Push Complexity Optimal Bounds and Unary Inputs

Giovanni Pighizzini

Dipartimento di Informatica Università degli Studi di Milano, Italy

> CIAA 2024 – Akita, Japan September 4, 2024

Computing with Very Restricted Resources

Question ([Stearns&Hartmanis&Lewis II '65, Hopcroft&Ullman '69]) What is the minimal amount of space s(n) which is necessary and sufficient for the recognition of nonregular languages?

For almost all the variants of Turing machines: $s(n) = \Theta(\log \log n)$ (one-way/two-way, deterministic/nondeterministic/alternating)

Computing with Very Restricted Resources

Question ([P&Prigioniero '23])

How much should the height grow when it is non constant?

height(n) growing as:

- log log n, for input alphabets with at least 2 symbols
- log *n*, for unary input alphabets

Another Measure for Pushdown Automata

Push complexity push(n)

number of *push operations* that are sufficient to accept inputs of length n [Bordhin&Mitrana '20]

Question

What is the minimal push complexity for recognizing nonregular context-free languages?

Definitions

PDA \mathcal{M} , input alphabet Σ

•
$$C$$
 computation of \mathcal{M} :
 $push_{\mathcal{M}}(C) = number of push operations executed in C
• $w \in \Sigma^*$:
 $push_{\mathcal{M}}(w) = \begin{cases} \min\{push_{\mathcal{M}}(C) \mid C \text{ accepting} \\ computation on w\} & \text{if } w \in L(\mathcal{M}) \\ 0 & \text{otherwise} \end{cases}$
• $n \in \mathbb{N}$:
 $push_{\mathcal{M}}(n) = \max\{push_{\mathcal{M}}(w) \mid |w| = n\}$
• $L \subseteq \Sigma^*$:
 $push_L = \min\{push_{\mathcal{M}} \mid \mathcal{M} \text{ accepts } L\}$$

Observations

• $\mathsf{height}_{\mathcal{M}}(n) \leq \mathsf{push}_{\mathcal{M}}(n)$

• height_M(*n*) = $\Theta(push_{M}(n))$, for 1-turn PDAs

• $\mathsf{push}_\mathcal{M}(n) = O(1) \implies L(\mathcal{M})$ is regular

• $\mathsf{push}_L(n) = O(1) \iff \mathsf{height}_L(n) = O(1) \iff L$ is regular

Optimal Lower Bounds for Push Complexity

Questions

[Bordhin&Mitrana '20]:

- There exist languages with push complexity $O(\log n)$ and $O(\sqrt{n})$
- Does there exist some nonregular language with push complexity O(f(n)) for some other sublinear function f?

How small can such f be?

Question (languages)

Find the "smallest" function fs.t. push_L(n) = O(f) for some nonregular language L

Question (machines)

Find the "smallest" function fs.t. push_{\mathcal{M}}(n) = O(f) for some PDA \mathcal{M} making a nonconstant number of push operations

Theorem ([Alberts '85])

If a Turing Machine works in space $s(n) = o(\log \log n)$ then it works in constant space.

 $\Rightarrow \text{ If } \text{push}_L(n) \text{ and } \text{push}_{\mathcal{M}}(n) \text{ are not bounded by any constant,} \\ \text{ then they must grow at least as } \log \log n$

Can this $\log \log(n)$ bound be reached?

The Language REI [Bednárová&Geffert&Reinhardt&Yakaryilmaz'16]

Set of strings that are not prefixes of the infinite word $bc_1ac_2^Rbc_2ac_3^R\cdots bc_kac_{k+1}^Rbc_{k+1}ac_{k+2}^R\cdots$, where

- c_k = eb₀db_{k,0}db^R₀ eb₁db_{k,1}db^R₁ ··· eb_{⌊log k⌋}db_{k,⌊log k⌋}db^R_{⌊log k⌋}e is a counter representation for k, augmented with subcounters
- $b_{k,i} \in \{0,1\}$ is the *i*th bit in the binary representation of k, and $b_i \in \{0,1\}^*$ denotes the number *i* written in binary, for $i \in \{0,1,\ldots,\lfloor \log k \rfloor\}$

Theorem ([Bednárová&Geffert&Reinhardt&Yakaryilmaz '16]) REI is a nonregular language accepted by a PDA \mathcal{M} using height $O(\log \log n)$

An inspection to the definition of ${\cal M}$ shows that each accepting computations makes at most 1 turn

 \Rightarrow The language REI and the PDA \mathcal{M} have minimal non-constant push complexity $O(\log \log n)$

Decidability

Decidability Questions

```
Problem (Languages)
```

Given a CFL L is $push_L(n) = O(1)$? is $height_L(n) = O(1)$?

Equivalent to the Regularity Problem for CFLs

Problem (Machines)

Given a PDA \mathcal{M} is $push_{\mathcal{M}}(n) = O(1)$? is $height_{\mathcal{M}}(n) = O(1)$? ($L(\mathcal{M})$ could be regular)

Undecidable!

Undecidable!

[Bordhin&Mitrana '20, P&Prigioniero '23]

All these undecidability results are proved using an input alphabet of at least 2 symbols!

Decidability Questions in the Unary Case

Problem (Languages)

Given a unary CFL L is $push_L(n) = O(1)$? is $height_L(n) = O(1)$?

Always true!

Unary CFLs are regular [Ginsburg&Rice '62]

Problem (Machines)

Given a unary PDA \mathcal{M} : is push $_{\mathcal{M}}(n) = O(1)$? is height $_{\mathcal{M}}(n) = O(1)$? ($L(\mathcal{M})$ is regular) $\begin{array}{l} \mathsf{height}_{\mathcal{M}} \colon \mathsf{decidable}!\\ [\mathsf{P}\&\mathsf{Prigioniero}~'23]\\ \mathsf{push}_{\mathcal{M}} \colon \ref{eq:point_started} \end{array}$

Theorem

Given a unary PDA M, it is decidable whether push_M(n) is bounded by some constant.

Proof Idea:

- Each accepting computation on a sufficiently long input a^l should contain some repetitions
- When possible, replace parts between repetitions by loops that do not use any push
- push_M(n) = O(1) iff the replacement is possible for each a^ℓ ∈ L(M), with finitely many exceptions

Computations of PDAs

Flat loops do not make any push ↓ When possible, use them to simulate vertical and horizontal nonflat loops

Using Flat Loops

Lemma

If a^{ℓ} has an accepting computation C visiting a pair [rB], where [rB] has a flat loop, then a^{ℓ} has also an accepting computation C' with $push(C') \leq H$ (H is a constant depending on M).

We consider languages:

- L_f : strings accepted by computations of ${\cal M}$ which visit at least one pair $[\mathit{rB}]$ having a flat loop
- L_{nf} : strings accepted by the computations of ${\cal M}$ which visit only pairs that do not have flat loops

Then:

$$\mathsf{push}_\mathcal{M}(n) = O(1) \iff L_{\mathsf{nf}} \setminus L_{\mathsf{f}} \text{ is finite}$$

 L_f and L_{nf} are regular languages effectively constructible from $\mathcal M$

 \implies " $L_{nf} \setminus L_{f}$ is finite" is decidable!

Optimal Lower Bounds in the Unary Case

- We have seen that push_M(n) ∉ o(log log n) when it is not bounded by any constant
- There is a PDA \mathcal{M} matching such a bound (language REI)

What happens if the input alphabet is unary?

Lower Bounds on $push_{\mathcal{M}}(n)$

Unary case

Each sequence of *m* moves that do not change the stack, with $m \ge \#$ states, contains a horizontal flat loop!

Theorem

Let \mathcal{M} be a unary PDA. If $push_{\mathcal{M}}(n) \notin O(1)$ then $push_{\mathcal{M}}(n) \notin o(n)$, namely it must grow at least linearly in n.

Bounds

	general input	unary input
$height_\mathcal{M}(n)$	log log n	log n
l.b.	[Alberts '85]	[P&Prigioniero '23]
u.b.	[P&Prigioniero '23]	ibid
$push_\mathcal{M}(n)$	log log n	п
l.b.	[Alberts '85]	[This work]
u.b.	[This work]	easy

"Simultaneous" Optimal Bounds in the Unary Case

Theorem

There exists a unary PDA \mathcal{M} accepting in nonconstant height s.t. height_{\mathcal{M}} $(n) = O(\log n)$ and push_{\mathcal{M}}(n) = O(n).

• On input a^{ℓ} there exists an accepting computation C with:

-
$$\mathsf{push}_\mathcal{M}(\mathcal{C}) = 2\ell$$

-
$$\mathsf{height}_{\mathcal{M}}(\mathcal{C}) = \lfloor \log_2 \ell \rfloor + 1$$

The other computations are more expensive

Conclusion

Summary and Problems

- For a PDA *M*, both push_{*M*}(*n*) and height_{*M*}(*n*), if non constant, must grow at least as log log *n*
- These bounds are reachable in the case of binary alphabets

Problem

Can these $\log \log n$ bounds be reached if \mathcal{M} accepts a regular language?

- For unary alphabets the optimal bounds grow as *n* and log *n*, resp.
- In the general case, given a PDA *M* it is not decidable whether push_M(n) (resp., height_M(n)) is bounded by a constant. In the unary case these two questions are decidable

Problem

Are these questions decidable, if we know that $L(\mathcal{M})$ is regular? Still undecidable!

Thank you for your attention!