Limited Automata: Power and Complexity

Giovanni Pighizzini

Dipartimento di Informatica Università degli Studi di Milano, Italy

> ICTCS 2019 – Como, Italy September 11, 2019

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

Introduction

Computational models and their computational power

 Computational models and their computational power, e.g., classical models

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

- Finite automata
- Pushdown automata
- Turing machines

Computational models and their computational power

Computational models operating with restricted resources

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

- Computational models and their computational power
- Computational models operating with restricted resources, e.g.,
 - Turing machines using *linear space* characterize context-sensitive languages [Kuroda '64]
 - Single-tape Turing machines working in *linear time* characterize *regular languages*, i.e., are equivalent to finite automata
 [Hennie '65]

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ○ ○ ○

- Computational models and their computational power
- Computational models operating with restricted resources, e.g.,
 - Turing machines using *linear space* characterize context-sensitive languages [Kuroda '64]
 - Single-tape Turing machines working in *linear time* characterize *regular languages*, i.e., are equivalent to finite automata
 [Hennie '65]

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

- Computational models and their computational power
- Computational models operating with restricted resources

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Descriptional complexity

- Computational models and their computational power
- Computational models operating with restricted resources
- Descriptional complexity
 - Investigation of computational models with respect to the sizes of their descriptions (roughly, number of symbols used to write down the description)

Formal language (or computability) point of view:

The class of languages recognized by NFAs coincides with the class of languages recognized by DFAs

Formal language (or computability) point of view:

The class of languages recognized by NFAs coincides with the class of languages recognized by DFAs

Formal language (or computability) point of view:

The class of languages recognized by NFAs coincides with the class of languages recognized by DFAs

Descriptional complexity point of view:

- Each *n*-state NFA can be simulated by a DFA with 2ⁿ states [Rabin&Scott '59]
- For each integer *n* there exists a language L_n s.t.:
 - *L_n* is accepted by an *n*-state NFA
 - the minimum DFA for L_n requires 2^n states

[Meyer&Fischer '71]

Formal language (or computability) point of view:

The class of languages recognized by NFAs coincides with the class of languages recognized by DFAs

Descriptional complexity point of view:

- Each n-state NFA can be simulated by a DFA with 2ⁿ states [Rabin&Scott '59]
- For each integer n there exists a language L_n s.t.:
 - *L_n* is accepted by an *n*-state NFA
 - the minimum DFA for L_n requires 2^n states
 - [Meyer&Fischer '71]

Formal language (or computability) point of view:

The class of languages recognized by NFAs coincides with the class of languages recognized by DFAs

Descriptional complexity point of view:

- Each n-state NFA can be simulated by a DFA with 2ⁿ states [Rabin&Scott '59]
- For each integer *n* there exists a language L_n s.t.:
 - L_n is accepted by an *n*-state NFA
 - the minimum DFA for L_n requires 2^n states

[Meyer&Fischer '71]

► Hence:

Formal language (or computability) point of view:

The class of languages recognized by NFAs coincides with the class of languages recognized by DFAs

Descriptional complexity point of view:

- Each n-state NFA can be simulated by a DFA with 2ⁿ states [Rabin&Scott '59]
- For each integer n there exists a language L_n s.t.:
 - *L_n* is accepted by an *n*-state NFA
 - the minimum DFA for L_n requires 2^n states

[Meyer&Fischer '71]

Hence:

Given

- $\ensuremath{\mathcal{C}}$ a class of languages
- ${\cal S}\,$ a formal system (e.g., class of devices, class of grammars,...) able to represent all the languages in ${\cal C}\,$

What is the size of the representations of the languages in ${\mathcal C}$ by the system ${\mathcal S}?$

Descriptional complexity compares different descriptions of a same class of languages:

 \mathcal{S}' another formal system able to represent all the languages in $\mathcal{C} {:}$

Question

Find the relationships between the sizes of the representations in the system S and in the system S' of the languages of C

Given

- $\ensuremath{\mathcal{C}}$ a class of languages
- ${\cal S}\,$ a formal system (e.g., class of devices, class of grammars,...) able to represent all the languages in ${\cal C}\,$

What is the size of the representations of the languages in ${\mathcal C}$ by the system ${\mathcal S}?$

Descriptional complexity compares different descriptions of a same class of languages:

 \mathcal{S}' another formal system able to represent all the languages in \mathcal{C} : Question

Find the relationships between the sizes of the representations in the system S and in the system S' of the languages of C

Given

- $\ensuremath{\mathcal{C}}$ a class of languages
- ${\cal S}\,$ a formal system (e.g., class of devices, class of grammars,...) able to represent all the languages in ${\cal C}\,$

What is the size of the representations of the languages in C by the system S?

Descriptional complexity compares different descriptions of a same class of languages:

 \mathcal{S}' another formal system able to represent all the languages in \mathcal{C} :

Question

Find the relationships between the sizes of the representations in the system S and in the system S' of the languages of C

Given

- $\ensuremath{\mathcal{C}}$ a class of languages
- ${\cal S}\,$ a formal system (e.g., class of devices, class of grammars,...) able to represent all the languages in ${\cal C}\,$

What is the size of the representations of the languages in C by the system S?

Descriptional complexity compares different descriptions of a same class of languages:

 \mathcal{S}' another formal system able to represent all the languages in \mathcal{C} :

Question

Find the relationships between the sizes of the representations in the system S and in the system S' of the languages of C

The Question of Sakoda and Sipser (1978)

Two-way finite automata

- input head can be moved to the left or to the right
- computational power does not increase
- exponential simulation by one-way DFA
- Can we use two-way motion to remove nondeterminism from finite automata?
 - YES (same class of languages)
- How much it costs (in terms of states)?
- Can we obtain a "small" 2DFA from a 1NFA or a 2NFA?

The Question of Sakoda and Sipser (1978)

- Two-way finite automata
 - input head can be moved to the left or to the right
 - computational power does not increase
 - exponential simulation by one-way DFA
- Can we use two-way motion to remove nondeterminism from finite automata?
 - YES (same class of languages)
- How much it costs (in terms of states)?
- Can we obtain a "small" 2DFA from a 1NFA or a 2NFA?

The Question of Sakoda and Sipser (1978)

Two-way finite automata
 input head can be moved to the left or to the right
 computational power does not increase
 exponential simulation by one-way DFA

Can we use two-way motion to remove nondeterminism from finite automata?

YES (same class of languages)

How much it costs (in terms of states)?

Can we obtain a "small" 2DFA from a 1NFA or a 2NFA?

The Question of Sakoda and Sipser (1978)

Two-way finite automata
 input head can be moved to the left or to the right
 computational power does not increase
 exponential simulation by one-way DFA

Can we use two-way motion to remove nondeterminism from finite automata?

YES (same class of languages)

How much it costs (in terms of states)?

Can we obtain a "small" 2DFA from a 1NFA or a 2NFA?

The Question of Sakoda and Sipser (1978)

- Two-way finite automata
 - input head can be moved to the left or to the right
 - computational power does not increase
 - exponential simulation by one-way DFA

Can we use two-way motion to remove nondeterminism from finite automata?

YES (same class of languages)

- How much it costs (in terms of states)?
- Can we obtain a "small" 2DFA from a 1NFA or a 2NFA?

The Question of Sakoda and Sipser (1978)

- Two-way finite automata
 - input head can be moved to the left or to the right
 - computational power does not increase
 - exponential simulation by one-way DFA
- Can we use two-way motion to remove nondeterminism from finite automata?
 - YES (same class of languages)
- How much it costs (in terms of states)?
- Can we obtain a "small" 2DFA from a 1NFA or a 2NFA?

The Question of Sakoda and Sipser (1978)

- Two-way finite automata
 - input head can be moved to the left or to the right
 - computational power does not increase
 - exponential simulation by one-way DFA
- Can we use two-way motion to remove nondeterminism from finite automata?
 - YES (same class of languages)
- How much it costs (in terms of states)?

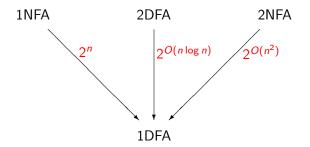
Can we obtain a "small" 2DFA from a 1NFA or a 2NFA?

The Question of Sakoda and Sipser (1978)

- Two-way finite automata
 - input head can be moved to the left or to the right
 - computational power does not increase
 - exponential simulation by one-way DFA
- Can we use two-way motion to remove nondeterminism from finite automata?
 - YES (same class of languages)
- How much it costs (in terms of states)?

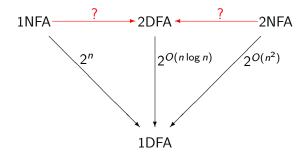
► Can we obtain a "small" 2DFA from a 1NFA or a 2NFA?

A D > 4 回 > 4 回 > 4 回 > 1 回 9 Q Q



▲□ > ▲□ > ▲目 > ▲目 > ▲目 > ● ●

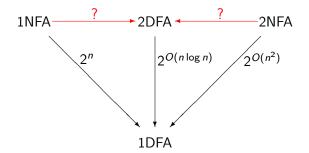
[Rabin&Scott '59, Shepherdson '59, Meyer&Fischer '71, ...]



◆□▶ ◆◎▶ ◆□▶ ◆□▶ ● □

Problem ([Sakoda&Sipser '78]) Do there exist polynomial simulations of

- INFAs by 2DFAs
- > 2NFAs by 2DFAs ?



Problem ([Sakoda&Sipser '78])

Do there exist polynomial simulations of

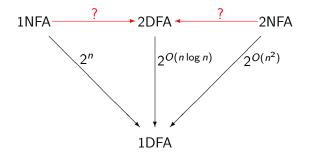
- 1NFAs by 2DFAs
- 2NFAs by 2DFAs ?

Conjecture

These simulations are not polynomial

・ロト ・雪 ト ・ ヨ ト ・ コ ト

э



Exponential upper bounds

deriving from the simulations of 1NFAs and 2NFAs by 1DFAs

Polynomial lower bound

 $\Omega(n^2)$ for the cost of the simulation of 1NFAs by 2DFAs

[Chrobak '86]

◆□▶ ◆◎▶ ◆□▶ ◆□▶ ● □

Open since 1978

- It seems to be very difficult in the general case
- Results and exponential separations for restricted versions
- Connections with fundamental structural complexity questions as P vs NP and L vs NL

Open since 1978

It seems to be very difficult in the general case

- Results and exponential separations for restricted versions
- Connections with fundamental structural complexity questions as P vs NP and L vs NL

- Open since 1978
- It seems to be very difficult in the general case
- Results and exponential separations for restricted versions
- Connections with fundamental structural complexity questions as P vs NP and L vs NL

- Open since 1978
- It seems to be very difficult in the general case
- Results and exponential separations for restricted versions
- Connections with fundamental structural complexity questions as P vs NP and L vs NL

Introduction to Limited Automata

Limited automata

Model proposed by Thomas N. Hibbard in 1967 (scan limited automata)

One-tape Turing machines with rewriting restrictions

 Variants characterizing regular, context-free, deterministic context-free languages

Limited automata

- Model proposed by Thomas N. Hibbard in 1967 (scan limited automata)
- One-tape Turing machines with rewriting restrictions
- Variants characterizing regular, context-free, deterministic context-free languages

Limited automata

- Model proposed by Thomas N. Hibbard in 1967 (scan limited automata)
- One-tape Turing machines with rewriting restrictions
- Variants characterizing regular, context-free, deterministic context-free languages

(() (()))

How to recognize if a sequence of brackets is correctly balanced?

(() (()))

How to recognize if a sequence of brackets is correctly balanced?

(() (()))

How to recognize if a sequence of brackets is correctly balanced?

 For each opening bracket locate its corresponding closing bracket

Use counters!

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

$(1 (2)_2 (2 (3)_3)_2)_1$

How to recognize if a sequence of brackets is correctly balanced?

 For each opening bracket locate its corresponding closing bracket

Use counters!

(() (()))

How to recognize if a sequence of brackets its correctly balanced?

 For each opening bracket locate its corresponding closing bracket

Use counters!

(() (())))

How to recognize if a sequence of brackets its correctly balanced?

 For each opening bracket locate its corresponding closing bracket

Use counters!

How to recognize if a sequence of brackets its correctly balanced?

 For each opening bracket locate its corresponding closing bracket

Use counters!

$\longrightarrow \begin{array}{c} (& (&) \\ \end{array}) \quad (& (&) \\ \end{array}) \quad)$

How to recognize if a sequence of brackets its correctly balanced?

 For each opening bracket locate its corresponding closing bracket

Use counters!

How to recognize if a sequence of brackets its correctly balanced?

 For each opening bracket locate its corresponding closing bracket

Use counters!

((× (())))

How to recognize if a sequence of brackets its correctly balanced?

 For each opening bracket locate its corresponding closing bracket

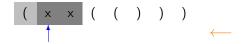
Use counters!

((× (())))

How to recognize if a sequence of brackets its correctly balanced?

 For each opening bracket locate its corresponding closing bracket

Use counters!



How to recognize if a sequence of brackets its correctly balanced?

 For each opening bracket locate its corresponding closing bracket

Use counters!

How to recognize if a sequence of brackets its correctly balanced?

 For each opening bracket locate its corresponding closing bracket

Use counters!

How to recognize if a sequence of brackets its correctly balanced?

 For each opening bracket locate its corresponding closing bracket

Use counters!

How to recognize if a sequence of brackets its correctly balanced?

 For each opening bracket locate its corresponding closing bracket

Use counters!

How to recognize if a sequence of brackets its correctly balanced?

 For each opening bracket locate its corresponding closing bracket

Use counters!

$$(\times \times (())))$$

How to recognize if a sequence of brackets its correctly balanced?

 For each opening bracket locate its corresponding closing bracket

Use counters!

How to recognize if a sequence of brackets its correctly balanced?

 For each opening bracket locate its corresponding closing bracket

Use counters!

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ○ ○ ○

How to recognize if a sequence of brackets its correctly balanced?

 For each opening bracket locate its corresponding closing bracket

Use counters!

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ○ ○ ○

How to recognize if a sequence of brackets its correctly balanced?

 For each opening bracket locate its corresponding closing bracket

Use counters!

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ○ ○ ○

How to recognize if a sequence of brackets its correctly balanced?

 For each opening bracket locate its corresponding closing bracket

Use counters!

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ○ ○ ○

$$(\times \times (\times \times))$$

How to recognize if a sequence of brackets its correctly balanced?

 For each opening bracket locate its corresponding closing bracket

Use counters!

How to recognize if a sequence of brackets its correctly balanced?

 For each opening bracket locate its corresponding closing bracket

Use counters!

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ○ ○ ○

$$(\times \times (\times \times))$$

How to recognize if a sequence of brackets its correctly balanced?

 For each opening bracket locate its corresponding closing bracket

Use counters!

How to recognize if a sequence of brackets its correctly balanced?

 For each opening bracket locate its corresponding closing bracket

Use counters!

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ○ ○ ○

How to recognize if a sequence of brackets its correctly balanced?

 For each opening bracket locate its corresponding closing bracket

Use counters!

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ○ ○ ○

How to recognize if a sequence of brackets its correctly balanced?

 For each opening bracket locate its corresponding closing bracket

Use counters!

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ○ ○ ○

How to recognize if a sequence of brackets its correctly balanced?

 For each opening bracket locate its corresponding closing bracket

Use counters!

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ○ ○ ○

How to recognize if a sequence of brackets its correctly balanced?

 For each opening bracket locate its corresponding closing bracket

Use counters!

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ○ ○ ○

How to recognize if a sequence of brackets its correctly balanced?

 For each opening bracket locate its corresponding closing bracket

Use counters!

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ○ ○ ○

How to recognize if a sequence of brackets its correctly balanced?

 For each opening bracket locate its corresponding closing bracket

Use counters!

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ○ ○ ○

How to recognize if a sequence of brackets its correctly balanced?

 For each opening bracket locate its corresponding closing bracket

Use counters!

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ○ ○ ○

How to recognize if a sequence of brackets its correctly balanced?

 For each opening bracket locate its corresponding closing bracket

Use counters!

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ○ ○ ○

How to recognize if a sequence of brackets its correctly balanced?

 For each opening bracket locate its corresponding closing bracket

Use counters!

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ○ ○ ○

How to recognize if a sequence of brackets its correctly balanced?

 For each opening bracket locate its corresponding closing bracket

Use counters!

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ○ ○ ○

How to recognize if a sequence of brackets its correctly balanced?

 For each opening bracket locate its corresponding closing bracket

Use counters!

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ○ ○ ○

How to recognize if a sequence of brackets its correctly balanced?

 For each opening bracket locate its corresponding closing bracket

Use counters!

How to recognize if a sequence of brackets its correctly balanced?

 For each opening bracket locate its corresponding closing bracket

Use counters!

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ○ ○ ○

How to recognize if a sequence of brackets its correctly balanced?

 For each opening bracket locate its corresponding closing bracket

Use counters!

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ○ ○ ○

How to recognize if a sequence of brackets its correctly balanced?

 For each opening bracket locate its corresponding closing bracket

Use counters!

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ○ ○ ○

How to recognize if a sequence of brackets its correctly balanced?

 For each opening bracket locate its corresponding closing bracket

Use counters!

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ○ ○ ○

How to recognize if a sequence of brackets its correctly balanced?

 For each opening bracket locate its corresponding closing bracket

Use counters!

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ○ ○ ○

How to recognize if a sequence of brackets its correctly balanced?

 For each opening bracket locate its corresponding closing bracket

Use counters!

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ○ ○ ○

How to recognize if a sequence of brackets its correctly balanced?

 For each opening bracket locate its corresponding closing bracket

Use counters!

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ○ ○ ○

How to recognize if a sequence of brackets its correctly balanced?

 For each opening bracket locate its corresponding closing bracket

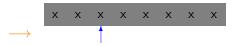
Use counters!

How to recognize if a sequence of brackets its correctly balanced?

 For each opening bracket locate its corresponding closing bracket

Use counters!

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ○ ○ ○



How to recognize if a sequence of brackets its correctly balanced?

 For each opening bracket locate its corresponding closing bracket

Use counters!

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ○ ○ ○

How to recognize if a sequence of brackets its correctly balanced?

 For each opening bracket locate its corresponding closing bracket

Use counters!

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ○ ○ ○

How to recognize if a sequence of brackets its correctly balanced?

 For each opening bracket locate its corresponding closing bracket

Use counters!

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ○ ○ ○

How to recognize if a sequence of brackets its correctly balanced?

 For each opening bracket locate its corresponding closing bracket

Use counters!

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ○ ○ ○

How to recognize if a sequence of brackets its correctly balanced?

 For each opening bracket locate its corresponding closing bracket

Use counters!

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ○ ○ ○

How to recognize if a sequence of brackets its correctly balanced?

 For each opening bracket locate its corresponding closing bracket

Use counters!

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ○ ○ ○

x x x x x x x x

How to recognize if a sequence of brackets its correctly balanced?

 For each opening bracket locate its corresponding closing bracket

Use counters!

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ○ ○ ○

 For each closing bracket locate its corresponding opening bracket

Limited automata!

One-tape Turing machines with restricted rewritings

Definition

Fixed an integer $d \ge 1$, a *d*-limited automaton is

a one-tape Turing machine

which is allowed to overwrite the content of each tape cell only in the first d visits

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

One-tape Turing machines with restricted rewritings

Definition

Fixed an integer $d \ge 1$, a *d*-limited automaton is

a one-tape Turing machine

which is allowed to overwrite the content of each tape cell only in the first d visits

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ○ ○ ○

Technical details:

- Input surrounded by two end-markers
- End-markers are never overwritten
- The head cannot exceed the end-markers

One-tape Turing machines with restricted rewritings

Definition

Fixed an integer $d \ge 1$, a *d*-limited automaton is

a one-tape Turing machine

which is allowed to overwrite the content of each tape cell only in the first d visits

Computational power

► For each d ≥ 2, d-limited automata characterize context-free languages [Hibbard '67]

One-tape Turing machines with restricted rewritings

Definition

Fixed an integer $d \ge 1$, a *d*-limited automaton is

- a one-tape Turing machine
- which is allowed to overwrite the content of each tape cell only in the first d visits

Computational power

- ► For each d ≥ 2, d-limited automata characterize context-free languages [Hibbard '67]
- 1-limited automata characterize regular languages
 [Wagner&Wechsung '86]

The Chomsky Hierarchy

(One-tape) Turing Machines			type 0
Linear Bounded Automata		type	1
Pushdown Automata	typ	be 2	
Finite Automata	type 3		

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

The Chomsky Hierarchy

(One-tape) Turing Machines	ty	pe 0
Linear Bounded Automata	type 1	
d-Limited Automata (any $d \ge 2$) type	e 2	
Finite Automata type 3		

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

The Chomsky Hierarchy

(One-tape) Turing Machines	type 0
Linear Bounded Automata	type 1
d-Limited Automata (any $d \ge 2$) type	2
1-Limited Automata type 3	

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

Theorem ([Chomsky&Schützenberger '63])

Each CFL $L \subseteq \Sigma^*$ can be expressed as $L = h(D_k \cap R)$ where:

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ○ ○ ○

- D_k ⊆ Ω^{*}_k is a Dyck language (i.e., balanced brackets) over Ω_k = {(1,)1, (2,)2, ..., (k,)k}
- $R \subseteq \Omega_k^*$ is a regular language

•
$$h: \Omega_k \to \Sigma^*$$
 is a homomorphism

Theorem ([Chomsky&Schützenberger '63])

Each CFL $L \subseteq \Sigma^*$ can be expressed as $L = h(D_k \cap R)$ where:

D_k ⊆ Ω^{*}_k is a Dyck language (i.e., balanced brackets) over Ω_k = {(1,)1, (2,)2, ..., (k,)k}

•
$$R \subseteq \Omega_k^*$$
 is a regular language

•
$$h: \Omega_k \to \Sigma^*$$
 is a homomorphism

Transducer T for h^{-1}

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ○ ○ ○

$$\xrightarrow{w} T z \in h^{-1}(w)$$

Theorem ([Chomsky&Schützenberger '63])

Each CFL $L \subseteq \Sigma^*$ can be expressed as $L = h(D_k \cap R)$ where:

D_k ⊆ Ω^{*}_k is a Dyck language (i.e., balanced brackets) over Ω_k = {(1,)₁, (2,)₂, ..., (k,)_k}

•
$$R \subseteq \Omega_k^*$$
 is a regular language

•
$$h: \Omega_k \to \Sigma^*$$
 is a homomorphism

Transducer T for
$$h^{-1}$$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ○ ○ ○

2-LA AD

$$w \qquad T \qquad z \in h^{-1}(w)$$

Theorem ([Chomsky&Schützenberger '63])

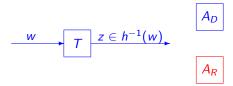
Each CFL $L \subseteq \Sigma^*$ can be expressed as $L = h(D_k \cap R)$ where:

- D_k ⊆ Ω^{*}_k is a Dyck language (i.e., balanced brackets) over Ω_k = {(1,)1, (2,)2, ..., (k,)k}
- $R \subseteq \Omega_k^*$ is a regular language
- $h: \Omega_k \to \Sigma^*$ is a homomorphism

 $2-LA A_D$ Finite automaton A_R

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ○ ○ ○

Transducer T for h^{-1}



Theorem ([Chomsky&Schützenberger '63])

Each CFL $L \subseteq \Sigma^*$ can be expressed as $L = h(D_k \cap R)$ where:

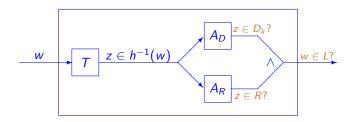
D_k ⊆ Ω^{*}_k is a Dyck language (i.e., balanced brackets) over Ω_k = {(1,)₁, (2,)₂, ..., (k,)_k}

•
$$R \subseteq \Omega_k^*$$
 is a regular language

• $h: \Omega_k \to \Sigma^*$ is a homomorphism

Finite automaton A_R Transducer T for h^{-1}

2-LA AD



Theorem ([Chomsky&Schützenberger '63])

Each CFL $L \subseteq \Sigma^*$ can be expressed as $L = h(D_k \cap R)$ where:

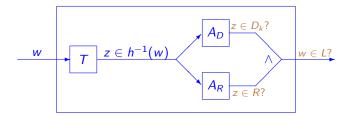
D_k ⊆ Ω^{*}_k is a Dyck language (i.e., balanced brackets) over Ω_k = {(1,)₁, (2,)₂, ..., (k,)_k}

•
$$R \subseteq \Omega_k^*$$
 is a regular language

•
$$h: \Omega_k \to \Sigma^*$$
 is a homomorphism

Finite automaton A_R

2-LA AD



Suitably simulating this combination of T, A_D and A_R we obtain a 2-LA

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - の々ぐ

Simulations in [Hibbard '67]: Determinism is preserved by the simulation PDAs by 2-LAs, but not by the converse simulation

 A different simulation of 2-LAs by PDAs, which preserves determinism, is given in [P.&Pisoni '15]

Deterministic 2-Limited Automata \equiv DCFLs

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへぐ

- Simulations in [Hibbard '67]: Determinism is preserved by the simulation PDAs by 2-LAs, but not by the converse simulation
- A different simulation of 2-LAs by PDAs, which preserves determinism, is given in [P.&Pisoni '15]

Deterministic 2-Limited Automata \equiv DCFLs

- Simulations in [Hibbard '67]: Determinism is preserved by the simulation PDAs by 2-LAs, but not by the converse simulation
- A different simulation of 2-LAs by PDAs, which preserves determinism, is given in [P.&Pisoni '15]

Deterministic 2-Limited Automata \equiv DCFLs

What about *deterministic d*-Limited Automata, d > 2?

▶ $L = \{a^n b^n c \mid n \ge 0\} \cup \{a^n b^{2n} d \mid n \ge 0\}$ is accepted by a *deterministic* 3-LA, but is not a DCFL

Infinite hierarchy [Hibbard '67] For each d (2) 2 there is a language which is accepted by a deterministic d-limited automator and that cannot be accepted by any deterministic (d - 1) limited automator

What about *deterministic d*-Limited Automata, d > 2?

- ▶ $L = \{a^n b^n c \mid n \ge 0\} \cup \{a^n b^{2n} d \mid n \ge 0\}$ is accepted by a *deterministic* 3-LA, but is not a DCFL
- Infinite hierarchy

[Hibbard '67]

For each $d \ge 2$ there is a language which is accepted by a deterministic d-limited automaton and that cannot be accepted by any deterministic (d - 1)-limited automaton

What about *deterministic* d-Limited Automata, d > 2?

▶ $L = \{a^n b^n c \mid n \ge 0\} \cup \{a^n b^{2n} d \mid n \ge 0\}$ is accepted by a *deterministic* 3-LA, but is not a DCFL

Infinite hierarchy

[Hibbard '67]

For each $d \ge 2$ there is a language which is accepted by a deterministic d-limited automaton and that cannot be accepted by any deterministic (d - 1)-limited automaton

What about *deterministic d*-Limited Automata, d > 2?

- ▶ $L = \{a^n b^n c \mid n \ge 0\} \cup \{a^n b^{2n} d \mid n \ge 0\}$ is accepted by a *deterministic* 3-LA, but is not a DCFL
- ► Infinite hierarchy [Hibbard '67] For each d ≥ 2 there is a language which is accepted by a deterministic d-limited automaton and that cannot be accepted by any deterministic (d - 1)-limited automaton

What about *deterministic d*-Limited Automata, d > 2?

▶ $L = \{a^n b^n c \mid n \ge 0\} \cup \{a^n b^{2n} d \mid n \ge 0\}$ is accepted by a *deterministic* 3-LA, but is not a DCFL

► Infinite hierarchy [Hibbard '67] For each d ≥ 2 there is a language which is accepted by a deterministic d-limited automaton and that cannot be accepted by any deterministic (d − 1)-limited automaton

Claim [Hibbard '67]

For any d > 0, the set of Palindromes cannot be accepted by any *deterministic* d-LA

Hence
$$\bigcup_{d>0} \det det - d - LA \subset CFL$$
 properly

What about *deterministic* d-Limited Automata, d > 2?

▶ $L = \{a^n b^n c \mid n \ge 0\} \cup \{a^n b^{2n} d \mid n \ge 0\}$ is accepted by a *deterministic* 3-LA, but is not a DCFL

► Infinite hierarchy [Hibbard '67] For each d ≥ 2 there is a language which is accepted by a deterministic d-limited automaton and that cannot be accepted by any deterministic (d - 1)-limited automaton

Claim [Hibbard '67]

For any d > 0, the set of Palindromes cannot be accepted by any *deterministic* d-LA

Hence
$$\bigcup_{d>0} \det det - d - LA \subset CFL$$
 properly

Open Problem

Any proof?

Descriptional Complexity of Limited Automata

・ロト・日本・ヨト・ヨト・日・ つへぐ

$$B_n = \{x_1 \, x_2 \cdots x_k \, x \in \{0, 1\}^* \quad | \quad |x_1| = \cdots = |x_k| = |x| = n, \ k > 0,$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

$$B_n = \{x_1 \, x_2 \cdots x_k \, x \in \{0, 1\}^* \quad | \quad |x_1| = \cdots = |x_k| = |x| = n, \ k > 0,$$

and $x_j = x$, for some $1 \le j \le k$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

$$B_n = \{x_1 \, x_2 \cdots x_k \, x \in \{0, 1\}^* \quad | \quad |x_1| = \cdots = |x_k| = |x| = n, \ k > 0,$$

and $x_j = x$, for some $1 \le j \le k$

Example (n = 3):

0010101100101010111110

$$B_n = \{x_1 \, x_2 \cdots x_k \, x \in \{0, 1\}^* \quad | \quad |x_1| = \cdots = |x_k| = |x| = n, \ k > 0,$$

and $x_j = x$, for some $1 \le j \le k$

Example (n = 3): 0 0 1 |0 1 0 |1 1 0 |0 1 0 |1 0 0 |1 1 1 |1 1 0

$$> 0 0 1 0 1 0 1 1 0 0 1 0 1 0 1 0 1 1 1 1 1 0 \triangleleft$$
 (n = 3)

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ○ ○ ○

- Scan all the tape from left to right and check if the input length is a multiple of n
- 2. Move to the left and mark the rightmost block of *n* symbols
- 3. Compare the other blocks of length *n* (from the right), symbol by symbol, with the last block
- 4. When the matching block is found, accept

$$\triangleright 0 0 1 0 1 0 1 1 0 0 1 0 1 0 1 0 0 1 1 1 1 1 0 \triangleleft \qquad (n = 3)$$

- Scan all the tape from left to right and check if the input length is a multiple of n
- 2. Move to the left and mark the rightmost block of n symbols
- 3. Compare the other blocks of length *n* (from the right), symbol by symbol, with the last block
- 4. When the matching block is found, accept

$$\triangleright 0 0 1 0 1 0 1 1 1 0 0 1 0 1 0 1 0 1 1 1 \hat{1} \hat{1} \hat{0} \triangleleft \qquad (n=3)$$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ○ ○ ○

- Scan all the tape from left to right and check if the input length is a multiple of n
- 2. Move to the left and mark the rightmost block of n symbols
- 3. Compare the other blocks of length *n* (from the right), symbol by symbol, with the last block
- 4. When the matching block is found, accept

$$\triangleright 0 0 1 0 1 0 1 1 0 0 1 0 1 0 1 0 0 1 1 1 \hat{1} \hat{1} \hat{0} \triangleleft \qquad (n=3)$$

- Scan all the tape from left to right and check if the input length is a multiple of n
- 2. Move to the left and mark the rightmost block of n symbols
- 3. Compare the other blocks of length *n* (from the right), symbol by symbol, with the last block
- 4. When the matching block is found, accept

- Scan all the tape from left to right and check if the input length is a multiple of n
- 2. Move to the left and mark the rightmost block of n symbols
- 3. Compare the other blocks of length *n* (from the right), symbol by symbol, with the last block
- 4. When the matching block is found, accept

 $\triangleright 0 0 1 0 1 0 1 1 0 0 1 0 1 0 1 0 0 x x x \hat{1} \hat{1} \hat{0} \triangleleft \qquad (n=3)$

- Scan all the tape from left to right and check if the input length is a multiple of n
- 2. Move to the left and mark the rightmost block of n symbols
- 3. Compare the other blocks of length *n* (from the right), symbol by symbol, with the last block
- 4. When the matching block is found, accept

 $> 0 \ 0 \ 1 \ 0 \ 1 \ 0 \ 1 \ 0 \ 1 \ 0 \ 1 \ 0 \ 1 \ 0 \ x \ x \ x \ x \ x \ 1 \ \hat{1} \ \hat{0} \ \triangleleft \qquad (n=3)$

- Scan all the tape from left to right and check if the input length is a multiple of n
- 2. Move to the left and mark the rightmost block of n symbols
- 3. Compare the other blocks of length *n* (from the right), symbol by symbol, with the last block
- 4. When the matching block is found, accept

 $> 0 \ 0 \ 1 \ 0 \ 1 \ 0 \ 1 \ 0 \ 1 \ 0 \ 1 \ 0 \ x \ x \ x \ x \ x \ x \ x \ 1 \ \hat{1} \ \hat{0} \ \triangleleft \qquad (n = 3)$

- Scan all the tape from left to right and check if the input length is a multiple of n
- 2. Move to the left and mark the rightmost block of n symbols
- 3. Compare the other blocks of length *n* (from the right), symbol by symbol, with the last block
- 4. When the matching block is found, accept

- Scan all the tape from left to right and check if the input length is a multiple of n
- 2. Move to the left and mark the rightmost block of n symbols
- 3. Compare the other blocks of length *n* (from the right), symbol by symbol, with the last block
- 4. When the matching block is found, accept

- Scan all the tape from left to right and check if the input length is a multiple of n
- 2. Move to the left and mark the rightmost block of n symbols
- 3. Compare the other blocks of length *n* (from the right), symbol by symbol, with the last block
- 4. When the matching block is found, accept

Complexity:

- O(n) states
- Fixed working alphabet

 \Rightarrow det-2-LA of size O(n)

$$> 0 0 1 0 1 0 1 1 0 0 1 0 1 0 1 0 1 1 1 1 1 0 \triangleleft$$
 (n = 3)

- 1. Scan all the tape from left to right and mark two nondeterministically chosen cells
- 2. Check that:
 - the input length is a multiple of n,
 - the last marked cell is the leftmost one of the last block, and

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ○ ○ ○

- the other marked cell is the leftmost one of another block
- 3. Compare symbol by symbol the two blocks that start from the marked cells
- 4. Accept if the two blocks are equal

 $> 0 0 1 0 1 0 \hat{1} 1 0 0 1 0 1 0 1 0 1 1 \hat{1} 1 0 \triangleleft \qquad (n = 3)$

- 1. Scan all the tape from left to right and mark two nondeterministically chosen cells
- 2. Check that:
 - the input length is a multiple of n,
 - the last marked cell is the leftmost one of the last block, and

- the other marked cell is the leftmost one of another block
- 3. Compare symbol by symbol the two blocks that start from the marked cells
- 4. Accept if the two blocks are equal

- 1. Scan all the tape from left to right and mark two nondeterministically chosen cells
- 2. Check that:
 - the input length is a multiple of n,
 - the last marked cell is the leftmost one of the last block, and

the other marked cell is the leftmost one of another block

3. Compare symbol by symbol the two blocks that start from the marked cells

4. Accept if the two blocks are equal

- 1. Scan all the tape from left to right and mark two nondeterministically chosen cells
- 2. Check that:
 - the input length is a multiple of n,
 - the last marked cell is the leftmost one of the last block, and

- the other marked cell is the leftmost one of another block
- 3. Compare symbol by symbol the two blocks that start from the marked cells
- 4. Accept if the two blocks are equal

- 1. Scan all the tape from left to right and mark two nondeterministically chosen cells
- 2. Check that:
 - the input length is a multiple of n,
 - the last marked cell is the leftmost one of the last block, and
 - the other marked cell is the leftmost one of another block
- 3. Compare symbol by symbol the two blocks that start from the marked cells
- 4. Accept if the two blocks are equal

Complexity:

- O(n) states
- Fixed working alphabet

 \Rightarrow 1-LA of size O(n)

$$B_n = \{x_1 \, x_2 \cdots x_k \, x \in \{0, 1\}^* \quad | \quad |x_1| = \cdots = |x_k| = |x| = n, \ k > 0,$$

and $x_j = x$, for some $1 \le j \le k$

$$B_n = \{x_1 \, x_2 \cdots x_k \, x \in \{0, 1\}^* \quad | \quad |x_1| = \cdots = |x_k| = |x| = n, \ k > 0,$$

and $x_j = x$, for some $1 \le j \le k$

Finite automata

Each 1DFA accepting B_n requires a number of states at least *double exponential* in n

Proof: standard distinguishability arguments

 $1\text{-LA}s \rightarrow 1\text{DFA}s$

At least double exponential gap!

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへの

$$B_n = \{x_1 \, x_2 \cdots x_k \, x \in \{0, 1\}^* \quad | \quad |x_1| = \cdots = |x_k| = |x| = n, \ k > 0,$$

and $x_j = x$, for some $1 \le j \le k$

Finite automata

Each 1DFA accepting B_n requires a number of states at least *double exponential* in n

Proof: standard distinguishability arguments

 $1\text{-LA}s \rightarrow 1\text{DFA}s$

At least double exponential gap!

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

$$B_n = \{x_1 \, x_2 \cdots x_k \, x \in \{0, 1\}^* \quad | \quad |x_1| = \cdots = |x_k| = |x| = n, \ k > 0,$$

and $x_j = x$, for some $1 \le j \le k$

Finite automata

Each 1DFA accepting B_n requires a number of states at least *double exponential* in n

Proof: standard distinguishability arguments

 $1-LAs \rightarrow 1DFAs$

At least double exponential gap!

CFGs and PDAs

Each CFG generating B_n (PDA recognizing B_n) has size at least *exponential* in n

Proof: "interchange" lemma for CFLs

 $det-2-LAs \rightarrow PDAs$

At least exponential gap!

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

$$B_n = \{x_1 \, x_2 \cdots x_k \, x \in \{0, 1\}^* \quad | \quad |x_1| = \cdots = |x_k| = |x| = n, \ k > 0,$$

and $x_j = x$, for some $1 \le j \le k$

Finite automata

Each 1DFA accepting B_n requires a number of states at least *double exponential* in n

Proof: standard distinguishability arguments

 $1-LAs \rightarrow 1DFAs$

At least double exponential gap!

CFGs and PDAs

Each CFG generating B_n (PDA recognizing B_n) has size at least *exponential* in n

Proof: "interchange" lemma for CFLs

 $\mathsf{det}\text{-}\mathsf{2}\text{-}\mathsf{LA}s \to \mathsf{PDA}s$

At least exponential gap!

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Size Costs of Simulations d-LAs versus PDAs (or CFGs), $d \ge 2$

▶ 2-LAs \rightarrow PDAs d-LAs \rightarrow PDAs, d > 2 exponential

[P.&Pisoni '15] [Kutrib&P.&Wendlandt '18]

 ▶ det-2-LAs → DPDAs [P.&Pisoni '15] double exponential upper bound (optimal?) exponential if the input for the simulating DPDA is end-marked

▶ PDAs
$$\rightarrow$$
 2-LAs,
DPDAs \rightarrow det-2-LAs
polynomial

[P.&Pisoni '15]

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Size Costs of Simulations d-LAs versus PDAs (or CFGs), $d \ge 2$

▶ 2-LAs \rightarrow PDAs d-LAs \rightarrow PDAs, d > 2 exponential

[P.&Pisoni '15] [Kutrib&P.&Wendlandt '18]

 det-2-LAs → DPDAs [P.&Pisoni '15] double exponential upper bound (optimal?) exponential if the input for the simulating DPDA is end-marked

▶ PDAs
$$\rightarrow$$
 2-LAs,
DPDAs \rightarrow det-2-LA

P.&Pisoni '15]

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ○ ○ ○

Size Costs of Simulations d-LAs versus PDAs (or CFGs), $d \ge 2$

- 2-LAs → PDAs [P.&Pisoni '15] d-LAs → PDAs, d > 2 [Kutrib&P.&Wendlandt '18] exponential
- ▶ det-2-LAs → DPDAs [P.&Pisoni '15] double exponential upper bound (optimal?) exponential if the input for the simulating DPDA is end-marked
- ▶ $PDAs \rightarrow 2-LAs$, DPDAs $\rightarrow det-2-LAs$ polynomial

[P.&Pisoni '15]

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ○ ○ ○

Size Costs of Simulations

1-LAs versus Finite Automata

[Wagner&Wechsung '86, P.&Pisoni '14]

• $1-LAs \rightarrow 1NFA$ exponential

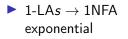
▶ 1-LAs \rightarrow 1DFA double exponential

▶ det-1-LA $s \rightarrow 1$ DFA exponential

Size Costs of Simulations

1-LAs versus Finite Automata

[Wagner&Wechsung '86, P.&Pisoni '14]



• $1-LAs \rightarrow 1DFA$ double exponential • det-1-LAs \rightarrow 1DFA exponential

Size Costs of Simulations

1-LAs versus Finite Automata

[Wagner&Wechsung '86, P.&Pisoni '14]

▶ 1-LA $s \rightarrow 1$ NFA exponential

• $1-LAs \rightarrow 1DFA$ double exponential • det-1-LA $s \rightarrow 1$ DFA exponential

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Size Costs of Simulations

1-LAs versus Finite Automata

[Wagner&Wechsung '86, P.&Pisoni '14]

▶ 1-LA $s \rightarrow 1$ NFA exponential

• det-1-LAs \rightarrow 1DFA exponential

• $1-LAs \rightarrow 1DFA$ double exponential

Double role of nondeterminism in 1-LAs On a tape cell: *First visit:* To overwrite the content by a nondeterministically chosen symbol σ *Next visits:* To select a transition the set of available transitions depends on σ !

Previous gaps are witnessed using languages B_n , defined over a *two letter alphabet*

Preliminary observations in [P.&Pisoni '14]

- Several results in [Kutrib&Wendlandt '15] (including superpolynomial gaps 1-LAs → finite automata)
- An exponential gap [P.&Prigioniero '19]
 Languages U_n = {a^{2ⁿ}}*

Recognition by "small" deterministic 1-LAs of size O(n)

 Each 2NFA accepting U_n should have at least 2ⁿ states [Mereghetti&P.'00]

Previous gaps are witnessed using languages B_n , defined over a *two letter alphabet*

What happens in the unary case?

- Preliminary observations in [P.&Pisoni '14]
- ▶ Several results in [Kutrib&Wendlandt '15] (including superpolynomial gaps 1-LAs → finite automata)
- An exponential gap [P.&Prigioniero '19]
 Languages U_n = {a^{2ⁿ}}*
 - **Recognition** by "small" deterministic 1-LAs of size O(n)
 - Each 2NFA accepting U_n should have at least 2ⁿ states [Mereghetti&P.'00]

Previous gaps are witnessed using languages B_n , defined over a *two letter alphabet*

What happens in the unary case?

Preliminary observations in [P.&Pisoni '14]

- Several results in [Kutrib&Wendlandt '15] (including superpolynomial gaps 1-LAs → finite automata)
- An exponential gap [P.&Prigioniero '19]
 Languages U_n = {a^{2ⁿ}}*
 - Recognition by "small" deterministic 1-LAs of size O(n)
 - Each 2NFA accepting U_n should have at least 2ⁿ states [Mereghetti&P.'00]

Previous gaps are witnessed using languages B_n , defined over a *two letter alphabet*

What happens in the unary case?

Preliminary observations in [P.&Pisoni '14]

- Several results in [Kutrib&Wendlandt '15] (including superpolynomial gaps 1-LAs → finite automata)
- An exponential gap [P.&Prigioniero '19]
 Languages U_n = {a^{2ⁿ}}*

Recognition by "small" deterministic 1-LAs of size O(n)

 Each 2NFA accepting U_n should have at least 2ⁿ states [Mereghetti&P.'00]

Previous gaps are witnessed using languages B_n , defined over a *two letter alphabet*

What happens in the unary case?

Preliminary observations in [P.&Pisoni '14]

- Several results in [Kutrib&Wendlandt '15] (including superpolynomial gaps 1-LAs → finite automata)
- An exponential gap [P.&Prigioniero '19] Languages U_n = {a^{2ⁿ}}*

Recognition by "small" deterministic 1-LAs of size O(n)

 Each 2NFA accepting U_n should have at least 2ⁿ states [Mereghetti&P.'00]

Previous gaps are witnessed using languages B_n , defined over a *two letter alphabet*

What happens in the unary case?

Preliminary observations in [P.&Pisoni '14]

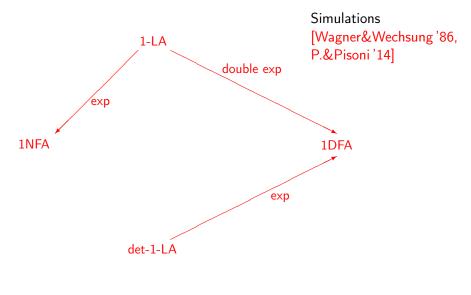
- Several results in [Kutrib&Wendlandt '15] (including superpolynomial gaps 1-LAs → finite automata)
- An exponential gap [P.&Prigioniero '19]
 Languages U_n = {a^{2ⁿ}}*
 - Recognition by "small" deterministic 1-LAs of size O(n)
 - Each 2NFA accepting U_n should have at least 2ⁿ states [Mereghetti&P.'00]

1-LA

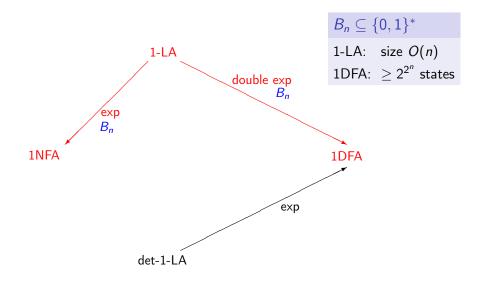
1NFA

1DFA

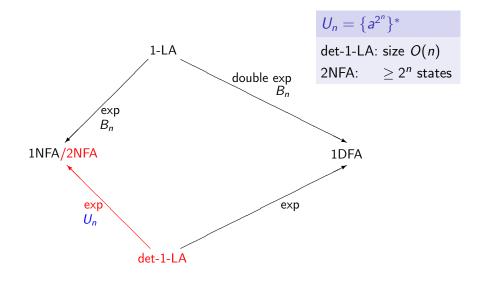
det-1-LA

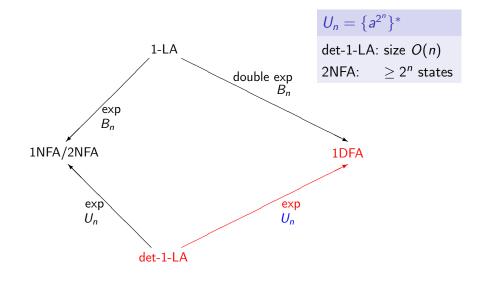


◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

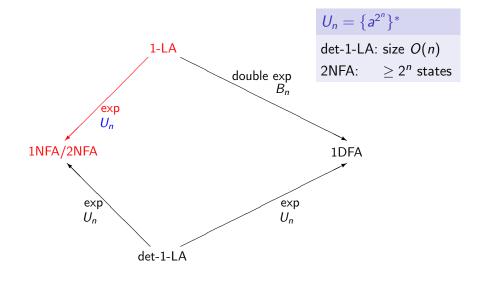


▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

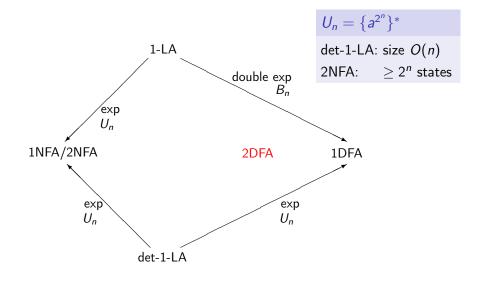




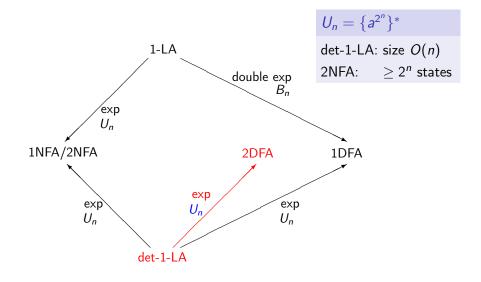
◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへぐ



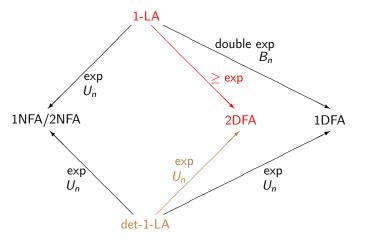
◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ● ○ ○ ○



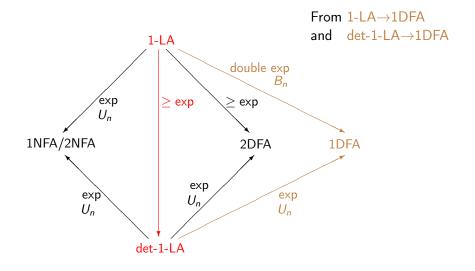
▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●



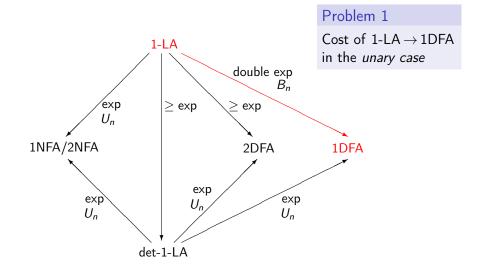
From det-1-LA \rightarrow 2DFA



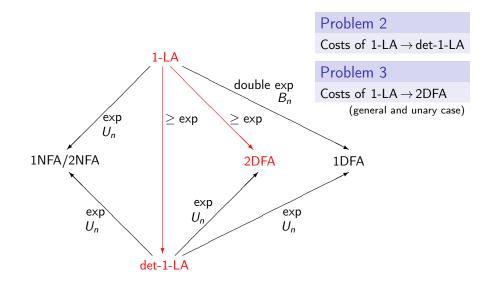
▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで



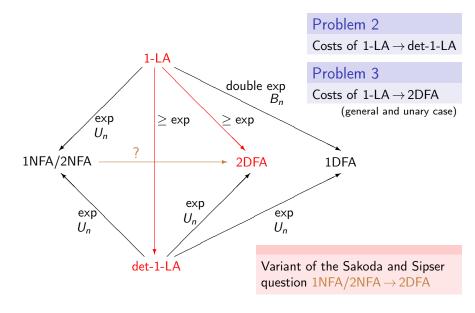
▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … 釣��



◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

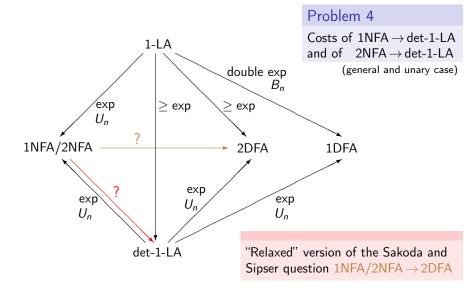


▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●





▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで



Variants of Limited Automata

....

Restrictions of 2-limited automata which still characterize CFLs:

Forgetting automata [Jancar&Mráz&Plátek '96]

Strongly limited automata

[P.'15]

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Active visit to a tape cell: any visit overwriting the content

Active visit to a tape cell: any visit overwriting the content

d-limited automata (dual *d*-return complexity) Only *the first d visits* to a tape cell can be active

Active visit to a tape cell: any visit overwriting the content

d-limited automata (dual *d*-return complexity) Only *the first d visits* to a tape cell can be active

d-return complexity (ret-c(d)) Only *the last d visits* to a tape cell can be active Active visit to a tape cell: any visit overwriting the content

d-limited automata (dual *d*-return complexity) Only *the first d visits* to a tape cell can be active

d-return complexity (ret-c(d))

Only the last d visits to a tape cell can be active

- ret-c(1): regular languages
- ▶ ret-c(d), $d \ge 2$: context-free languages
- det-ret-c(2): not comparable with DCFL
 - PAL \in det-ret-c(2) \ DCFL

[Wechsung '75 [Peckel '77

• $\{a^n b^{n+m} a^m \mid n, m > 0\} \in \mathsf{DCFL}\det\operatorname{-ret-c}(2)$

Active visit to a tape cell: any visit overwriting the content

d-limited automata (dual *d*-return complexity) Only *the first d visits* to a tape cell can be active

d-return complexity (ret-c(d))

Only the last d visits to a tape cell can be active

- ret-c(1): regular languages
- ret-c(d), $d \ge 2$: context-free languages

[Wechsung '75]

- det-ret-c(2): not comparable with DCFL
 - $PAL \in det-ret-c(2) \setminus DCFL$
 - $\{a^n b^{n+m} a^m \mid n, m > 0\} \in \mathsf{DCFL} \setminus \mathsf{det}\operatorname{-ret-c}(2)$

Active visit to a tape cell: any visit overwriting the content

d-limited automata (dual *d*-return complexity) Only *the first d visits* to a tape cell can be active

d-return complexity (ret-c(d))

Only the last d visits to a tape cell can be active

- ret-c(1): regular languages
- ▶ ret-c(d), $d \ge 2$: context-free languages [Wechsung '75]
- det-ret-c(2): not comparable with DCFL
 - $PAL \in det-ret-c(2) \setminus DCFL$
 - $\{a^n b^{n+m} a^m \mid n, m > 0\} \in \mathsf{DCFL} \setminus \mathsf{det}\operatorname{-ret-c}(2)$

[Peckel '77]

Conclusion

2-limited automata: interesting machine characterization of CFL

1-limited automata: stimulating open problems in descriptional complexity, connections with the question of Sakoda and Sipser

 Reversible limited automata: computational and descriptional power

[Kutrib&Wendlandt '17]

 Probabilistic limited automata: Probabilistic extensions

[Yamakami '19]

- 2-limited automata: interesting machine characterization of CFL
- 1-limited automata: stimulating open problems in descriptional complexity, connections with the question of Sakoda and Sipser
- Reversible limited automata: computational and descriptional power

 Probabilistic limited automata: Probabilistic extensions

[Yamakami '19]

- 2-limited automata: interesting machine characterization of CFL
- 1-limited automata: stimulating open problems in descriptional complexity, connections with the question of Sakoda and Sipser
- Reversible limited automata: computational and descriptional power

[Kutrib&Wendlandt '17]

 Probabilistic limited automata: Probabilistic extensions

[Yamakami '19]

- 2-limited automata: interesting machine characterization of CFL
- 1-limited automata: stimulating open problems in descriptional complexity, connections with the question of Sakoda and Sipser
- Reversible limited automata: computational and descriptional power

 Probabilistic limited automata: Probabilistic extensions

[Yamakami '19]

[[]Kutrib&Wendlandt '17]

- 2-limited automata: interesting machine characterization of CFL
- 1-limited automata: stimulating open problems in descriptional complexity, connections with the question of Sakoda and Sipser
- Reversible limited automata: computational and descriptional power

[Kutrib&Wendlandt '17]

- Probabilistic limited automata: Probabilistic extensions [Yamakami '19]
- Connections with nest word automata (input-driven PDAs): any investigation?

Thank you for your attention!