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Computing with Very Restricted Resources

Turing machines Space s(n)
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s(n) = O(1)
⇓

Regularity

Question ([Stearns&Hartmanis&Lewis II ’65, Hopcroft&Ullman ’69])

What is the minimal amount of space s(n) which is necessary and
sufficient for the recognition of nonregular languages?

For almost all the variants of Turing machines: s(n) = Θ(log log n)
(one-way/two-way, deterministic/nondeterministic/alternating)



Computing with Very Restricted Resources

Pushdown automata Pushdown Height
height(n)
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height(n) = O(1)
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Regularity

Question ([P&Prigioniero ’23])

How much should the height grow when it is non constant?

height(n) growing as:
log log n, for input alphabets with at least 2 symbols
log n, for unary input alphabets



Another Measure for Pushdown Automata

Push complexity push(n)
number of push operations that are sufficient to accept inputs of
length n [Bordhin&Mitrana ’20]
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- push(n) = O(1)
⇓

height(n) = O(1)
⇓

Regularity

Question

What is the minimal push complexity for recognizing nonregular
context-free languages?



Definitions

PDA M, input alphabet Σ

C computation of M:
pushM(C) = number of push operations executed in C

w ∈ Σ∗:

pushM(w) =

 min{pushM(C) | C accepting
computation on w} if w ∈ L(M)

0 otherwise

n ∈ N:
pushM(n) = max{pushM(w) | |w | = n}

L ⊆ Σ∗:
pushL = min{pushM | M accepts L}



Observations

heightM(n) ≤ pushM(n)

heightM(n) = Θ(pushM(n)), for 1-turn PDAs

pushM(n) = O(1) =⇒ L(M) is regular

pushL(n) = O(1) ⇐⇒ heightL(n) = O(1) ⇐⇒ L is regular



Optimal Lower Bounds for Push Complexity



Questions

[Bordhin&Mitrana ’20]:
There exist languages with push complexity O(log n)
and O(

√
n)

Does there exist some nonregular language with push
complexity O(f (n)) for some other sublinear function f ?

How small can such f be?

Question (languages)

Find the “smallest” function f
s.t. pushL(n) = O(f ) for some
nonregular language L

Question (machines)

Find the “smallest” function f
s.t. pushM(n) = O(f ) for some
PDA M making a nonconstant
number of push operations



Questions

Theorem ([Alberts ’85])
If a Turing Machine works in space s(n) = o(log log n) then it
works in constant space.

⇒ If pushL(n) and pushM(n) are not bounded by any constant,
then they must grow at least as log log n

Can this log log(n) bound be reached?



The Language REI
[Bednárová&Geffert&Reinhardt&Yakaryilmaz ’16]

Set of strings that are not prefixes of the infinite
word bc1acR2 bc2acR3 · · · bckacRk+1bck+1ac

R
k+2 · · · , where

ck = eb0dbk,0db
R
0 eb1dbk,1db

R
1 · · · eb⌊log k⌋dbk,⌊log k⌋db

R
⌊log k⌋e

is a counter representation for k, augmented with subcounters

bk,i ∈ {0, 1} is the ith bit in the binary representation of k, and bi ∈ {0, 1}∗
denotes the number i written in binary, for i ∈ {0, 1, . . . , ⌊log k⌋}

Theorem ([Bednárová&Geffert&Reinhardt&Yakaryilmaz ’16])
REI is a nonregular language accepted by a PDA M using
height O(log log n)

An inspection to the definition of M shows that each accepting
computations makes at most 1 turn

⇒ The language REI and the PDA M have minimal non-constant
push complexity O(log log n)



Decidability



Decidability Questions

Problem (Languages)

Given a CFL L is pushL(n) = O(1)?
is heightL(n) = O(1)?

Equivalent to the Regularity Problem for CFLs

Undecidable!

Problem (Machines)

Given a PDA M is pushM(n) = O(1)?
is heightM(n) = O(1)?

(L(M) could be regular)

[Bordhin&Mitrana ’20, P&Prigioniero ’23]

Undecidable!

All these undecidability results are proved using an input alphabet
of at least 2 symbols!



Decidability Questions in the Unary Case

Problem (Languages)

Given a unary CFL L is pushL(n) = O(1)?
is heightL(n) = O(1)?

Unary CFLs are regular [Ginsburg&Rice ’62]

Always
true!

Problem (Machines)

Given a unary PDA M:
is pushM(n) = O(1)?
is heightM(n) = O(1)?

(L(M) is regular)

heightM: decidable!
[P&Prigioniero ’23]

pushM: ???



Decidability in the Unary Case

Theorem
Given a unary PDA M, it is decidable whether pushM(n) is
bounded by some constant.

Proof Idea:
Each accepting computation on a sufficiently long input aℓ

should contain some repetitions
When possible, replace parts between repetitions by loops that
do not use any push
pushM(n) = O(1) iff the replacement is possible for
each aℓ ∈ L(M), with finitely many exceptions



Computations of PDAs

stack
height

time/
input



Loops in Computations

Vertical loop on [qAp]stack
height

time/
input



Loops in Computations

Horizontal loop on [rB]stack
height

time/
input



Loops in Computations

Horizontal flat loop on [rB]stack
height

time/
input



Loops in Computations

Vertical loop on [qAp]stack
height

time/
input

Horizontal loop on [rB]stack
height

time/
input

Horizontal flat loop on [rB]stack
height

time/
input

Flat loops do not make any push
⇓

When possible, use them to
simulate vertical and horizontal

nonflat loops



Using Flat Loops

Lemma
If aℓ has an accepting computation C visiting a pair [rB],
where [rB] has a flat loop,
then aℓ has also an accepting computation C′ with push(C′) ≤ H
(H is a constant depending on M).

We consider languages:

Lf : strings accepted by computations of M which visit at least one
pair [rB] having a flat loop

Lnf : strings accepted by the computations of M which visit only pairs
that do not have flat loops

Then:
pushM(n) = O(1) ⇐⇒ Lnf \ Lf is finite

Lf and Lnf are regular languages effectively constructible from M

=⇒ “Lnf \ Lf is finite” is decidable!



Optimal Lower Bounds in the Unary Case



Lower Bound on pushM(n)

We have seen that pushM(n) /∈ o(log log n) when it is not
bounded by any constant

There is a PDA M matching such a bound (language REI)

What happens if the input alphabet is unary?



Lower Bounds on pushM(n)
Unary case

stack
height

time/
input

Each sequence of m moves
that do not change the stack,
with m ≥ #states, contains
a horizontal flat loop!

Theorem
Let M be a unary PDA.
If pushM(n) /∈ O(1) then pushM(n) /∈ o(n),
namely it must grow at least linearly in n.



Bounds

general input unary input

heightM(n) log log n log n

l.b. [Alberts ’85] [P&Prigioniero ’23]

u.b. [P&Prigioniero ’23] ibid

pushM(n) log log n n

l.b. [Alberts ’85] [This work]

u.b. [This work] easy



“Simultaneous” Optimal Bounds in the Unary Case

Theorem
There exists a unary PDA M accepting in nonconstant height
s.t. heightM(n) = O(log n) and pushM(n) = O(n).

M accepts a∗ (in a complicate way...):

Two recursive calls
with one read in between

Base of the recursion:
accept ε

stack
height

time/
input

read  a

stack
height

time/
input

On input aℓ there exists an accepting computation C with:
- pushM(C) = 2ℓ
- heightM(C) = ⌊log2 ℓ⌋+ 1

The other computations are more expensive



Conclusion



Summary and Problems

For a PDA M, both pushM(n) and heightM(n), if non constant,
must grow at least as log log n

These bounds are reachable in the case of binary alphabets

Problem
Can these log log n bounds be reached
if M accepts a regular language?

Open!
For unary alphabets the optimal bounds grow as n and log n, resp.

In the general case, given a PDA M it is not decidable
whether pushM(n) (resp., heightM(n)) is bounded by a constant.
In the unary case these two questions are decidable

Problem
Are these questions decidable, if we know
that L(M) is regular?

Still undecidable!



Thank you for your attention!
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