 3.3 shows an example of a continuous HMM. 

Figure 3.1 Four-pond HMM
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Figure 3.2. Mixture density state transformation 
 

Figure 3.3. Four-temple problem 
 

3.2 Likelihood calculation 
Let O be a sequence of observations and lambda be an HMM. How can you calculate the 
likelihood )|( λOP of O to be produced (or emitted) by λ? 

First, assume we know the sequence of state Q that produced the sequence of observations O. 
Then the joint probability of O and Q can be calculated using formula (3.5). This formula is 
just a product of probabilities you meet by tracing the HMM diagram for the sequence Q. For 
example, formula (3.6) calculates the joint probability for O = “RGB”, Q = “123” and the 
HMM depicted on Figure 3.1. 

 To calculate the likelihood, we have to sum probability over all possible state sequences 
(3.7). However, I do not recommend using the formula (3.7) for long observation sequences if 
you want to get results in your lifetime. For example, we have 41000 state sequences for our 
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HMM of 4 states and an observation sequence of length 1000. We need approximately 2L*4L 
operations to do the job. Let us assume we have a computer that can do 106 (one million) 
operations per second. Then it will take about 10200 seconds or 10192 years. The estimated age 
of the earth is less than this number. Thus, we need to use the more efficient procedure known 
as the Forward-Backward Procedure. 

The Forward-Backward Procedure is based on the technique known as dynamic 
programming. Dynamic programming makes calculations for a small instance, stores the 
result, and then uses it later whenever it is needed, rather than recomputing it from scratch. To 
apply dynamic programming, we have to find a recursive property that allows us to do 
calculations for the next instance based on the current one. 

Let us see how dynamic programming works for Forward-Backward Procedure. 
Let αk(i)  be the probability of the partial observation sequence O1→k = o1, o2, …, ok to be 
produced by all possible state sequences that end at i-th state (3.8). Then the probability of the 
partial observation sequence is the sum of αk(i) over all N states (3.9).  

 The Forward Procedure is a recursive algorithm for calculating αk(i) for the observation 
sequence of increasing length k (see formulas from (3.10) to (3.12)). First, the probabilities 
for the single-symbol sequence are calculated as a product of initial i-th state probability and 
emission probability of the given symbol o1 in i-th state (see formula (3.10)). Then the 
recursive formula (3.11) is applied. Assume we have calculated αk(i)  for some k. To calculate 
say αk+1(2)   (see Figure 3.4), we multiply every αk(i) by corresponding transition probability 
from i-th state to the second state, sum the products over all states, and then multiply the 
result by the emission probability of the symbol ok+1. Iterating the process, we can eventually 
calculate αk(L), and then summing them over all states, we can obtain the required probability 
(see formula (3.12)). 

Forward Algorithm: 
 
Initialization: 

Recursion: 

Termination: 
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Figure 3.4. Forward variable computation 
 
In a similar manner, we can introduce a symmetrical backward variable βk(i) as the 
conditional probability of the partial observation sequence from ok+1 to the end to be produced 
by all state sequences that start at i-th state (3.13). The Backward Procedure calculates 
recursively backward variables going backward along the observation sequence (see formulas 
from (3.15) to (3.17) and Figure 3.5). 

The Forward Procedure is typically used for calculating the probability of an observation 
sequence to be emitted by a HMM, but, as we shall see later, both procedures are heavily used 
for finding the optimal state sequence and estimating the HMM parameters. 

Backward Procedure: 
 
Initialization: 

Recursion: 

 
Termination: 

 

 

Figure 3.5. Backward variable calculation 
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Table 3.1. Forward and backward variable calculation 

 

Table 3.1 shows the results of calculation of the forward and backward variables for the 
HMM depicted in Figure 3.1 and observation sequence of length 5. 

3.3 Posterior Decoding 
All right! Now you can compute the probability of an observation sequence to be produced by 
an HMM. But to win the contest, you must find the sequence of hidden states that best 
explains the observations. But what does it mean “that best explains” or what is the criterion 
of optimality? There are several possible criteria. One is to choose states that are individually 
most likely at the time when a symbol is emitted. This approach is called posterior decoding.  

Let λk(i) be the probability of the model to emit k-th symbol being in the i-th state for the 
given observation sequence (see formula (3.18)). It is easy to derive the formula (3.19) that is 
used for calculating lambda variables. Then at each time we can select the state qk that 
maximizes λk(i) (see formula (3.20)). Table 3.2 presents the results of lambda variable 

calculations for the 5-symbol observation sequence and the model shown in Figure 3.1.The 
real sequence of states is 2-2-3-2-1 but the decoded sequence is 2-2-3-3-4. 

Table 3.2. Posterior decoding results for 5-symbol sequence 

 
Figure 3.6 shows the results for the same model and the observation sequence of length 300. 
We use the following color codes for states: 1 – blue, 2 – green, 3 – red, 4 – magenta. The 
accuracy is 61.33 %. 
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Figure 3.6. Posterior decoding results. 

3.4 Viterbi decoding 
Posterior decoding works fine in our case because our HMM is ergodic, i.e. there is transition 
from any state to any other state. If applied to an HMM of another architecture, this approach 
could give a sequence that may not be a legitimate path because some transitions are not 
permitted. In that case, we can use another approach known as either the Viterbi decoding or 
Viterbi algorithm. The Viterbi algorithm chooses one best state sequence that maximizes the 
likelihood of the state sequence for the given observation sequence (see formula (3.21)). 

Let δk(i) be the maximal probability of state sequences of the length k that end in state i and 
produce the k first observations for the given model (see (3.22)). The Viterbi algorithm is a 
dynamic programming algorithm that uses the same schema as the Forward procedure except 
for two differences: 
(1) It uses maximization in place of summing at the recursion and termination steps (see 
(3.25) and (3.27), and compare to (3.11) and (3.12)). 
(2) It keeps track of the arguments that maximize δk(i) for each k and i storing them in the N 

by L matrix. This matrix is used to retrieve the optimal state sequence at the backtracking 
step (see formulas (3.24), (3.26), and (3.29)). 

 
Viterbi Decoding: 
 
Initialization: 
 

 
Recursion: 
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Termination: 

 
Backtracking: 

 
 
Table 3.3 shows the results of the Viterbi decoding for the 5-symbol observation sequence 
and the model shown in Figure 3.1.The real sequence of states is 2-2-3-2-1 but the decoded 
sequence is 2-2-2-3-1.  

Table 3.3.  Viterbi decoding for 5-symbol sequence 

 

 
Figure 3.7. Viterbi decoding 

Figure 3.7 shows the results of the Viterbi decoding for the same model and the observation 
sequence of length 300. . We use the same color coding for states: 1 – blue, 2 – green, 3 – red, 
4 – magenta. The accuracy is 62.33 %. You can see that, in our case, the accuracy for both 
approaches (posterior and Viterbi decoding) is practically the same. 

3.5 Training algorithm (Baum-Welch) 
Great! Now you can decode the sequence of temples, marry the Princess, and live happily 
ever after. But wait a minute! One little thing is missing – the model. You need to build a 
model and estimate its parameters. Fortunately, you have a lot of historical data – the 
sequence of 719,900 artificial fishes. How can you build and train the model? You know the 
structure of the model. It is a 4-state ergodic model shown in Figure 3.1. You simply need to 
estimate the parameters of the model, i.e. transition probabilities and emission function. 
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Suppose we have an observation sequence O of length L. If we knew the corresponding 
sequence of states Q we could count the number of times each transition or emission occurred 
in the training sequence O. Then we could estimate the parameters using formulas (3.33), 
where Aij is the counter for transitions from i-th state to j-th state, and Ei(k) is the number of 
emissions of the k-th symbol in the state i. Note, we use the same formula for transition 
probabilities as in the case of Markov chain parameter estimation (see (1.4)). For estimating 
parameters of a continuous observation HMM, we could collect data emitted in each state and 
apply the EM algorithm to estimate the mixture parameters in each state. But we do not know 
the state sequence; it is hidden. Most likely, a variant of the EM algorithm exists that can 
solve the problem. Indeed, such an algorithm -- the Baum-Welch algorithm -- was proposed in 
the early 1970s. 

The key idea of the algorithm is to estimate the expected number of transitions from the state i 
to the state j and emissions of the symbol k in the state i based on the current parameter values 
and the training observation sequence. These estimates are then used to recalculate the 
parameters of the model. The process continues until the stopping criterion is reached. 

The algorithm uses the probabilities of transitions and emissions to approximate the 
corresponding counters. The transition probability from i-th state to j-th state at time k can be 
calculated using formula (3.30). Here, the numerator is the joint probability of being in the 
state i at time k, and in the state j at time k+1 and emitting the observations O that is 
calculated as the product of the following factors: the forward probability of i-th state at time 
k, the transition probability from the state i to the state j – aij, the emission probability of the 

symbol ok+1 in the state j and the backward probability of the state j at time k+1 (see Figure 
3.9). Dividing the product by the probability of the observation sequence O, we obtain the 
conditional probability of the transition from the state i to the state j at time k (3.30). 
Summing the estimates for transition counters over time, we obtain the expected number of 
transitions (see formula (3.31). To estimate the number of emissions, we use the sum of the 
posterior probabilities at time when the symbol was emitted (see (3.32) and compare to 
(3.19)). These estimates are used to recalculate the model parameters using the formula 
(3.33). The algorithm stops when the difference between two consecutive values of likelihood 
function is less than a threshold, or the maximal number of iterations is exceeded. 

 

Figure 3.8. Transition counter estimation 

In the case of continuous observations, we calculate the weight Wk(j,l) that is the probability 
of the observation to belong to the l-th mixture component in the state j at time k as the 
product of two factors: the posterior probability of being in the state j at time k, and the 
posterior probability of belonging the observation ok to the l-th mixture component (see 
(3.34), and compare to (2.4) and (3.32)). Then we calculate the mixture parameters using 
formulas (3.35), (3.36) and (3.37), which generalize the formulas (2.5), (2.6) and (2.7). 
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Baum-Welch Algorithm. 
 
Initialization:  Randomly choose model parameters. Set Aij and Ei(k) to pseudocount values. 
 
Recursion:  

• Calculate αi(l) and βi(l) for i=1,N and l=1,L. 
• Calculate  

• Estimate new model parameters: 

• Calculate log-likelihood. 
Termination: Stop, when the difference between two consecutive values of likelihood 

function is less than a threshold, or the maximal number of iterations is 
exceeded. 

 
It is easy to generalize the above algorithm when several observation sequences are available. 
In this case, we estimate counters for each sequence using formulas (3.31) and (3.32), sum the 
results, and recalculate the model parameters using (3.33). To estimate the initial state 
probabilities, we count decoded initial states, and divide the counters by the total number of 
training sequences. 

3.6 Viterbi training 
 An alternative approach to model parameters estimation is Viterbi training. In this approach, 
the most probable path for each training sequence is derived using Viterbi decoding. Then this 
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path is used for estimating counts for the number of transactions and symbol emissions that 
are used for recalculating the model parameters (see (3.33)).  

Viterbi Training. 
 
Initialization: Choose model parameters randomly. 
 
Iteration: 

• Derive the most probable state sequence Q using the Viterbi decoding algorithm. 
• Calculate Aij and Ei(k) for the given Q. 
• Estimate the new model parameters using (3.33). 
 

Termination: Stop, if the model parameters do not change for adjacent iterations. 
 
Figure 3.9 shows the results of model parameters estimation for a sequence of the length 5000 
symbols using both the Baum-Welch algorithm and Viterbi training. 

     True model:  Estimated model (Baum-Welch): Estimated model (Viterbi): 

 
Figure 3.9. Baum-Welch and Viterbi training 

So, now you have a decent weapon to compete with the other rivals for the Princess’ hand. 
Good luck! 

3.7 References and Applications 
Unfortunately, a comprehensive book devoted to Hidden Markov Models does not yet exist. 
There are, however, several books intended for a reader with a specific background. The most 
famous areas of HMM application are speech recognition and bioinformatics, and books 
devoted to these research areas often have chapters covering HMM. It is interesting to note 
that speech recognition uses continuous HMMs, but bioinformatics uses discrete HMMs for 
gene recognition and representation of protein families. 

I refer to four books. Rabiner and Juang’s book [1] is indispensable. It has a chapter that 
covers both the discrete and continuous HMMs. Durbin’s book [2] provides a very gentle 
introduction into the Markov chain and discrete hidden Markov models. MacDonald and 
Zucchini’s book  [3] offers a statisticians’ viewpoint. Elliott’s book [4] deals with the theory 
of HMM and requires a strong mathematical background. 

Hidden Markov Models are used for a wide spectrum of applications. As I mentioned before 
the most famous areas are bioinformatics and speech technology. In bioinformatics HMMs 
are used for gene finding, modeling protein families, protein structure prediction, and multiple 
sequence alignment. There are many companies competing in this area, I mentioned only one 
of them Net-ID, Inc. (http://www.netid.com/), which produces a neat commercial tool 
HMMpro. The major HMM application in speech technology is speech recognition, but the 
models are also used for speaker recognition and language modeling (see the NSF-European 
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Commission survey on human language Technologies [5]). The other areas of application 
include image processing [6], communications, signal processing [7], finance [8-9], traffic 
modeling, learning behavior of live and artificial systems, etc. Recently we witness the 
rapidly growing wave of research and application of this technique. For example, an HMM 
bibliography of 1997, which is still a valuable source of information 
(http://tsi.enst.fr/~cappe/docs/hmmbib.html), covers about 200 papers. Now the number of 
publications is at least twenty times as large.  

It is interesting to note that there are only a few commercial HMM software packages 
available. It can be explained by the fact that HMM modeling, especially for speech 
recognition, is going on a very low level. Many commercial tool kits and API for speech 
recognition are based on HMMs but allow users only to train or adapt them. I refer to two 
HMM tools. First is HMMpro from Net-ID, Inc. (http://www.netid.com/html/hmmpro.html) 
which is a tool for creating discrete HMMs for bioinformatics. The other one is HTK from 
Entropic, Inc. HTK was the best HMM toolkit for speech technology for several years. But 
the tool was discontinued when Entropic was acquired by Microsoft. 

Fortunately, there are many free software packages available on the Web: 

Name/Language URL Used for 
HMMER (C)  http://hmmer.wustl.edu/ bioinformatics 
Myers’ HMM 
software  (C) 

http://www.itl.atr.co.jp/comp.speech/Section6/Recog
nition/myers.hmm.html 

speech 

Kanungo’s HMM 
software (C)  

http://www.cfar.umd.edu/~kanungo/software/softwar
e.html 

language 
modeling 

Murphy’s HMM 
software 
(MATLAB) 

http://www.cs.berkeley.edu/~murphyk/Bayes/hmm.ht
ml 

speech 

Cappe’s HMM 
software 
(MATLAB) 

http://tsi.enst.fr/~cappe/node4.html signal 
processing 

HME software 
(MATLAB) 

http://www.stern.nyu.edu/~aweigend/Research/Softw
are 

market 
analysis 

hmmlib (JAVA) http://www.vilab.com/hmmlib/home.html ??? 
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