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Introduction to Limited Automata



Limited Automata [Hibbard ’67, scan limited automata]

One-tape Turing machines with restricted rewritings

Definition
Fixed an integer d ≥ 1, a d-limited automaton is
▶ a one-tape Turing machine
▶ which is allowed to replace the content of each tape cell

only in the first d visits

Computational power

▶ For each d ≥ 2, d-limited automata characterize
context-free languages [Hibbard ’67]

▶ 1-limited automata characterize regular languages
[Wagner&Wechsung ’86]
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Technical details:

- Input surrounded by two
end-markers

- End-markers are never changed

- The head cannot exceed the
end-markers
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Simulation of 1-Limited Automata by Finite Automata

Derived from the simulation of 2NFAs by 1DFAs [Shepherdson ’59]:
▶ First visit to a cell: direct simulation
▶ Further visits: transition tables

x y

6
τx

τx ⊆ Q × Q

(p, q) ∈ τx iff x
� p
-q

▶ Finite control of the simulating automaton: 2n
2+n states

- transition table τx 2n
2

possible tables
- set of possible current states 2n possible sets

Simulation of 1-LAs:
τx depends on the choices

made while reading x
⇒ The resulting automaton is

nondeterministic!
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Size Costs of Simulations
1-LAs versus Finite Automata [P.&Pisoni ’14]

▶ 1-LAs → 1NFAs
exponential

▶ 1-LAs → 1DFAs
double exponential

▶ det-1-LAs → 1DFAs
exponential

All these bounds are tight!

Double role of nondeterminism in 1-LAs
On a tape cell:

First visit: To replace the content
by a nondeterministically chosen symbol γ

Next visits: To select a transition
the set of available transitions depends on γ!
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Size Costs of Simulations

1-LAs → 1DFAs: double exponential gap

Problem: How much can we restrict the moves of 1-LAs
in order to keep this gap double exponential?

↙
Once-Marking

1-Limited Automata

↘
Always-Marking

1-Limited Automata
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Keeping a Double Exponential Gap
Once-Marking 1-Limited Automata



The Language Kn (n > 0)

Kn = {x1 x2 · · · xk x | k > 0, x1, . . . , xk , x ∈ {a, b}n,
and ∃j ∈ {1, . . . , k} s.t. xj = x}

Example (n = 3):
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A Nondeterministic 1-Limited Automaton for Kn

▷ a a b

|

a b a

|

b b a

|

a b a

|

b a a

|

b b b

|

b b a ◁ (n = 3)

1. Scan all the tape from left to right:
check if the input length is a multiple of n
mark the rightmost cell of one nondeterministically chosen
block

2. Compare symbol by symbol the last block and the one ending
with the marked cell

3. Accept if the two blocks are equal

Complexity:

▶ O(n) states
▶ Fixed working alphabet

⇒ 1-LA of size O(n)

Rewritings: to accept Kn it is enough to mark one tape cell
during the first visit!
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Recognizing Kn with Finite Automata

Kn = {x1 x2 · · · xk x | k > 0, x1, . . . , xk , x ∈ {a, b}n,
and ∃j ∈ {1, . . . , k} s.t. xj = x}

Finite automata
To recognize Kn each 1DFA requires a number
of states at least double exponential in n

Proof: standard distinguishability arguments

1-LAs → 1DFAs

The gap remains double exponential even for 1-LAs
that are allowed to rewrite only one cell!

⇒ Once-Marking 1-Limited Automata
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Once-Marking 1-Limited Automata

Definition
A 1-limited automaton is said to be once marking (OM-1-LA) if

- in each computation there is a unique tape cell whose input
symbol σ is replaced with its marked version •

σ

- all the remaining cells are never changed

▶ Computational power:
Regular languages

▶ Costs of the
conversion to 1DFAs:
Double exponential
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Costs from deterministic OM-1-LAs?
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Conversions of deterministic OM-1-LAs

Theorem
For each n-state deterministic OM-1-LA A there exists an
equivalent 2DFA A′ with O(n3) states.

Proof idea
▶ At the beggining A′ makes the same moves as A
▶ When the marking move is reached:

- A′ simulates it without marking
A′ saves the state q and the symbol σ in its control

▶ Remaining moves:
- if symbol on the tape ̸= σ: simulated as in A
- otherwise A′ calls a verification procedure to decide if the

symbol is the marked one
- According to the result A′ choose the move

▶ Verification procedure:
- “backward search” in the computation tree [Sipser ’80]
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Reducing the Gap to a Single Exponential
Always-Marking 1-Limited Automata



Reducing the Gap: First Attempts

Double role of nondeterminism in 1-LAs
On a tape cell:

First visit: To replace the content
by a nondeterministically chosen symbol γ

Next visits: To select a transition
the set of available transitions depends on γ!

Two “naif” restrictions of 1-LAs:
1. Deterministic choice for rewritings

Nondeterministic choice for next state and head movement
2. Nondeterministic choice for rewritings

Deterministic choice for next state and head movement

For both restrictions, in the worst case the size gap to 1DFAs
remains double exponential!



Reducing the Gap: First Attempts

Double role of nondeterminism in 1-LAs
On a tape cell:

First visit: To replace the content
by a nondeterministically chosen symbol γ

Next visits: To select a transition
the set of available transitions depends on γ!

Two “naif” restrictions of 1-LAs:
1. Deterministic choice for rewritings

Nondeterministic choice for next state and head movement
2. Nondeterministic choice for rewritings

Deterministic choice for next state and head movement

For both restrictions, in the worst case the size gap to 1DFAs
remains double exponential!



Reducing the Gap: First Attempts

Double role of nondeterminism in 1-LAs
On a tape cell:

First visit: To replace the content
by a nondeterministically chosen symbol γ

Next visits: To select a transition
the set of available transitions depends on γ!

Two “naif” restrictions of 1-LAs:
1. Deterministic choice for rewritings

Nondeterministic choice for next state and head movement
2. Nondeterministic choice for rewritings

Deterministic choice for next state and head movement

For both restrictions, in the worst case the size gap to 1DFAs
remains double exponential!



Reducing the Gap: First Attempts

Double role of nondeterminism in 1-LAs
On a tape cell:

First visit: To replace the content
by a nondeterministically chosen symbol γ

Next visits: To select a transition
the set of available transitions depends on γ!

Two “naif” restrictions of 1-LAs:
1. Deterministic choice for rewritings

Nondeterministic choice for next state and head movement
2. Nondeterministic choice for rewritings

Deterministic choice for next state and head movement

For both restrictions, in the worst case the size gap to 1DFAs
remains double exponential!



Simulation of 1-Limited Automata by Finite Automata

▶ First visit to a cell: direct simulation
▶ Further visits: transition tables

x y

6
τx

τx ⊆ Q × Q

(p, q) ∈ τx iff x
� p
-q

▶ Finite control of the simulating automaton: 2n
2+n states

- transition table τx 2n
2

possible tables
- set of possible current states 2n possible sets

The double exponential gap is due to the fact that different
computations can produce different τx for the same prefix x

Consider restrictions that avoid that!

⇒ Always-Marking 1-Limited Automata
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Always-Marking 1-Limited Automata

Definition
A 1-LA is said to be always marking if

each time the head visits a tape cell for the first time,
the input symbol σ in it is replaced with its marked version •

σ

▶ Computational power:
Regular languages

▶ Costs of the
conversion to 1DFAs:
Single exponential
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The Language Jn (n > 0)

Jn = {x x1 x2 · · · xk | k > 0, x1, . . . , xk , x ∈ {a, b}n,
and ∃j ∈ {1, . . . , k} s.t. xj = x}

Then:
▶ Jn = (Kn)

R

▶ Each 2NFA accepting Jn has a number of states at least
exponential in n

- 2NFAs → 1DFAs costs exponential
- Kn needs at least 22n

states to be accepted by 1DFAs
- Jn and Kn have 2NFAs of the same size
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Recognizing Jn with AM-1-LAs

▷ a b a

|

a b b

|

a b b

|

a b a

|

b a a

|

b b b

|

b b a ◁ (n = 3)

▶ Visit and mark the first n tape cells
Then inspect the following blocks as follows:

▶ When the head reaches a cell for the first time:
Mark it and locate the corresponding cell in the first block
If the symbols in the two cells do not match

then skip the remaining symbols of the current block
otherwise if the current block is not finished

then continue inspection
otherwise accepts if the length of the remaining part of the
input is a multiple of n

Only deterministic transitions!
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Simulations of AM-1-LAs

Summing up:
▶ det-1-LAs → 2NFAs costs exponential
▶ Jn is accepted by a det-AM-1-LA with O(n) states
▶ Each 2NFA accepting Jn has a number of states at least

exponential in n

Then:

det-AM-1-LAs → 2NFAs
Exponential cost!

⇒ Even the costs of the
remaining simulations are
exponential
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Conclusion: Once-Marking 1-Limited Automata
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“One drop” of nondeterminism allows to
reach the same succinctness as 1-LAs

(language Kn)
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Problem
Prove that this is not always the case,

i.e, there are languages for which 1-LAs
are more succinct than OM-1-LAs

(e.g., variants of Kn)

“One drop” of nondeterminism allows to
reach the same succinctness as 1-LAs

(language Kn)
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look really interesting without

nondeterminism
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How much it costs the elimination of

nondeterminism from OM-1-LAs?



Conclusion: Always-Marking 1-Limited Automata
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Further restriction:
Forgetting 1-limited automata

(NCMA 2023)

All the gaps are exponential



Further possible investigation lines

▶ Unary case

▶ Connections with the Sakoda and Sisper question
(costs of 2NFA→ 2DFA and 1NFA→ 2DFA)

▶ ...

Thank you for your attention!
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