Limited Automata: Power and Complexity

Giovanni Pighizzini

Dipartimento di Informatica Università degli Studi di Milano, Italy

> ICTCS 2019 – Como, Italy September 11, 2019

We are interested in...

- Computational models and their computational power, e.g., classical models
 - Finite automata
 - Pushdown automata
 - Turing machines
- ► Computational models operating with restricted resources, e.g.,
 - Turing machines using linear space characterize context-sensitive languages [Kuroda '64]
 - Single-tape Turing machines working in *linear time* characterize *regular languages*, i.e., are equivalent to finite
 automata
 [Hennie '65]
- Descriptional complexity
 - Investigation of computational models with respect to the sizes of their descriptions (roughly, number of symbols used to write down the description)

Descriptional Complexity A Classical Example: NFAs vs DFAs

Formal language (or computability) point of view:

► The class of languages recognized by NFAs coincides with the class of languages recognized by DFAs

Descriptional complexity point of view:

- ► Each *n*-state NFA can be simulated by a DFA *with* 2ⁿ *states* [Rabin&Scott '59]
- ▶ For each integer n there exists a language L_n s.t.:
 - L_n is accepted by an n-state NFA
 - the minimum DFA for L_n requires 2^n states

[Meyer&Fischer '71]

► Hence:

The exact cost, in terms of states, of the simulation of NFAs by DFAs is 2^n

Descriptional Complexity

Given

- C a class of languages
- ${\cal S}$ a formal system (e.g., class of devices, class of grammars,...) able to represent all the languages in ${\cal C}$

What is the *size* of the representations of the languages in \mathcal{C} by the system \mathcal{S} ?

Descriptional complexity compares different descriptions of a same class of languages:

 \mathcal{S}' another formal system able to represent all the languages in \mathcal{C} :

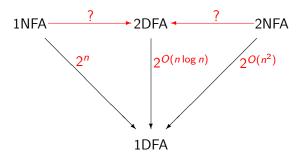
Question

Find the relationships between the sizes of the representations in the system $\mathcal S$ and in the system $\mathcal S'$ of the languages of $\mathcal C$

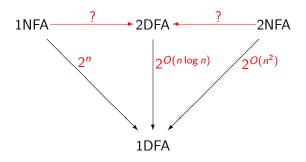
A Long-standing Open Problem in Descriptional Complexity

The Question of Sakoda and Sipser (1978)

- Two-way finite automata
 - input head can be moved to the left or to the right
 - computational power does not increase
 - exponential simulation by one-way DFA
- Can we use two-way motion to remove nondeterminism from finite automata?
 - YES (same class of languages)
- ▶ How much it costs (in terms of states)?
- Can we obtain a "small" 2DFA from a 1NFA or a 2NFA?



[Rabin&Scott '59, Shepherdson '59, Meyer&Fischer '71, ...]



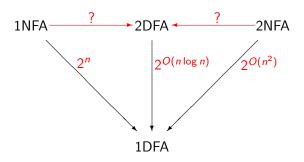
Problem ([Sakoda&Sipser '78])

Do there exist polynomial simulations of

- ► 1NFAs by 2DFAs
- ► 2NFAs by 2DFAs?

Conjecture

These simulations are not polynomial



- Exponential upper bounds deriving from the simulations of 1NFAs and 2NFAs by 1DFAs
- Polynomial lower bound $\Omega(n^2)$ for the cost of the simulation of 1NFAs by 2DFAs [Chrobak '86]

- Open since 1978
- ▶ It seems to be very difficult in the general case
- Results and exponential separations for restricted versions
- Connections with fundamental structural complexity questions as P vs NP and L vs NL

Introduction to Limited Automata

Limited automata

- Model proposed by Thomas N. Hibbard in 1967 (scan limited automata)
- One-tape Turing machines with rewriting restrictions
- Variants characterizing regular, context-free, deterministic context-free languages

A Classical Example: Balanced Brackets

(() () (()))

How to recognize if a sequence of brackets its correctly balanced?

 For each opening bracket locate its corresponding closing bracket

Use counters!

 For each closing bracket locate its corresponding opening bracket

Limited automata!

Limited Automata [Hibbard '67]

One-tape Turing machines with restricted rewritings

Definition

Fixed an integer $d \ge 1$, a *d-limited automaton* is

- a one-tape Turing machine
- which is allowed to overwrite the content of each tape cell only in the first d visits

Computational power

- For each d ≥ 2, d-limited automata characterize context-free languages [Hibbard '67]
- ► 1-limited automata characterize regular languages [Wagner&Wechsung '86]

The Chomsky Hierarchy

(One-tape) Turing Machines	type 0
Linear Bounded Automata	type 1
d-Limited Automata (any $d \ge 2$) typ	e 2
1-Limited Automata type 3	

Theorem ([Chomsky&Schützenberger '63])

Each CFL $L \subseteq \Sigma^*$ can be expressed as $L = h(D_k \cap R)$ where:

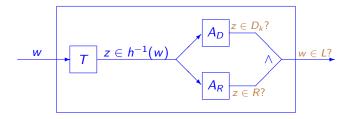
- ▶ $D_k \subseteq \Omega_k^*$ is a Dyck language (i.e., balanced brackets) over $\Omega_k = \{(1, 1, 1, (2, 1), \dots, (k, 1), k\}$
 - 2-LA *A*_D

 $ightharpoonup R \subseteq \Omega_k^*$ is a regular language

Finite automaton A_R

▶ $h: Ω_k → Σ^*$ is a homomorphism

Transducer T for h^{-1}



Suitably simulating this combination of T, A_D and A_R we obtain a 2-LA

Determinism vs Nondeterminism

- Simulations in [Hibbard '67]:
 Determinism is preserved by the simulation PDAs by 2-LAs, but not by the converse simulation
- ➤ A different simulation of 2-LAs by PDAs, which preserves determinism, is given in [P.&Pisoni '15]

Deterministic 2-Limited Automata ≡ DCFLs

Determinism vs Nondeterminism

What about deterministic d-Limited Automata, d > 2?

- ► $L = \{a^n b^n c \mid n \ge 0\} \cup \{a^n b^{2n} d \mid n \ge 0\}$ is accepted by a *deterministic* 3-LA, but is not a DCFL
- ► Infinite hierarchy

[Hibbard '67]

For each $d \geq 2$ there is a language which is accepted by a deterministic d-limited automaton and that cannot be accepted by any deterministic (d-1)-limited automaton

Claim [Hibbard '67]

For any d > 0, the set of Palindromes cannot be accepted by any deterministic d-LA

Open Problem

Any proof?

Hence $\bigcup_{d>0}$ det-d-LA \subset CFL properly

Descriptional Complexity of Limited Automata

The Language B_n (n > 0)

$$\begin{split} B_n = \{ x_1 \, x_2 \cdots x_k \, x \in \{0,1\}^* \quad | \quad |x_1| = \cdots = |x_k| = |x| = n, \ k > 0, \\ \text{and } x_j = x, \ \text{for some } 1 \leq j \leq k \, \} \end{split}$$

Example
$$(n = 3)$$
:
 $0 \ 0 \ 1|0 \ 1 \ 0|1 \ 1 \ 0|0 \ 1 \ 0|1 \ 0 \ 0|1 \ 1 \ 1|1 \ 1 \ 0$

A Deterministic 2-Limited Automaton for B_n

$$\triangleright 001010110011001111\hat{1}\hat{1}\hat{0} \triangleleft \qquad (n=3)$$

- 1. Scan all the tape from left to right and check if the input length is a multiple of *n*
- 2. Move to the left and mark the rightmost block of n symbols
- 3. Compare the other blocks of length n (from the right), symbol by symbol, with the last block
- 4. When the matching block is found, accept

Complexity:

▶ O(n) states

 \Rightarrow det-2-LA of size O(n)

Fixed working alphabet

A Nondeterministic 1-Limited Automaton for B_n

$$\triangleright$$
 0 0 1 0 1 0 $\hat{1}$ 1 0 0 1 0 1 0 1 1 1 $\hat{1}$ 1 0 \triangleleft ($n = 3$)

- Scan all the tape from left to right and mark two nondeterministically chosen cells
- 2. Check that:
 - the input length is a multiple of n,
 - the last marked cell is the leftmost one of the last block, and
 - the other marked cell is the leftmost one of another block
- Compare symbol by symbol the two blocks that start from the marked cells
- 4. Accept if the two blocks are equal

Complexity:

 \triangleright O(n) states

 \Rightarrow 1-LA of size O(n)

Fixed working alphabet

Lower bounds for B_n

$$B_n = \{x_1 x_2 \cdots x_k x \in \{0, 1\}^* \mid |x_1| = \cdots = |x_k| = |x| = n, \ k > 0,$$

and $x_j = x$, for some $1 \le j \le k$

Finite automata

Each 1DFA accepting B_n requires a number of states at least double exponential in n

Proof: standard distinguishability arguments

$1\text{-LA}s \rightarrow 1\text{DFA}s$

At least double exponential gap!

CFGs and PDAs

Each CFG generating B_n (PDA recognizing B_n) has size at least *exponential* in n

Proof: "interchange" lemma for CFLs

 $\mathsf{det}\text{-}\mathsf{2}\text{-}\mathsf{LA}s\to\mathsf{PDA}s$

At least exponential gap!

Size Costs of Simulations d-LAs versus PDAs (or CFGs), $d \ge 2$

- ▶ 2-LA $s \rightarrow PDAs$ [P.&Pisoni '15] d-LA $s \rightarrow PDAs$, d > 2 [Kutrib&P.&Wendlandt '18] exponential
- ▶ det-2-LAs → DPDAs [P.&Pisoni '15] double exponential upper bound (optimal?) exponential if the input for the simulating DPDA is end-marked
- PDAs → 2-LAs, DPDAs → det-2-LAs [P.&Pisoni '15] polynomial

1-LAs versus Finite Automata

- ► 1-LAs \rightarrow 1NFA exponential
- ► 1-LAs \rightarrow 1DFA double exponential

 $\begin{array}{c} \bullet \quad \mathsf{det}\text{-}\mathsf{1-LA}s \to \mathsf{1DFA} \\ \mathsf{exponential} \end{array}$

Double role of nondeterminism in 1-LAs

On a tape cell:

First visit: To overwrite the content

by a nondeterministically chosen symbol $\boldsymbol{\sigma}$

Next visits: To select a transition

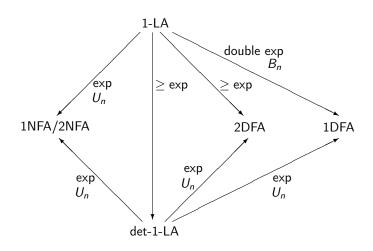
the set of available transitions depends on $\sigma!$

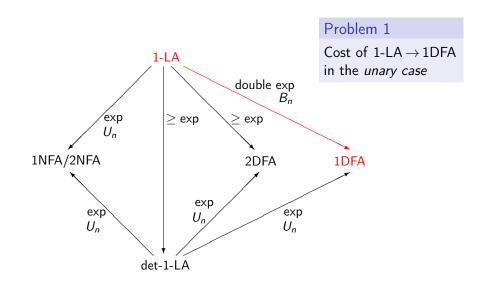
The Unary Case

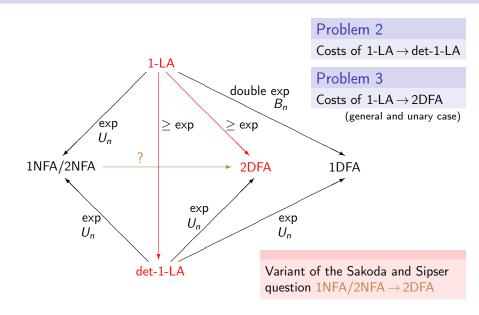
Previous gaps are witnessed using languages B_n , defined over a *two* letter alphabet

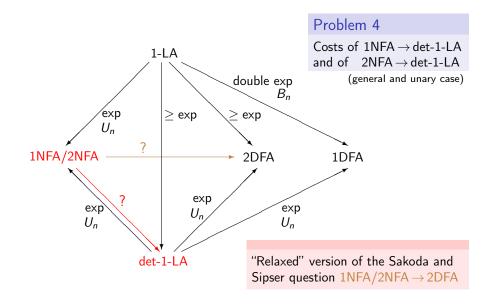
What happens in the unary case?

- Preliminary observations in [P.&Pisoni '14]
- Several results in [Kutrib&Wendlandt '15] (including superpolynomial gaps 1-LAs → finite automata)
- An exponential gap [P.&Prigioniero'19] Languages $U_n = \{a^{2^n}\}^*$
 - Recognition by "small" deterministic 1-LAs of size O(n)
 - Each 2NFA accepting U_n should have at least 2^n states [Mereghetti&P.'00]









Variants of Limited Automata

Further Restrictions

Restrictions of 2-limited automata which still characterize CFLs:

Forgetting automata

[Jancar&Mráz&Plátek '96]

► Strongly limited automata

[P.'15]

...

Active visit to a tape cell: any visit overwriting the content

d-limited automata (dual d-return complexity)

Only the first d visits to a tape cell can be active

d-return complexity (ret-c(d))

Only the last d visits to a tape cell can be active

- ► ret-c(1): regular languages
- ret-c(d), $d \ge 2$: context-free languages

det-ret-c(2): not comparable with DCFL

[Peckel '77]

[Wechsung '75]

- PAL ∈ det-ret-c(2) \ DCFL
- $a^n b^{n+m} a^m \mid n, m > 0 \} \in \mathsf{DCFL} \backslash \mathsf{det}\mathsf{-ret}\mathsf{-c}(2)$

Final Remarks

- 2-limited automata: interesting machine characterization of CFL
- ▶ 1-limited automata: stimulating open problems in descriptional complexity, connections with the question of Sakoda and Sipser
- Reversible limited automata: computational and descriptional power

[Kutrib&Wendlandt '17]

Probabilistic limited automata:
 Probabilistic extensions

[Yamakami '19]

Connections with nest word automata (input-driven PDAs): any investigation?

Thank you for your attention!