
Also appears in the Online Symposium for Electronics Engineer 2000
http://www.techonline.com/osee/

Hidden Markov Models:
Fundamentals and Applications

Part 2: Discrete and Continuous Hidden Markov Models
Valery A. Petrushin
petr@cstar.ac.com
Center for Strategic Technology Research
Accenture
3773 Willow Rd.
Northbrook, Illinois 60062, USA.

Abstract

The objective of this tutorial is to introduce basic concepts of a Hidden Markov Model
(HMM). The tutorial is intended for the practicing engineer, biologist, linguist or programmer
who would like to learn more about the above mentioned fascinating mathematical models
and include them into one’s repertoire. This part of the tutorial is devoted to the basic
concepts of a Hidden Markov Model. You will see how a Markov chain and Gaussian mixture
models fuse together to form an HMM.

3 Introduction into Hidden Markov Models

3.1 Matrimonial contest problem
Welcome to the Emperor’s palace! The elder daughter of Probabil the Great, beautiful
Princess Variance, reached the 2-pi-square age that is considered as a mean of a normal
distribution for the age when maidens of the Empire get married. Today, the traditional
matrimonial contest will be held in the Palace. The winner will marry the Princess.

The contest has ancient roots. When a princess is born, the Emperor assigns her a special
servant. Every day from the day of the princess’ birth to the day of her 2-pi-square age her
servant must visit four ponds in the Emperor’s Garden, in accordance to a Markov process,
and catch one hundred fishes. The servant must record fish colors (red, blue, or green) and
then return the fish back to the ponds. Each pond is strictly maintained and has its own
proportion of fish of different colors. Every day, the Emperor’s mass media announced the
results of the fishing.

Ten days before the princess comes of age, her servant will put every caught fish into a
transparent numbered jar and send it to the Palace. (It is assumed that taking out 1,000 fishes
does not change the statistical properties of the ponds.) In order to win the Princess’ hand in
marriage, a contestant has to guess as accurately as possible from which pond each fish came.

As time went by, however, the contest procedure changed due to the protests of the Wild
Animal Protection Society and increasing pond maintenance expenses. Four temples replaced
the four ponds. A big golden vat filled with perfume was placed in the middle of each temple.
Artificial fishes of different colors were put in each vat. Each fish was made of precious
stones of different colors as a mixture of three Gaussian components. Each temple had its own
mixture and Gaussian distribution parameters that were kept secret. The results of every day’s
“fishing” of 100 fishes – the wavelength of reflected light for each fish – were available to the
public in press, radio, TV, and the computer network, EmpirNet, at the site eww.emperor.gov.

Thus we have two problems:
(1) Decoding the sequence of ponds problem.
(2) Decoding the sequence of temples problem.

Let us consider the first problem. Our data is a sequence of observations O of length L=1000.
Every data element is a color of a fish from a finite set of colors (or a finite alphabet of
symbols). In our case the set contains three symbols: “red”, “blue”, and “green”. Each fish
was taken out of some pond, or we can say “a data point was emitted in some state q”. A first-
order Markov chain determines the sequence of states (see formulas (3.1) and (3.2)).

 Every state has its own discrete probability distribution for fish color. We shall call this
distribution a symbol emission vector in i-th state. Collecting all vectors as columns of the
matrix, we can get a symbol emission matrix (see formula (3.3)). A model of this sort is called
a discrete Hidden Markov Model (HMM) because the sequence of state that produces the
observable data is not available (hidden). HMM can also be considered as a double stochastic
process or a partially observed stochastic process. Figure 3.1 shows an example of a discrete
HMM.

Now, let us consider the decoding the sequence of temples problem. It only differs from the
previous problem in that the emission probability distribution for color of artificial fishes is
continuous in each state and can be represented by a Gaussian mixture model. In the case
where every mixture has only one component, we get an emission probability density function
(3.4). Returning to the general case of a Gaussian mixture probability density function we can
transform a state with a mixture density into a net of multiple single-density states (see Figure
3.2). This model is called a continuous HMM or, speaking accurately, – a continuous
observation HMM. Figure 3.3 shows an example of a continuous HMM.

Figure 3.1 Four-pond HMM

(3.2)

(3.1)

(3.3)

)1.04.04.01.0(=π



















=

8.01.005.005.0
1.07.015.005.0
1.015.07.005.0

25.01.005.08.0

A

B
G
R

E
















=
2.0
3.0
5.0

7.0
2.0
1.0

2.0
7.0
1.0

1.0
1.0
8.0

EA,,πλ =

whereaA
Ntsst ,}{

,1, =
=

),...,,(21 Nππππ =
)|(1 sqtqPa iist === −

)|()(jqkoPke iij ===wherekeE
MkNjj ,)}({

,1;,1 ==
=

NjofoE jjj ,1),;()(== σµ (3.4)

Figure 3.2. Mixture density state transformation

Figure 3.3. Four-temple problem

3.2 Likelihood calculation
Let O be a sequence of observations and lambda be an HMM. How can you calculate the
likelihood)|(λOP of O to be produced (or emitted) by λ?

First, assume we know the sequence of state Q that produced the sequence of observations O.
Then the joint probability of O and Q can be calculated using formula (3.5). This formula is
just a product of probabilities you meet by tracing the HMM diagram for the sequence Q. For
example, formula (3.6) calculates the joint probability for O = “RGB”, Q = “123” and the
HMM depicted on Figure 3.1.

 To calculate the likelihood, we have to sum probability over all possible state sequences
(3.7). However, I do not recommend using the formula (3.7) for long observation sequences if
you want to get results in your lifetime. For example, we have 41000 state sequences for our

)1.04.04.01.0(=π



















=

8.01.005.005.0
1.07.015.005.0
1.015.07.005.0

05.01.005.08.0

A

σ
µ








=
15
460

10
450

15
420

15
400

E

0.00456.04.05.025.05.03.0)()()()|,(32321211 =⋅⋅⋅⋅⋅== BeaGeaReQOP πλ

∏
=

−
⋅=

L

i
iqqqqq oeaoeQOP

iii
2

1)()()|,(
111

πλ

∑=
Qall

QOPOP)|,()|(λλ

(3.5)

(3.6)

(3.7)

HMM of 4 states and an observation sequence of length 1000. We need approximately 2L*4L
operations to do the job. Let us assume we have a computer that can do 106 (one million)
operations per second. Then it will take about 10200 seconds or 10192 years. The estimated age
of the earth is less than this number. Thus, we need to use the more efficient procedure known
as the Forward-Backward Procedure.

The Forward-Backward Procedure is based on the technique known as dynamic
programming. Dynamic programming makes calculations for a small instance, stores the
result, and then uses it later whenever it is needed, rather than recomputing it from scratch. To
apply dynamic programming, we have to find a recursive property that allows us to do
calculations for the next instance based on the current one.

Let us see how dynamic programming works for Forward-Backward Procedure.
Let αk(i) be the probability of the partial observation sequence O1→k = o1, o2, …, ok to be
produced by all possible state sequences that end at i-th state (3.8). Then the probability of the
partial observation sequence is the sum of αk(i) over all N states (3.9).

 The Forward Procedure is a recursive algorithm for calculating αk(i) for the observation
sequence of increasing length k (see formulas from (3.10) to (3.12)). First, the probabilities
for the single-symbol sequence are calculated as a product of initial i-th state probability and
emission probability of the given symbol o1 in i-th state (see formula (3.10)). Then the
recursive formula (3.11) is applied. Assume we have calculated αk(i) for some k. To calculate
say αk+1(2) (see Figure 3.4), we multiply every αk(i) by corresponding transition probability
from i-th state to the second state, sum the products over all states, and then multiply the
result by the emission probability of the symbol ok+1. Iterating the process, we can eventually
calculate αk(L), and then summing them over all states, we can obtain the required probability
(see formula (3.12)).

Forward Algorithm:

Initialization:

Recursion:

Termination:

)|,...()(21 λα iqoooPi kkk ==

Njoej jj ,1)()(11 == πα

∑
=

=
N

i
kk ioooP

1
21)()|...(αλ

1,1;,1)()()(1
1

1 −==⋅




= +

=
+ ∑ LkNjoeaij kj

N

i
ijkk αα

∑
=

=
N

i
L iOP

1
)()|(αλ

(3.8)

(3.9)

(3.10)

(3.11)

(3.12)

Figure 3.4. Forward variable computation

In a similar manner, we can introduce a symmetrical backward variable βk(i) as the
conditional probability of the partial observation sequence from ok+1 to the end to be produced
by all state sequences that start at i-th state (3.13). The Backward Procedure calculates
recursively backward variables going backward along the observation sequence (see formulas
from (3.15) to (3.17) and Figure 3.5).

The Forward Procedure is typically used for calculating the probability of an observation
sequence to be emitted by a HMM, but, as we shall see later, both procedures are heavily used
for finding the optimal state sequence and estimating the HMM parameters.

Backward Procedure:

Initialization:

Recursion:

Termination:

Figure 3.5. Backward variable calculation

),|...()(21 λβ iqoooPi kLkkk == ++

∑
=

+++ =
N

i
kkiiLkk ioeoooP

1
121)()()|...(βπλ

(3.13)

(3.14)

Nii ,11)(1 ==β

1,1;,1)()()(11
1

−=== ++
=
∑ LkNijoeai kkj

N

j
ijk ββ

∑
=

=
N

i
ii ioeOP

1
11)()()|(βπλ

(3.15)

(3.16)

(3.17)

Table 3.1. Forward and backward variable calculation

Table 3.1 shows the results of calculation of the forward and backward variables for the
HMM depicted in Figure 3.1 and observation sequence of length 5.

3.3 Posterior Decoding
All right! Now you can compute the probability of an observation sequence to be produced by
an HMM. But to win the contest, you must find the sequence of hidden states that best
explains the observations. But what does it mean “that best explains” or what is the criterion
of optimality? There are several possible criteria. One is to choose states that are individually
most likely at the time when a symbol is emitted. This approach is called posterior decoding.

Let λk(i) be the probability of the model to emit k-th symbol being in the i-th state for the
given observation sequence (see formula (3.18)). It is easy to derive the formula (3.19) that is
used for calculating lambda variables. Then at each time we can select the state qk that
maximizes λk(i) (see formula (3.20)). Table 3.2 presents the results of lambda variable

calculations for the 5-symbol observation sequence and the model shown in Figure 3.1.The
real sequence of states is 2-2-3-2-1 but the decoded sequence is 2-2-3-3-4.

Table 3.2. Posterior decoding results for 5-symbol sequence

Figure 3.6 shows the results for the same model and the observation sequence of length 300.
We use the following color codes for states: 1 – blue, 2 – green, 3 – red, 4 – magenta. The
accuracy is 61.33 %.

NiLk
OP

iii kk
k ,1;,1

)|(
)()()(===

λ
βαλ

),|()(λλ OiqPi kk ==

Lkiq k
Ni

k ,1)}({maxarg
1

==
≤≤

λ

(3.18)

(3.19)

(3.20)

Figure 3.6. Posterior decoding results.

3.4 Viterbi decoding
Posterior decoding works fine in our case because our HMM is ergodic, i.e. there is transition
from any state to any other state. If applied to an HMM of another architecture, this approach
could give a sequence that may not be a legitimate path because some transitions are not
permitted. In that case, we can use another approach known as either the Viterbi decoding or
Viterbi algorithm. The Viterbi algorithm chooses one best state sequence that maximizes the
likelihood of the state sequence for the given observation sequence (see formula (3.21)).

Let δk(i) be the maximal probability of state sequences of the length k that end in state i and
produce the k first observations for the given model (see (3.22)). The Viterbi algorithm is a
dynamic programming algorithm that uses the same schema as the Forward procedure except
for two differences:
(1) It uses maximization in place of summing at the recursion and termination steps (see
(3.25) and (3.27), and compare to (3.11) and (3.12)).
(2) It keeps track of the arguments that maximize δk(i) for each k and i storing them in the N

by L matrix. This matrix is used to retrieve the optimal state sequence at the backtracking
step (see formulas (3.24), (3.26), and (3.29)).

Viterbi Decoding:

Initialization:

Recursion:

)|...,...(max)(2121... 121

λδ kkqqqk oooiqqqPi
k

==
−

)}|,({maxarg)},|({maxarg* λλ OQPOQPQ
QQ

==

Njoej jj ,1)()(11 == πδ

[] 1,1;,1)()(max)(
11 −==⋅=

≤≤+ LkNjoeaij kjijkNik δδ

[]ijk
Ni

k aij)(maxarg)(
1

1 δψ
≤≤

+ =

0)(=jψ

(3.23)

(3.24)

(3.25)

(3.26)

(3.21)

(3.22)

Termination:

Backtracking:

Table 3.3 shows the results of the Viterbi decoding for the 5-symbol observation sequence
and the model shown in Figure 3.1.The real sequence of states is 2-2-3-2-1 but the decoded
sequence is 2-2-2-3-1.

Table 3.3. Viterbi decoding for 5-symbol sequence

Figure 3.7. Viterbi decoding

Figure 3.7 shows the results of the Viterbi decoding for the same model and the observation
sequence of length 300. . We use the same color coding for states: 1 – blue, 2 – green, 3 – red,
4 – magenta. The accuracy is 62.33 %. You can see that, in our case, the accuracy for both
approaches (posterior and Viterbi decoding) is practically the same.

3.5 Training algorithm (Baum-Welch)
Great! Now you can decode the sequence of temples, marry the Princess, and live happily
ever after. But wait a minute! One little thing is missing – the model. You need to build a
model and estimate its parameters. Fortunately, you have a lot of historical data – the
sequence of 719,900 artificial fishes. How can you build and train the model? You know the
structure of the model. It is a 4-state ergodic model shown in Figure 3.1. You simply need to
estimate the parameters of the model, i.e. transition probabilities and emission function.

[])(max
1

* ip LNi
δ

≤≤
=

[])(maxarg
1

* iq L
Ni

L δ
≤≤

=

1,1)(*
11

* −== ++ Lkqq kkk ψ

(3.27)

(3.28)

(3.29)

Suppose we have an observation sequence O of length L. If we knew the corresponding
sequence of states Q we could count the number of times each transition or emission occurred
in the training sequence O. Then we could estimate the parameters using formulas (3.33),
where Aij is the counter for transitions from i-th state to j-th state, and Ei(k) is the number of
emissions of the k-th symbol in the state i. Note, we use the same formula for transition
probabilities as in the case of Markov chain parameter estimation (see (1.4)). For estimating
parameters of a continuous observation HMM, we could collect data emitted in each state and
apply the EM algorithm to estimate the mixture parameters in each state. But we do not know
the state sequence; it is hidden. Most likely, a variant of the EM algorithm exists that can
solve the problem. Indeed, such an algorithm -- the Baum-Welch algorithm -- was proposed in
the early 1970s.

The key idea of the algorithm is to estimate the expected number of transitions from the state i
to the state j and emissions of the symbol k in the state i based on the current parameter values
and the training observation sequence. These estimates are then used to recalculate the
parameters of the model. The process continues until the stopping criterion is reached.

The algorithm uses the probabilities of transitions and emissions to approximate the
corresponding counters. The transition probability from i-th state to j-th state at time k can be
calculated using formula (3.30). Here, the numerator is the joint probability of being in the
state i at time k, and in the state j at time k+1 and emitting the observations O that is
calculated as the product of the following factors: the forward probability of i-th state at time
k, the transition probability from the state i to the state j – aij, the emission probability of the

symbol ok+1 in the state j and the backward probability of the state j at time k+1 (see Figure
3.9). Dividing the product by the probability of the observation sequence O, we obtain the
conditional probability of the transition from the state i to the state j at time k (3.30).
Summing the estimates for transition counters over time, we obtain the expected number of
transitions (see formula (3.31). To estimate the number of emissions, we use the sum of the
posterior probabilities at time when the symbol was emitted (see (3.32) and compare to
(3.19)). These estimates are used to recalculate the model parameters using the formula
(3.33). The algorithm stops when the difference between two consecutive values of likelihood
function is less than a threshold, or the maximal number of iterations is exceeded.

Figure 3.8. Transition counter estimation

In the case of continuous observations, we calculate the weight Wk(j,l) that is the probability
of the observation to belong to the l-th mixture component in the state j at time k as the
product of two factors: the posterior probability of being in the state j at time k, and the
posterior probability of belonging the observation ok to the l-th mixture component (see
(3.34), and compare to (2.4) and (3.32)). Then we calculate the mixture parameters using
formulas (3.35), (3.36) and (3.37), which generalize the formulas (2.5), (2.6) and (2.7).

)|(
)()()(

),|,(),(11
1 λ

βα
λξ

OP
joeai

OjqiqPji kkjijk
kkk

++
+ ==== (3.30)

Baum-Welch Algorithm.

Initialization: Randomly choose model parameters. Set Aij and Ei(k) to pseudocount values.

Recursion:

• Calculate αi(l) and βi(l) for i=1,N and l=1,L.
• Calculate

• Estimate new model parameters:

• Calculate log-likelihood.
Termination: Stop, when the difference between two consecutive values of likelihood

function is less than a threshold, or the maximal number of iterations is
exceeded.

It is easy to generalize the above algorithm when several observation sequences are available.
In this case, we estimate counters for each sequence using formulas (3.31) and (3.32), sum the
results, and recalculate the model parameters using (3.33). To estimate the initial state
probabilities, we count decoded initial states, and divide the counters by the total number of
training sequences.

3.6 Viterbi training
 An alternative approach to model parameters estimation is Viterbi training. In this approach,
the most probable path for each training sequence is derived using Viterbi decoding. Then this

∑
−

=
+ +=

1

1
1)1()()(

)|(
1 L

l
jljijiij loeal

OP
A βα

λ

∑
=

=
}|{

)()(
)|(

1)(
kol

iii
l

ll
OP

kE βα
λ

∑∑
==

== M

l
i

i
iN

l
il

ij
ij

lE

kEke
A

A
a

11
)(

)()(, NjiMk ,1,;,1 ==

(3.31)

(3.32)

(3.33)



















Σ

Σ
⋅








=

∑
=

K

m
jmjmkjm

jljlkjlkk
k

of

of
OP

jjljW

1

),;(

),;(
)|(

)()(),(
µν

µν
λ

βα

∑∑

∑

= =

== L

k

K

m
k

L

k
k

jl

mjW

ljW

1 1

1

),(

),(
ν KlNj ,1;,1 ==

∑

∑

=

=
⋅

= L

k
k

L

k
kk

jl

ljW

oljW

1

1

),(

),(
µ

() ()

∑

∑

=

=
−⋅−⋅

=Σ L

k
k

L

k

T
jlkjlkk

jl

ljW

ooljW

1

1

),(

),(µµ

(3.34)

(3.35)

(3.37)

(3.36)

path is used for estimating counts for the number of transactions and symbol emissions that
are used for recalculating the model parameters (see (3.33)).

Viterbi Training.

Initialization: Choose model parameters randomly.

Iteration:

• Derive the most probable state sequence Q using the Viterbi decoding algorithm.
• Calculate Aij and Ei(k) for the given Q.
• Estimate the new model parameters using (3.33).

Termination: Stop, if the model parameters do not change for adjacent iterations.

Figure 3.9 shows the results of model parameters estimation for a sequence of the length 5000
symbols using both the Baum-Welch algorithm and Viterbi training.

 True model: Estimated model (Baum-Welch): Estimated model (Viterbi):

Figure 3.9. Baum-Welch and Viterbi training

So, now you have a decent weapon to compete with the other rivals for the Princess’ hand.
Good luck!

3.7 References and Applications
Unfortunately, a comprehensive book devoted to Hidden Markov Models does not yet exist.
There are, however, several books intended for a reader with a specific background. The most
famous areas of HMM application are speech recognition and bioinformatics, and books
devoted to these research areas often have chapters covering HMM. It is interesting to note
that speech recognition uses continuous HMMs, but bioinformatics uses discrete HMMs for
gene recognition and representation of protein families.

I refer to four books. Rabiner and Juang’s book [1] is indispensable. It has a chapter that
covers both the discrete and continuous HMMs. Durbin’s book [2] provides a very gentle
introduction into the Markov chain and discrete hidden Markov models. MacDonald and
Zucchini’s book [3] offers a statisticians’ viewpoint. Elliott’s book [4] deals with the theory
of HMM and requires a strong mathematical background.

Hidden Markov Models are used for a wide spectrum of applications. As I mentioned before
the most famous areas are bioinformatics and speech technology. In bioinformatics HMMs
are used for gene finding, modeling protein families, protein structure prediction, and multiple
sequence alignment. There are many companies competing in this area, I mentioned only one
of them Net-ID, Inc. (http://www.netid.com/), which produces a neat commercial tool
HMMpro. The major HMM application in speech technology is speech recognition, but the
models are also used for speaker recognition and language modeling (see the NSF-European



















=

8.01.005.005.0
1.07.015.005.0
1.015.07.005.0

25.01.005.08.0

A

B
G
R

E
















=
2.0
3.0
5.0

7.0
2.0
1.0

2.0
7.0
1.0

1.0
1.0
8.0



















=

81.004.007.008.0
08.067.016.009.0
13.011.072.004.0
13.019.01.065.0

A

B
G
R

E
















=
22.0
25.0
53.0

81.0
11.0
08.0

25.0
71.0
04.0

01.0
1.0

89.0



















=

91.004.004.001.0
02.089.001.008.0
08.01.078.004.0
18.01.012.06.0

A

B
G
R

E
















=
14.0
26.0
6.0

82.0
1.0
08.0

23.0
72.0
05.0

15.0
05.0
8.0

Commission survey on human language Technologies [5]). The other areas of application
include image processing [6], communications, signal processing [7], finance [8-9], traffic
modeling, learning behavior of live and artificial systems, etc. Recently we witness the
rapidly growing wave of research and application of this technique. For example, an HMM
bibliography of 1997, which is still a valuable source of information
(http://tsi.enst.fr/~cappe/docs/hmmbib.html), covers about 200 papers. Now the number of
publications is at least twenty times as large.

It is interesting to note that there are only a few commercial HMM software packages
available. It can be explained by the fact that HMM modeling, especially for speech
recognition, is going on a very low level. Many commercial tool kits and API for speech
recognition are based on HMMs but allow users only to train or adapt them. I refer to two
HMM tools. First is HMMpro from Net-ID, Inc. (http://www.netid.com/html/hmmpro.html)
which is a tool for creating discrete HMMs for bioinformatics. The other one is HTK from
Entropic, Inc. HTK was the best HMM toolkit for speech technology for several years. But
the tool was discontinued when Entropic was acquired by Microsoft.

Fortunately, there are many free software packages available on the Web:

Name/Language URL Used for
HMMER (C) http://hmmer.wustl.edu/ bioinformatics
Myers’ HMM
software (C)

http://www.itl.atr.co.jp/comp.speech/Section6/Recog
nition/myers.hmm.html

speech

Kanungo’s HMM
software (C)

http://www.cfar.umd.edu/~kanungo/software/softwar
e.html

language
modeling

Murphy’s HMM
software
(MATLAB)

http://www.cs.berkeley.edu/~murphyk/Bayes/hmm.ht
ml

speech

Cappe’s HMM
software
(MATLAB)

http://tsi.enst.fr/~cappe/node4.html signal
processing

HME software
(MATLAB)

http://www.stern.nyu.edu/~aweigend/Research/Softw
are

market
analysis

hmmlib (JAVA) http://www.vilab.com/hmmlib/home.html ???

References

.
[1] L. Rabiner and B.-H. Juang Fundamentals of speech recognition. Prentice-Hall, 1993.
[2] R. Durbin, S. Eddy, A. Krogh, and G. Mitchison Biological sequence analysis.

Probabilistic models of proteins and nucleic acids. Cambrige University Press, 1998
[3] I.L. MacDonald and W. Zucchini Hidden Markov and Other Models for Discrete-Valued

Time Series. Chapman and Hall, 1997
[4] R.J. Elliott, L. Aggoun and J.B. Moore Hidden Markov Models: Estimation and Control.

Springer Verlag, 1995.
[5] http://cslu.cse.ogi.edu/HLTsurvey/HLTsurvey.html
[6] http://www.dei.unipd.it/~cuzzolin/Review.html
[7] http:://www.cssip.edu.au/~iain/otherwww/hmm.html
[8] http://www.stern.nyu.edu/~aweigend/Research/Papers/HiddenMarkov/WeigendShi_Stern

98.html
[9] http://www.cs.sun.ac.za/courses/hons/project_reports_1999/deon_van_biljon/

