
Limited Automata:
Power and Complexity

Giovanni Pighizzini

Dipartimento di Informatica
Università degli Studi di Milano, Italy

ICTCS 2019 – Como, Italy
September 11, 2019

Introduction

We are interested in...

I Computational models and their computational power

I Computational models operating with restricted resources

I Descriptional complexity

We are interested in...

I Computational models and their computational power, e.g.,
classical models

Finite automata
Pushdown automata
Turing machines

I Computational models operating with restricted resources

I Descriptional complexity

We are interested in...

I Computational models and their computational power

I Computational models operating with restricted resources

I Descriptional complexity

We are interested in...

I Computational models and their computational power

I Computational models operating with restricted resources,
e.g.,

Turing machines using linear space characterize
context-sensitive languages [Kuroda ’64]
Single-tape Turing machines working in linear time
characterize regular languages, i.e., are equivalent to finite
automata [Hennie ’65]

I Descriptional complexity

We are interested in...

I Computational models and their computational power

I Computational models operating with restricted resources,
e.g.,

Turing machines using linear space characterize
context-sensitive languages [Kuroda ’64]
Single-tape Turing machines working in linear time
characterize regular languages, i.e., are equivalent to finite
automata [Hennie ’65]

I Descriptional complexity

We are interested in...

I Computational models and their computational power

I Computational models operating with restricted resources

I Descriptional complexity

We are interested in...

I Computational models and their computational power

I Computational models operating with restricted resources

I Descriptional complexity

Investigation of computational models with respect to the sizes
of their descriptions (roughly, number of symbols used to write
down the description)

Descriptional Complexity
A Classical Example: NFAs vs DFAs

Formal language (or computability) point of view:
I The class of languages recognized by NFAs coincides with the

class of languages recognized by DFAs

Descriptional complexity point of view:
I Each n-state NFA can be simulated by a DFA with 2n states

[Rabin&Scott ’59]
I For each integer n there exists a language Ln s.t.:

Ln is accepted by an n-state NFA
the minimum DFA for Ln requires 2n states

[Meyer&Fischer ’71]
I Hence:

The exact cost, in terms of states, of the simulation
of NFAs by DFAs is 2n

Descriptional Complexity
A Classical Example: NFAs vs DFAs

Formal language (or computability) point of view:
I The class of languages recognized by NFAs coincides with the

class of languages recognized by DFAs

Descriptional complexity point of view:
I Each n-state NFA can be simulated by a DFA with 2n states

[Rabin&Scott ’59]
I For each integer n there exists a language Ln s.t.:

Ln is accepted by an n-state NFA
the minimum DFA for Ln requires 2n states

[Meyer&Fischer ’71]
I Hence:

The exact cost, in terms of states, of the simulation
of NFAs by DFAs is 2n

Descriptional Complexity
A Classical Example: NFAs vs DFAs

Formal language (or computability) point of view:
I The class of languages recognized by NFAs coincides with the

class of languages recognized by DFAs

Descriptional complexity point of view:
I Each n-state NFA can be simulated by a DFA with 2n states

[Rabin&Scott ’59]
I For each integer n there exists a language Ln s.t.:

Ln is accepted by an n-state NFA
the minimum DFA for Ln requires 2n states

[Meyer&Fischer ’71]
I Hence:

The exact cost, in terms of states, of the simulation
of NFAs by DFAs is 2n

Descriptional Complexity
A Classical Example: NFAs vs DFAs

Formal language (or computability) point of view:
I The class of languages recognized by NFAs coincides with the

class of languages recognized by DFAs

Descriptional complexity point of view:
I Each n-state NFA can be simulated by a DFA with 2n states

[Rabin&Scott ’59]
I For each integer n there exists a language Ln s.t.:

Ln is accepted by an n-state NFA
the minimum DFA for Ln requires 2n states

[Meyer&Fischer ’71]
I Hence:

The exact cost, in terms of states, of the simulation
of NFAs by DFAs is 2n

Descriptional Complexity
A Classical Example: NFAs vs DFAs

Formal language (or computability) point of view:
I The class of languages recognized by NFAs coincides with the

class of languages recognized by DFAs

Descriptional complexity point of view:
I Each n-state NFA can be simulated by a DFA with 2n states

[Rabin&Scott ’59]
I For each integer n there exists a language Ln s.t.:

Ln is accepted by an n-state NFA
the minimum DFA for Ln requires 2n states

[Meyer&Fischer ’71]
I Hence:

The exact cost, in terms of states, of the simulation
of NFAs by DFAs is 2n

Descriptional Complexity
A Classical Example: NFAs vs DFAs

Formal language (or computability) point of view:
I The class of languages recognized by NFAs coincides with the

class of languages recognized by DFAs

Descriptional complexity point of view:
I Each n-state NFA can be simulated by a DFA with 2n states

[Rabin&Scott ’59]
I For each integer n there exists a language Ln s.t.:

Ln is accepted by an n-state NFA
the minimum DFA for Ln requires 2n states

[Meyer&Fischer ’71]
I Hence:

The exact cost, in terms of states, of the simulation
of NFAs by DFAs is 2n

Descriptional Complexity

Given
C a class of languages
S a formal system (e.g., class of devices, class of grammars,...)

able to represent all the languages in C

What is the size of the representations of the languages in C
by the system S?

Descriptional complexity compares different descriptions
of a same class of languages:

S ′ another formal system able to represent all the languages in C:

Question

Find the relationships between the sizes of the representations in
the system S and in the system S ′ of the languages of C

Descriptional Complexity

Given
C a class of languages
S a formal system (e.g., class of devices, class of grammars,...)

able to represent all the languages in C

What is the size of the representations of the languages in C
by the system S?

Descriptional complexity compares different descriptions
of a same class of languages:

S ′ another formal system able to represent all the languages in C:

Question

Find the relationships between the sizes of the representations in
the system S and in the system S ′ of the languages of C

Descriptional Complexity

Given
C a class of languages
S a formal system (e.g., class of devices, class of grammars,...)

able to represent all the languages in C

What is the size of the representations of the languages in C
by the system S?

Descriptional complexity compares different descriptions
of a same class of languages:

S ′ another formal system able to represent all the languages in C:

Question

Find the relationships between the sizes of the representations in
the system S and in the system S ′ of the languages of C

Descriptional Complexity

Given
C a class of languages
S a formal system (e.g., class of devices, class of grammars,...)

able to represent all the languages in C

What is the size of the representations of the languages in C
by the system S?

Descriptional complexity compares different descriptions
of a same class of languages:

S ′ another formal system able to represent all the languages in C:

Question

Find the relationships between the sizes of the representations in
the system S and in the system S ′ of the languages of C

A Long-standing Open Problem in Descriptional Complexity

The Question of Sakoda and Sipser (1978)

I Two-way finite automata
input head can be moved to the left or to the right
computational power does not increase
exponential simulation by one-way DFA

I Can we use two-way motion to remove nondeterminism from
finite automata?

YES (same class of languages)

I How much it costs (in terms of states)?

I Can we obtain a “small” 2DFA from a 1NFA or a 2NFA?

A Long-standing Open Problem in Descriptional Complexity

The Question of Sakoda and Sipser (1978)

I Two-way finite automata
input head can be moved to the left or to the right
computational power does not increase
exponential simulation by one-way DFA

I Can we use two-way motion to remove nondeterminism from
finite automata?

YES (same class of languages)

I How much it costs (in terms of states)?

I Can we obtain a “small” 2DFA from a 1NFA or a 2NFA?

A Long-standing Open Problem in Descriptional Complexity

The Question of Sakoda and Sipser (1978)

I Two-way finite automata
input head can be moved to the left or to the right
computational power does not increase
exponential simulation by one-way DFA

I Can we use two-way motion to remove nondeterminism from
finite automata?

YES (same class of languages)

I How much it costs (in terms of states)?

I Can we obtain a “small” 2DFA from a 1NFA or a 2NFA?

A Long-standing Open Problem in Descriptional Complexity

The Question of Sakoda and Sipser (1978)

I Two-way finite automata
input head can be moved to the left or to the right
computational power does not increase
exponential simulation by one-way DFA

I Can we use two-way motion to remove nondeterminism from
finite automata?

YES (same class of languages)

I How much it costs (in terms of states)?

I Can we obtain a “small” 2DFA from a 1NFA or a 2NFA?

A Long-standing Open Problem in Descriptional Complexity

The Question of Sakoda and Sipser (1978)

I Two-way finite automata
input head can be moved to the left or to the right
computational power does not increase
exponential simulation by one-way DFA

I Can we use two-way motion to remove nondeterminism from
finite automata?

YES (same class of languages)

I How much it costs (in terms of states)?

I Can we obtain a “small” 2DFA from a 1NFA or a 2NFA?

A Long-standing Open Problem in Descriptional Complexity

The Question of Sakoda and Sipser (1978)

I Two-way finite automata
input head can be moved to the left or to the right
computational power does not increase
exponential simulation by one-way DFA

I Can we use two-way motion to remove nondeterminism from
finite automata?

YES (same class of languages)

I How much it costs (in terms of states)?

I Can we obtain a “small” 2DFA from a 1NFA or a 2NFA?

A Long-standing Open Problem in Descriptional Complexity

The Question of Sakoda and Sipser (1978)

I Two-way finite automata
input head can be moved to the left or to the right
computational power does not increase
exponential simulation by one-way DFA

I Can we use two-way motion to remove nondeterminism from
finite automata?

YES (same class of languages)

I How much it costs (in terms of states)?

I Can we obtain a “small” 2DFA from a 1NFA or a 2NFA?

A Long-standing Open Problem in Descriptional Complexity

The Question of Sakoda and Sipser (1978)

I Two-way finite automata
input head can be moved to the left or to the right
computational power does not increase
exponential simulation by one-way DFA

I Can we use two-way motion to remove nondeterminism from
finite automata?

YES (same class of languages)

I How much it costs (in terms of states)?

I Can we obtain a “small” 2DFA from a 1NFA or a 2NFA?

The Question of Sakoda and Sipser

1DFA

1NFA 2DFA 2NFA

@
@
@
@
@
@
@R ?

�
�

�
�

�
�
�	

2n 2O(n log n) 2O(n2)

-? � ?

[Rabin&Scott ’59, Shepherdson ’59, Meyer&Fischer ’71, . . .]

The Question of Sakoda and Sipser

1DFA

1NFA 2DFA 2NFA

@
@
@
@
@
@
@R ?

�
�

�
�

�
�
�	

2n 2O(n log n) 2O(n2)

-? � ?

Problem ([Sakoda&Sipser ’78])
Do there exist polynomial simulations of

I 1NFAs by 2DFAs
I 2NFAs by 2DFAs ?

Conjecture

These simulations
are not polynomial

The Question of Sakoda and Sipser

1DFA

1NFA 2DFA 2NFA

@
@
@
@
@
@
@R ?

�
�

�
�

�
�
�	

2n 2O(n log n) 2O(n2)

-? � ?

Problem ([Sakoda&Sipser ’78])
Do there exist polynomial simulations of

I 1NFAs by 2DFAs
I 2NFAs by 2DFAs ?

Conjecture

These simulations
are not polynomial

The Question of Sakoda and Sipser

1DFA

1NFA 2DFA 2NFA

@
@
@
@
@
@
@R ?

�
�

�
�

�
�
�	

2n 2O(n log n) 2O(n2)

-? � ?

I Exponential upper bounds
deriving from the simulations of 1NFAs and 2NFAs by 1DFAs

I Polynomial lower bound
Ω(n2) for the cost of the simulation of 1NFAs by 2DFAs

[Chrobak ’86]

The Question of Sakoda and Sipser

I Open since 1978

I It seems to be very difficult in the general case

I Results and exponential separations for restricted versions

I Connections with fundamental structural complexity questions
as P vs NP and L vs NL

The Question of Sakoda and Sipser

I Open since 1978

I It seems to be very difficult in the general case

I Results and exponential separations for restricted versions

I Connections with fundamental structural complexity questions
as P vs NP and L vs NL

The Question of Sakoda and Sipser

I Open since 1978

I It seems to be very difficult in the general case

I Results and exponential separations for restricted versions

I Connections with fundamental structural complexity questions
as P vs NP and L vs NL

The Question of Sakoda and Sipser

I Open since 1978

I It seems to be very difficult in the general case

I Results and exponential separations for restricted versions

I Connections with fundamental structural complexity questions
as P vs NP and L vs NL

Introduction to Limited Automata

Limited automata

I Model proposed by Thomas N. Hibbard in 1967
(scan limited automata)

I One-tape Turing machines with rewriting restrictions

I Variants characterizing regular, context-free, deterministic
context-free languages

Limited automata

I Model proposed by Thomas N. Hibbard in 1967
(scan limited automata)

I One-tape Turing machines with rewriting restrictions

I Variants characterizing regular, context-free, deterministic
context-free languages

Limited automata

I Model proposed by Thomas N. Hibbard in 1967
(scan limited automata)

I One-tape Turing machines with rewriting restrictions

I Variants characterizing regular, context-free, deterministic
context-free languages

A Classical Example: Balanced Brackets

(() (()))

How to recognize if a sequence of brackets is correctly balanced?

I For each opening bracket
locate its corresponding closing bracket

Use counters!

I For each closing bracket
locate its corresponding opening bracket

Limited automata!

A Classical Example: Balanced Brackets

(() (()))

How to recognize if a sequence of brackets is correctly balanced?

I For each opening bracket
locate its corresponding closing bracket

Use counters!

I For each closing bracket
locate its corresponding opening bracket

Limited automata!

A Classical Example: Balanced Brackets

(() (()))

How to recognize if a sequence of brackets is correctly balanced?

I For each opening bracket
locate its corresponding closing bracket

Use counters!

I For each closing bracket
locate its corresponding opening bracket

Limited automata!

A Classical Example: Balanced Brackets

(1 (2)2 (2 (3)3)2)1

How to recognize if a sequence of brackets is correctly balanced?

I For each opening bracket
locate its corresponding closing bracket

Use counters!

I For each closing bracket
locate its corresponding opening bracket

Limited automata!

A Classical Example: Balanced Brackets

(

(x

6

(

(x

6

)

xx

6

(

(x

6

(

(x

6

)

xx

6

)

xx

6

)

xx

6−→ ←−

How to recognize if a sequence of brackets its correctly balanced?

I For each opening bracket
locate its corresponding closing bracket

Use counters!

I For each closing bracket
locate its corresponding opening bracket

Limited automata!

A Classical Example: Balanced Brackets

(

(x

6

(

(x

6

)

xx

6

(

(x

6

(

(x

6

)

xx

6

)

xx

6

)

xx

6

−→

←−

How to recognize if a sequence of brackets its correctly balanced?

I For each opening bracket
locate its corresponding closing bracket

Use counters!

I For each closing bracket
locate its corresponding opening bracket

Limited automata!

A Classical Example: Balanced Brackets

(

(

x

6

(

(x

6

)

xx

6

(

(x

6

(

(x

6

)

xx

6

)

xx

6

)

xx

6

−→

←−

How to recognize if a sequence of brackets its correctly balanced?

I For each opening bracket
locate its corresponding closing bracket

Use counters!

I For each closing bracket
locate its corresponding opening bracket

Limited automata!

A Classical Example: Balanced Brackets

(

(

x

6

(

(

x

6

)

xx

6

(

(x

6

(

(x

6

)

xx

6

)

xx

6

)

xx

6

−→

←−

How to recognize if a sequence of brackets its correctly balanced?

I For each opening bracket
locate its corresponding closing bracket

Use counters!

I For each closing bracket
locate its corresponding opening bracket

Limited automata!

A Classical Example: Balanced Brackets

(

(

x

6

(

(

x

6

)

x

x

6

(

(x

6

(

(x

6

)

xx

6

)

xx

6

)

xx

6

−→

←−

How to recognize if a sequence of brackets its correctly balanced?

I For each opening bracket
locate its corresponding closing bracket

Use counters!

I For each closing bracket
locate its corresponding opening bracket

Limited automata!

A Classical Example: Balanced Brackets

(

(

x

6

(

(

x

6

)x

x

6

(

(x

6

(

(x

6

)

xx

6

)

xx

6

)

xx

6−→

←−

How to recognize if a sequence of brackets its correctly balanced?

I For each opening bracket
locate its corresponding closing bracket

Use counters!

I For each closing bracket
locate its corresponding opening bracket

Limited automata!

A Classical Example: Balanced Brackets

(

(

x

6

(

(

x

6

)x

x

6

(

(x

6

(

(x

6

)

xx

6

)

xx

6

)

xx

6−→

←−

How to recognize if a sequence of brackets its correctly balanced?

I For each opening bracket
locate its corresponding closing bracket

Use counters!

I For each closing bracket
locate its corresponding opening bracket

Limited automata!

A Classical Example: Balanced Brackets

(

(

x

6

((

x

6

)x

x

6

(

(x

6

(

(x

6

)

xx

6

)

xx

6

)

xx

6−→

←−

How to recognize if a sequence of brackets its correctly balanced?

I For each opening bracket
locate its corresponding closing bracket

Use counters!

I For each closing bracket
locate its corresponding opening bracket

Limited automata!

A Classical Example: Balanced Brackets

(

(

x

6

((

x

6

)x

x

6

(

(x

6

(

(x

6

)

xx

6

)

xx

6

)

xx

6

−→

←−

How to recognize if a sequence of brackets its correctly balanced?

I For each opening bracket
locate its corresponding closing bracket

Use counters!

I For each closing bracket
locate its corresponding opening bracket

Limited automata!

A Classical Example: Balanced Brackets

(

(

x

6

((

x

6

)x

x

6

(

(x

6

(

(x

6

)

xx

6

)

xx

6

)

xx

6

−→

←−

How to recognize if a sequence of brackets its correctly balanced?

I For each opening bracket
locate its corresponding closing bracket

Use counters!

I For each closing bracket
locate its corresponding opening bracket

Limited automata!

A Classical Example: Balanced Brackets

(

(

x

6

((

x

6

)x

x

6

(

(x

6

(

(x

6

)

xx

6

)

xx

6

)

xx

6

−→

←−

How to recognize if a sequence of brackets its correctly balanced?

I For each opening bracket
locate its corresponding closing bracket

Use counters!

I For each closing bracket
locate its corresponding opening bracket

Limited automata!

A Classical Example: Balanced Brackets

(

(

x

6

((

x

6

)x

x

6

(

(

x

6

(

(x

6

)

xx

6

)

xx

6

)

xx

6

−→

←−

How to recognize if a sequence of brackets its correctly balanced?

I For each opening bracket
locate its corresponding closing bracket

Use counters!

I For each closing bracket
locate its corresponding opening bracket

Limited automata!

A Classical Example: Balanced Brackets

(

(

x

6

((

x

6

)x

x

6

(

(

x

6

(

(

x

6

)

xx

6

)

xx

6

)

xx

6

−→

←−

How to recognize if a sequence of brackets its correctly balanced?

I For each opening bracket
locate its corresponding closing bracket

Use counters!

I For each closing bracket
locate its corresponding opening bracket

Limited automata!

A Classical Example: Balanced Brackets

(

(

x

6

((

x

6

)x

x

6

(

(

x

6

(

(

x

6

)x

x

6

)

xx

6

)

xx

6

−→

←−

How to recognize if a sequence of brackets its correctly balanced?

I For each opening bracket
locate its corresponding closing bracket

Use counters!

I For each closing bracket
locate its corresponding opening bracket

Limited automata!

A Classical Example: Balanced Brackets

(

(

x

6

((

x

6

)x

x

6

(

(

x

6

(

(

x

6

)x

x

6

)

xx

6

)

xx

6−→

←−

How to recognize if a sequence of brackets its correctly balanced?

I For each opening bracket
locate its corresponding closing bracket

Use counters!

I For each closing bracket
locate its corresponding opening bracket

Limited automata!

A Classical Example: Balanced Brackets

(

(

x

6

((

x

6

)x

x

6

(

(

x

6

(

(

x

6

)x

x

6

)

xx

6

)

xx

6−→

←−

How to recognize if a sequence of brackets its correctly balanced?

I For each opening bracket
locate its corresponding closing bracket

Use counters!

I For each closing bracket
locate its corresponding opening bracket

Limited automata!

A Classical Example: Balanced Brackets

(

(

x

6

((

x

6

)x

x

6

(

(

x

6

((

x

6

)x

x

6

)

xx

6

)

xx

6−→

←−

How to recognize if a sequence of brackets its correctly balanced?

I For each opening bracket
locate its corresponding closing bracket

Use counters!

I For each closing bracket
locate its corresponding opening bracket

Limited automata!

A Classical Example: Balanced Brackets

(

(

x

6

((

x

6

)x

x

6

(

(

x

6

((

x

6

)x

x

6

)

xx

6

)

xx

6

−→

←−

How to recognize if a sequence of brackets its correctly balanced?

I For each opening bracket
locate its corresponding closing bracket

Use counters!

I For each closing bracket
locate its corresponding opening bracket

Limited automata!

A Classical Example: Balanced Brackets

(

(

x

6

((

x

6

)x

x

6

(

(

x

6

((

x

6

)x

x

6

)

xx

6

)

xx

6

−→

←−

How to recognize if a sequence of brackets its correctly balanced?

I For each opening bracket
locate its corresponding closing bracket

Use counters!

I For each closing bracket
locate its corresponding opening bracket

Limited automata!

A Classical Example: Balanced Brackets

(

(

x

6

((

x

6

)x

x

6

(

(

x

6

((

x

6

)x

x

6

)

xx

6

)

xx

6

−→

←−

How to recognize if a sequence of brackets its correctly balanced?

I For each opening bracket
locate its corresponding closing bracket

Use counters!

I For each closing bracket
locate its corresponding opening bracket

Limited automata!

A Classical Example: Balanced Brackets

(

(

x

6

((

x

6

)x

x

6

(

(

x

6

((

x

6

)x

x

6

)

x

x

6

)

xx

6

−→

←−

How to recognize if a sequence of brackets its correctly balanced?

I For each opening bracket
locate its corresponding closing bracket

Use counters!

I For each closing bracket
locate its corresponding opening bracket

Limited automata!

A Classical Example: Balanced Brackets

(

(

x

6

((

x

6

)x

x

6

(

(

x

6

((

x

6

)x

x

6

)x

x

6

)

xx

6

−→

←−

How to recognize if a sequence of brackets its correctly balanced?

I For each opening bracket
locate its corresponding closing bracket

Use counters!

I For each closing bracket
locate its corresponding opening bracket

Limited automata!

A Classical Example: Balanced Brackets

(

(

x

6

((

x

6

)x

x

6

(

(

x

6

((

x

6

)x

x

6

)x

x

6

)

xx

6−→

←−

How to recognize if a sequence of brackets its correctly balanced?

I For each opening bracket
locate its corresponding closing bracket

Use counters!

I For each closing bracket
locate its corresponding opening bracket

Limited automata!

A Classical Example: Balanced Brackets

(

(

x

6

((

x

6

)x

x

6

(

(

x

6

((

x

6

)x

x

6

)x

x

6

)

xx

6−→

←−

How to recognize if a sequence of brackets its correctly balanced?

I For each opening bracket
locate its corresponding closing bracket

Use counters!

I For each closing bracket
locate its corresponding opening bracket

Limited automata!

A Classical Example: Balanced Brackets

(

(

x

6

((

x

6

)x

x

6

(

(

x

6

((

x

6

)x

x

6

)x

x

6

)

xx

6−→

←−

How to recognize if a sequence of brackets its correctly balanced?

I For each opening bracket
locate its corresponding closing bracket

Use counters!

I For each closing bracket
locate its corresponding opening bracket

Limited automata!

A Classical Example: Balanced Brackets

(

(

x

6

((

x

6

)x

x

6

((

x

6

((

x

6

)x

x

6

)x

x

6

)

xx

6−→

←−

How to recognize if a sequence of brackets its correctly balanced?

I For each opening bracket
locate its corresponding closing bracket

Use counters!

I For each closing bracket
locate its corresponding opening bracket

Limited automata!

A Classical Example: Balanced Brackets

(

(

x

6

((

x

6

)x

x

6

((

x

6

((

x

6

)x

x

6

)x

x

6

)

xx

6

−→

←−

How to recognize if a sequence of brackets its correctly balanced?

I For each opening bracket
locate its corresponding closing bracket

Use counters!

I For each closing bracket
locate its corresponding opening bracket

Limited automata!

A Classical Example: Balanced Brackets

(

(

x

6

((

x

6

)x

x

6

((

x

6

((

x

6

)x

x

6

)x

x

6

)

xx

6

−→

←−

How to recognize if a sequence of brackets its correctly balanced?

I For each opening bracket
locate its corresponding closing bracket

Use counters!

I For each closing bracket
locate its corresponding opening bracket

Limited automata!

A Classical Example: Balanced Brackets

(

(

x

6

((

x

6

)x

x

6

((

x

6

((

x

6

)x

x

6

)x

x

6

)

xx

6

−→

←−

How to recognize if a sequence of brackets its correctly balanced?

I For each opening bracket
locate its corresponding closing bracket

Use counters!

I For each closing bracket
locate its corresponding opening bracket

Limited automata!

A Classical Example: Balanced Brackets

(

(

x

6

((

x

6

)x

x

6

((

x

6

((

x

6

)x

x

6

)x

x

6

)

xx

6

−→

←−

How to recognize if a sequence of brackets its correctly balanced?

I For each opening bracket
locate its corresponding closing bracket

Use counters!

I For each closing bracket
locate its corresponding opening bracket

Limited automata!

A Classical Example: Balanced Brackets

(

(

x

6

((

x

6

)x

x

6

((

x

6

((

x

6

)x

x

6

)x

x

6

)

xx

6−→

←−

How to recognize if a sequence of brackets its correctly balanced?

I For each opening bracket
locate its corresponding closing bracket

Use counters!

I For each closing bracket
locate its corresponding opening bracket

Limited automata!

A Classical Example: Balanced Brackets

(

(

x

6

((

x

6

)x

x

6

((

x

6

((

x

6

)x

x

6

)x

x

6

)

x

x

6−→

←−

How to recognize if a sequence of brackets its correctly balanced?

I For each opening bracket
locate its corresponding closing bracket

Use counters!

I For each closing bracket
locate its corresponding opening bracket

Limited automata!

A Classical Example: Balanced Brackets

(

(

x

6

((

x

6

)x

x

6

((

x

6

((

x

6

)x

x

6

)x

x

6

)x

x

6

−→

←−

How to recognize if a sequence of brackets its correctly balanced?

I For each opening bracket
locate its corresponding closing bracket

Use counters!

I For each closing bracket
locate its corresponding opening bracket

Limited automata!

A Classical Example: Balanced Brackets

(

(

x

6

((

x

6

)x

x

6

((

x

6

((

x

6

)x

x

6

)x

x

6

)x

x

6−→

←−

How to recognize if a sequence of brackets its correctly balanced?

I For each opening bracket
locate its corresponding closing bracket

Use counters!

I For each closing bracket
locate its corresponding opening bracket

Limited automata!

A Classical Example: Balanced Brackets

(

(

x

6

((

x

6

)x

x

6

((

x

6

((

x

6

)x

x

6

)x

x

6

)x

x

6−→

←−

How to recognize if a sequence of brackets its correctly balanced?

I For each opening bracket
locate its corresponding closing bracket

Use counters!

I For each closing bracket
locate its corresponding opening bracket

Limited automata!

A Classical Example: Balanced Brackets

(

(

x

6

((

x

6

)x

x

6

((

x

6

((

x

6

)x

x

6

)x

x

6

)x

x

6−→

←−

How to recognize if a sequence of brackets its correctly balanced?

I For each opening bracket
locate its corresponding closing bracket

Use counters!

I For each closing bracket
locate its corresponding opening bracket

Limited automata!

A Classical Example: Balanced Brackets

(

(

x

6

((

x

6

)x

x

6

((

x

6

((

x

6

)x

x

6

)x

x

6

)x

x

6−→

←−

How to recognize if a sequence of brackets its correctly balanced?

I For each opening bracket
locate its corresponding closing bracket

Use counters!

I For each closing bracket
locate its corresponding opening bracket

Limited automata!

A Classical Example: Balanced Brackets

(

(

x

6

((

x

6

)x

x

6

((

x

6

((

x

6

)x

x

6

)x

x

6

)x

x

6−→

←−

How to recognize if a sequence of brackets its correctly balanced?

I For each opening bracket
locate its corresponding closing bracket

Use counters!

I For each closing bracket
locate its corresponding opening bracket

Limited automata!

A Classical Example: Balanced Brackets

(

(

x

6

((

x

6

)x

x

6

((

x

6

((

x

6

)x

x

6

)x

x

6

)x

x

6−→

←−

How to recognize if a sequence of brackets its correctly balanced?

I For each opening bracket
locate its corresponding closing bracket

Use counters!

I For each closing bracket
locate its corresponding opening bracket

Limited automata!

A Classical Example: Balanced Brackets

(

(

x

6

((

x

6

)x

x

6

((

x

6

((

x

6

)x

x

6

)x

x

6

)x

x

6−→

←−

How to recognize if a sequence of brackets its correctly balanced?

I For each opening bracket
locate its corresponding closing bracket

Use counters!

I For each closing bracket
locate its corresponding opening bracket

Limited automata!

A Classical Example: Balanced Brackets

((

x

6

((

x

6

)x

x

6

((

x

6

((

x

6

)x

x

6

)x

x

6

)x

x

6

−→

←−

How to recognize if a sequence of brackets its correctly balanced?

I For each opening bracket
locate its corresponding closing bracket

Use counters!

I For each closing bracket
locate its corresponding opening bracket

Limited automata!

A Classical Example: Balanced Brackets

((

x

6

((

x

6

)x

x

6

((

x

6

((

x

6

)x

x

6

)x

x

6

)x

x

6

−→

←−

How to recognize if a sequence of brackets its correctly balanced?

I For each opening bracket
locate its corresponding closing bracket

Use counters!

I For each closing bracket
locate its corresponding opening bracket

Limited automata!

A Classical Example: Balanced Brackets

((

x

6

((

x

6

)x

x

6

((

x

6

((

x

6

)x

x

6

)x

x

6

)x

x

6

−→

←−

How to recognize if a sequence of brackets its correctly balanced?

I For each opening bracket
locate its corresponding closing bracket

Use counters!

I For each closing bracket
locate its corresponding opening bracket

Limited automata!

A Classical Example: Balanced Brackets

((

x

6

((

x

6

)x

x

6

((

x

6

((

x

6

)x

x

6

)x

x

6

)x

x

6

−→

←−

How to recognize if a sequence of brackets its correctly balanced?

I For each opening bracket
locate its corresponding closing bracket

Use counters!

I For each closing bracket
locate its corresponding opening bracket

Limited automata!

A Classical Example: Balanced Brackets

((

x

6

((

x

6

)x

x

6

((

x

6

((

x

6

)x

x

6

)x

x

6

)x

x

6

−→

←−

How to recognize if a sequence of brackets its correctly balanced?

I For each opening bracket
locate its corresponding closing bracket

Use counters!

I For each closing bracket
locate its corresponding opening bracket

Limited automata!

A Classical Example: Balanced Brackets

((

x

6

((

x

6

)x

x

6

((

x

6

((

x

6

)x

x

6

)x

x

6

)x

x

6

−→

←−

How to recognize if a sequence of brackets its correctly balanced?

I For each opening bracket
locate its corresponding closing bracket

Use counters!

I For each closing bracket
locate its corresponding opening bracket

Limited automata!

A Classical Example: Balanced Brackets

((

x

6

((

x

6

)x

x

6

((

x

6

((

x

6

)x

x

6

)x

x

6

)x

x

6

−→

←−

How to recognize if a sequence of brackets its correctly balanced?

I For each opening bracket
locate its corresponding closing bracket

Use counters!

I For each closing bracket
locate its corresponding opening bracket

Limited automata!

A Classical Example: Balanced Brackets

((

x

6

((

x

6

)x

x

6

((

x

6

((

x

6

)x

x

6

)x

x

6

)x

x

6−→

←−

How to recognize if a sequence of brackets its correctly balanced?

I For each opening bracket
locate its corresponding closing bracket

Use counters!

I For each closing bracket
locate its corresponding opening bracket

Limited automata!

A Classical Example: Balanced Brackets

((

x

6

((

x

6

)x

x

6

((

x

6

((

x

6

)x

x

6

)x

x

6

)x

x

6−→ ←−

How to recognize if a sequence of brackets its correctly balanced?

I For each opening bracket
locate its corresponding closing bracket

Use counters!

I For each closing bracket
locate its corresponding opening bracket

Limited automata!

Limited Automata [Hibbard ’67]

One-tape Turing machines with restricted rewritings

Definition
Fixed an integer d ≥ 1, a d-limited automaton is
I a one-tape Turing machine
I which is allowed to overwrite the content of each tape cell

only in the first d visits

Computational power

I For each d ≥ 2, d-limited automata characterize
context-free languages [Hibbard ’67]

I 1-limited automata characterize regular languages
[Wagner&Wechsung ’86]

Limited Automata [Hibbard ’67]

One-tape Turing machines with restricted rewritings

Definition
Fixed an integer d ≥ 1, a d-limited automaton is
I a one-tape Turing machine
I which is allowed to overwrite the content of each tape cell

only in the first d visits

Technical details:
I Input surrounded by two end-markers
I End-markers are never overwritten
I The head cannot exceed the end-markers

Computational power

I For each d ≥ 2, d-limited automata characterize
context-free languages [Hibbard ’67]

I 1-limited automata characterize regular languages
[Wagner&Wechsung ’86]

Limited Automata [Hibbard ’67]

One-tape Turing machines with restricted rewritings

Definition
Fixed an integer d ≥ 1, a d-limited automaton is
I a one-tape Turing machine
I which is allowed to overwrite the content of each tape cell

only in the first d visits

Computational power

I For each d ≥ 2, d-limited automata characterize
context-free languages [Hibbard ’67]

I 1-limited automata characterize regular languages
[Wagner&Wechsung ’86]

Limited Automata [Hibbard ’67]

One-tape Turing machines with restricted rewritings

Definition
Fixed an integer d ≥ 1, a d-limited automaton is
I a one-tape Turing machine
I which is allowed to overwrite the content of each tape cell

only in the first d visits

Computational power

I For each d ≥ 2, d-limited automata characterize
context-free languages [Hibbard ’67]

I 1-limited automata characterize regular languages
[Wagner&Wechsung ’86]

The Chomsky Hierarchy

type 0(One-tape) Turing Machines

type 1Linear Bounded Automata

type 2Pushdown Automata

type 3Finite Automata

The Chomsky Hierarchy

type 0(One-tape) Turing Machines

type 1Linear Bounded Automata

type 2d-Limited Automata (any d ≥ 2)

type 3Finite Automata

The Chomsky Hierarchy

type 0(One-tape) Turing Machines

type 1Linear Bounded Automata

type 2d-Limited Automata (any d ≥ 2)

type 31-Limited Automata

Why Each CFL is Accepted by a 2-LA [P.&Pisoni ’14]

Theorem ([Chomsky&Schützenberger ’63])
Each CFL L ⊆ Σ∗ can be expressed as L = h(Dk ∩ R) where:
I Dk ⊆ Ω∗

k is a Dyck language (i.e., balanced brackets)
over Ωk = {(1,)1, (2,)2, . . . , (k ,)k}

2-LA AD

I R ⊆ Ω∗
k is a regular language

Finite automaton AR

I h : Ωk → Σ∗ is a homomorphism

Transducer T for h−1

T

AR

AD

-w

z ∈ h−1(w) �
��

@
@R

z ∈ R?

@
@

z ∈ Dk?

�
�

-w ∈ L?∧

Suitably simulating this combination of T, AD and AR we obtain a 2-LA

Why Each CFL is Accepted by a 2-LA [P.&Pisoni ’14]

Theorem ([Chomsky&Schützenberger ’63])
Each CFL L ⊆ Σ∗ can be expressed as L = h(Dk ∩ R) where:
I Dk ⊆ Ω∗

k is a Dyck language (i.e., balanced brackets)
over Ωk = {(1,)1, (2,)2, . . . , (k ,)k}

2-LA AD

I R ⊆ Ω∗
k is a regular language

Finite automaton AR

I h : Ωk → Σ∗ is a homomorphism Transducer T for h−1

T

AR

AD

-w -z ∈ h−1(w)

�
��

@
@R

z ∈ R?

@
@

z ∈ Dk?

�
�

-w ∈ L?∧

Suitably simulating this combination of T, AD and AR we obtain a 2-LA

Why Each CFL is Accepted by a 2-LA [P.&Pisoni ’14]

Theorem ([Chomsky&Schützenberger ’63])
Each CFL L ⊆ Σ∗ can be expressed as L = h(Dk ∩ R) where:
I Dk ⊆ Ω∗

k is a Dyck language (i.e., balanced brackets)
over Ωk = {(1,)1, (2,)2, . . . , (k ,)k} 2-LA AD

I R ⊆ Ω∗
k is a regular language

Finite automaton AR

I h : Ωk → Σ∗ is a homomorphism Transducer T for h−1

T

AR

AD

-w -z ∈ h−1(w)

�
��

@
@R

z ∈ R?

@
@

z ∈ Dk?

�
�

-w ∈ L?∧

Suitably simulating this combination of T, AD and AR we obtain a 2-LA

Why Each CFL is Accepted by a 2-LA [P.&Pisoni ’14]

Theorem ([Chomsky&Schützenberger ’63])
Each CFL L ⊆ Σ∗ can be expressed as L = h(Dk ∩ R) where:
I Dk ⊆ Ω∗

k is a Dyck language (i.e., balanced brackets)
over Ωk = {(1,)1, (2,)2, . . . , (k ,)k} 2-LA AD

I R ⊆ Ω∗
k is a regular language Finite automaton AR

I h : Ωk → Σ∗ is a homomorphism Transducer T for h−1

T

AR

AD

-w -z ∈ h−1(w)

�
��

@
@R

z ∈ R?

@
@

z ∈ Dk?

�
�

-w ∈ L?∧

Suitably simulating this combination of T, AD and AR we obtain a 2-LA

Why Each CFL is Accepted by a 2-LA [P.&Pisoni ’14]

Theorem ([Chomsky&Schützenberger ’63])
Each CFL L ⊆ Σ∗ can be expressed as L = h(Dk ∩ R) where:
I Dk ⊆ Ω∗

k is a Dyck language (i.e., balanced brackets)
over Ωk = {(1,)1, (2,)2, . . . , (k ,)k} 2-LA AD

I R ⊆ Ω∗
k is a regular language Finite automaton AR

I h : Ωk → Σ∗ is a homomorphism Transducer T for h−1

T

AR

AD

-w z ∈ h−1(w) �
��

@
@R

z ∈ R?

@
@

z ∈ Dk?

�
�

-w ∈ L?∧

Suitably simulating this combination of T, AD and AR we obtain a 2-LA

Why Each CFL is Accepted by a 2-LA [P.&Pisoni ’14]

Theorem ([Chomsky&Schützenberger ’63])
Each CFL L ⊆ Σ∗ can be expressed as L = h(Dk ∩ R) where:
I Dk ⊆ Ω∗

k is a Dyck language (i.e., balanced brackets)
over Ωk = {(1,)1, (2,)2, . . . , (k ,)k} 2-LA AD

I R ⊆ Ω∗
k is a regular language Finite automaton AR

I h : Ωk → Σ∗ is a homomorphism Transducer T for h−1

T

AR

AD

-w z ∈ h−1(w) �
��

@
@R

z ∈ R?

@
@

z ∈ Dk?

�
�

-w ∈ L?∧

Suitably simulating this combination of T, AD and AR we obtain a 2-LA

Determinism vs Nondeterminism

I Simulations in [Hibbard ’67]:
Determinism is preserved by the simulation PDAs by 2-LAs,
but not by the converse simulation

I A different simulation of 2-LAs by PDAs,
which preserves determinism, is given in [P.&Pisoni ’15]

Deterministic 2-Limited Automata ≡ DCFLs

Determinism vs Nondeterminism

I Simulations in [Hibbard ’67]:
Determinism is preserved by the simulation PDAs by 2-LAs,
but not by the converse simulation

I A different simulation of 2-LAs by PDAs,
which preserves determinism, is given in [P.&Pisoni ’15]

Deterministic 2-Limited Automata ≡ DCFLs

Determinism vs Nondeterminism

I Simulations in [Hibbard ’67]:
Determinism is preserved by the simulation PDAs by 2-LAs,
but not by the converse simulation

I A different simulation of 2-LAs by PDAs,
which preserves determinism, is given in [P.&Pisoni ’15]

Deterministic 2-Limited Automata ≡ DCFLs

Determinism vs Nondeterminism

What about deterministic d-Limited Automata, d > 2?

I L = {anbnc | n ≥ 0} ∪ {anb2nd | n ≥ 0}
is accepted by a deterministic 3-LA, but is not a DCFL

I Infinite hierarchy [Hibbard ’67]
For each d ≥ 2 there is a language which is accepted by a
deterministic d-limited automaton and that cannot be accepted
by any deterministic (d − 1)-limited automaton

Claim [Hibbard ’67]
For any d > 0, the set of Palindromes cannot be
accepted by any deterministic d-LA

Hence
⋃
d>0

det-d-LA ⊂ CFL properly

Open Problem

Any proof?

Determinism vs Nondeterminism

What about deterministic d-Limited Automata, d > 2?

I L = {anbnc | n ≥ 0} ∪ {anb2nd | n ≥ 0}
is accepted by a deterministic 3-LA, but is not a DCFL

I Infinite hierarchy [Hibbard ’67]
For each d ≥ 2 there is a language which is accepted by a
deterministic d-limited automaton and that cannot be accepted
by any deterministic (d − 1)-limited automaton

Claim [Hibbard ’67]
For any d > 0, the set of Palindromes cannot be
accepted by any deterministic d-LA

Hence
⋃
d>0

det-d-LA ⊂ CFL properly

Open Problem

Any proof?

Determinism vs Nondeterminism

What about deterministic d-Limited Automata, d > 2?

I L = {anbnc | n ≥ 0} ∪ {anb2nd | n ≥ 0}
is accepted by a deterministic 3-LA, but is not a DCFL

I Infinite hierarchy [Hibbard ’67]
For each d ≥ 2 there is a language which is accepted by a
deterministic d-limited automaton and that cannot be accepted
by any deterministic (d − 1)-limited automaton

Claim [Hibbard ’67]
For any d > 0, the set of Palindromes cannot be
accepted by any deterministic d-LA

Hence
⋃
d>0

det-d-LA ⊂ CFL properly

Open Problem

Any proof?

Determinism vs Nondeterminism

What about deterministic d-Limited Automata, d > 2?

I L = {anbnc | n ≥ 0} ∪ {anb2nd | n ≥ 0}
is accepted by a deterministic 3-LA, but is not a DCFL

I Infinite hierarchy [Hibbard ’67]
For each d ≥ 2 there is a language which is accepted by a
deterministic d-limited automaton and that cannot be accepted
by any deterministic (d − 1)-limited automaton

Claim [Hibbard ’67]
For any d > 0, the set of Palindromes cannot be
accepted by any deterministic d-LA

Hence
⋃
d>0

det-d-LA ⊂ CFL properly

Open Problem

Any proof?

Determinism vs Nondeterminism

What about deterministic d-Limited Automata, d > 2?

I L = {anbnc | n ≥ 0} ∪ {anb2nd | n ≥ 0}
is accepted by a deterministic 3-LA, but is not a DCFL

I Infinite hierarchy [Hibbard ’67]
For each d ≥ 2 there is a language which is accepted by a
deterministic d-limited automaton and that cannot be accepted
by any deterministic (d − 1)-limited automaton

Claim [Hibbard ’67]
For any d > 0, the set of Palindromes cannot be
accepted by any deterministic d-LA

Hence
⋃
d>0

det-d-LA ⊂ CFL properly

Open Problem

Any proof?

Determinism vs Nondeterminism

What about deterministic d-Limited Automata, d > 2?

I L = {anbnc | n ≥ 0} ∪ {anb2nd | n ≥ 0}
is accepted by a deterministic 3-LA, but is not a DCFL

I Infinite hierarchy [Hibbard ’67]
For each d ≥ 2 there is a language which is accepted by a
deterministic d-limited automaton and that cannot be accepted
by any deterministic (d − 1)-limited automaton

Claim [Hibbard ’67]
For any d > 0, the set of Palindromes cannot be
accepted by any deterministic d-LA

Hence
⋃
d>0

det-d-LA ⊂ CFL properly

Open Problem

Any proof?

Descriptional Complexity
of Limited Automata

The Language Bn (n > 0)

Bn = {x1 x2 · · · xk x ∈ {0, 1}∗ | |x1| = · · · = |xk | = |x | = n, k > 0,

and xj = x , for some 1 ≤ j ≤ k }

Example (n = 3):

0 0 1

|

0 1 0

|

1 1 0

|

0 1 0

|

1 0 0

|

1 1 1

|

1 1 0

The Language Bn (n > 0)

Bn = {x1 x2 · · · xk x ∈ {0, 1}∗ | |x1| = · · · = |xk | = |x | = n, k > 0,
and xj = x , for some 1 ≤ j ≤ k }

Example (n = 3):

0 0 1

|

0 1 0

|

1 1 0

|

0 1 0

|

1 0 0

|

1 1 1

|

1 1 0

The Language Bn (n > 0)

Bn = {x1 x2 · · · xk x ∈ {0, 1}∗ | |x1| = · · · = |xk | = |x | = n, k > 0,
and xj = x , for some 1 ≤ j ≤ k }

Example (n = 3):

0 0 1

|

0 1 0

|

1 1 0

|

0 1 0

|

1 0 0

|

1 1 1

|

1 1 0

The Language Bn (n > 0)

Bn = {x1 x2 · · · xk x ∈ {0, 1}∗ | |x1| = · · · = |xk | = |x | = n, k > 0,
and xj = x , for some 1 ≤ j ≤ k }

Example (n = 3):

0 0 1|0 1 0|1 1 0|0 1 0|1 0 0|1 1 1|1 1 0

A Deterministic 2-Limited Automaton for Bn

B 0 0 1

|

0 1 0

|

1 1 0

|

0 1 0

|

1 0 0

|

1 1 1

|

1 1 0 C (n = 3)

1. Scan all the tape from left to right
and check if the input length is a multiple of n

2. Move to the left and mark the rightmost block of n symbols
3. Compare the other blocks of length n (from the right),

symbol by symbol, with the last block
4. When the matching block is found, accept

Complexity:

I O(n) states
I Fixed working alphabet

⇒ det-2-LA of size O(n)

A Deterministic 2-Limited Automaton for Bn

B 0 0 1

|

0 1 0

|

1 1 0

|

0 1 0

|

1 0 0

|

1 1 1

|

1 1 0 C (n = 3)

1. Scan all the tape from left to right
and check if the input length is a multiple of n

2. Move to the left and mark the rightmost block of n symbols
3. Compare the other blocks of length n (from the right),

symbol by symbol, with the last block
4. When the matching block is found, accept

Complexity:

I O(n) states
I Fixed working alphabet

⇒ det-2-LA of size O(n)

A Deterministic 2-Limited Automaton for Bn

B 0 0 1

|

0 1 0

|

1 1 0

|

0 1 0

|

1 0 0

|

1 1 1

|

1̂ 1̂ 0̂ C (n = 3)

1. Scan all the tape from left to right
and check if the input length is a multiple of n

2. Move to the left and mark the rightmost block of n symbols
3. Compare the other blocks of length n (from the right),

symbol by symbol, with the last block
4. When the matching block is found, accept

Complexity:

I O(n) states
I Fixed working alphabet

⇒ det-2-LA of size O(n)

A Deterministic 2-Limited Automaton for Bn

B 0 0 1

|

0 1 0

|

1 1 0

|

0 1 0

|

1 0 0

|

1 1 1

|

1̂ 1̂ 0̂ C (n = 3)

1. Scan all the tape from left to right
and check if the input length is a multiple of n

2. Move to the left and mark the rightmost block of n symbols
3. Compare the other blocks of length n (from the right),

symbol by symbol, with the last block
4. When the matching block is found, accept

Complexity:

I O(n) states
I Fixed working alphabet

⇒ det-2-LA of size O(n)

A Deterministic 2-Limited Automaton for Bn

B 0 0 1

|

0 1 0

|

1 1 0

|

0 1 0

|

1 0 0

|

1 1 1

|

1̂ 1̂ 0̂ C (n = 3)

1. Scan all the tape from left to right
and check if the input length is a multiple of n

2. Move to the left and mark the rightmost block of n symbols
3. Compare the other blocks of length n (from the right),

symbol by symbol, with the last block
4. When the matching block is found, accept

Complexity:

I O(n) states
I Fixed working alphabet

⇒ det-2-LA of size O(n)

A Deterministic 2-Limited Automaton for Bn

B 0 0 1

|

0 1 0

|

1 1 0

|

0 1 0

|

1 0 0

|

x x x

|

1̂ 1̂ 0̂ C (n = 3)

1. Scan all the tape from left to right
and check if the input length is a multiple of n

2. Move to the left and mark the rightmost block of n symbols
3. Compare the other blocks of length n (from the right),

symbol by symbol, with the last block
4. When the matching block is found, accept

Complexity:

I O(n) states
I Fixed working alphabet

⇒ det-2-LA of size O(n)

A Deterministic 2-Limited Automaton for Bn

B 0 0 1

|

0 1 0

|

1 1 0

|

0 1 0

|

x x x

|

x x x

|

1̂ 1̂ 0̂ C (n = 3)

1. Scan all the tape from left to right
and check if the input length is a multiple of n

2. Move to the left and mark the rightmost block of n symbols
3. Compare the other blocks of length n (from the right),

symbol by symbol, with the last block
4. When the matching block is found, accept

Complexity:

I O(n) states
I Fixed working alphabet

⇒ det-2-LA of size O(n)

A Deterministic 2-Limited Automaton for Bn

B 0 0 1

|

0 1 0

|

1 1 0

|

x x x

|

x x x

|

x x x

|

1̂ 1̂ 0̂ C (n = 3)

1. Scan all the tape from left to right
and check if the input length is a multiple of n

2. Move to the left and mark the rightmost block of n symbols
3. Compare the other blocks of length n (from the right),

symbol by symbol, with the last block
4. When the matching block is found, accept

Complexity:

I O(n) states
I Fixed working alphabet

⇒ det-2-LA of size O(n)

A Deterministic 2-Limited Automaton for Bn

B 0 0 1

|

0 1 0

|

x x x

|

x x x

|

x x x

|

x x x

|

1̂ 1̂ 0̂ C (n = 3)

1. Scan all the tape from left to right
and check if the input length is a multiple of n

2. Move to the left and mark the rightmost block of n symbols
3. Compare the other blocks of length n (from the right),

symbol by symbol, with the last block
4. When the matching block is found, accept

Complexity:

I O(n) states
I Fixed working alphabet

⇒ det-2-LA of size O(n)

A Deterministic 2-Limited Automaton for Bn

B 0 0 1

|

0 1 0

|

x x x

|

x x x

|

x x x

|

x x x

|

1̂ 1̂ 0̂ C (n = 3)

1. Scan all the tape from left to right
and check if the input length is a multiple of n

2. Move to the left and mark the rightmost block of n symbols
3. Compare the other blocks of length n (from the right),

symbol by symbol, with the last block
4. When the matching block is found, accept

Complexity:

I O(n) states
I Fixed working alphabet

⇒ det-2-LA of size O(n)

A Nondeterministic 1-Limited Automaton for Bn

B 0 0 1

|

0 1 0

|

1 1 0

|

0 1 0

|

1 0 0

|

1 1 1

|

1 1 0 C (n = 3)

1. Scan all the tape from left to right
and mark two nondeterministically chosen cells

2. Check that:
the input length is a multiple of n,
the last marked cell is the leftmost one of the last block, and
the other marked cell is the leftmost one of another block

3. Compare symbol by symbol the two blocks that start from the
marked cells

4. Accept if the two blocks are equal

Complexity:

I O(n) states
I Fixed working alphabet

⇒ 1-LA of size O(n)

A Nondeterministic 1-Limited Automaton for Bn

B 0 0 1

|

0 1 0

|

1̂ 1 0

|

0 1 0

|

1 0 0

|

1 1 1

|

1̂ 1 0 C (n = 3)

1. Scan all the tape from left to right
and mark two nondeterministically chosen cells

2. Check that:
the input length is a multiple of n,
the last marked cell is the leftmost one of the last block, and
the other marked cell is the leftmost one of another block

3. Compare symbol by symbol the two blocks that start from the
marked cells

4. Accept if the two blocks are equal

Complexity:

I O(n) states
I Fixed working alphabet

⇒ 1-LA of size O(n)

A Nondeterministic 1-Limited Automaton for Bn

B 0 0 1

|

0 1 0

|

1̂ 1 0

|

0 1 0

|

1 0 0

|

1 1 1

|

1̂ 1 0 C (n = 3)

1. Scan all the tape from left to right
and mark two nondeterministically chosen cells

2. Check that:
the input length is a multiple of n,
the last marked cell is the leftmost one of the last block, and
the other marked cell is the leftmost one of another block

3. Compare symbol by symbol the two blocks that start from the
marked cells

4. Accept if the two blocks are equal

Complexity:

I O(n) states
I Fixed working alphabet

⇒ 1-LA of size O(n)

A Nondeterministic 1-Limited Automaton for Bn

B 0 0 1

|

0 1 0

|

1̂ 1 0

|

0 1 0

|

1 0 0

|

1 1 1

|

1̂ 1 0 C (n = 3)

1. Scan all the tape from left to right
and mark two nondeterministically chosen cells

2. Check that:
the input length is a multiple of n,
the last marked cell is the leftmost one of the last block, and
the other marked cell is the leftmost one of another block

3. Compare symbol by symbol the two blocks that start from the
marked cells

4. Accept if the two blocks are equal

Complexity:

I O(n) states
I Fixed working alphabet

⇒ 1-LA of size O(n)

A Nondeterministic 1-Limited Automaton for Bn

B 0 0 1

|

0 1 0

|

1̂ 1 0

|

0 1 0

|

1 0 0

|

1 1 1

|

1̂ 1 0 C (n = 3)

1. Scan all the tape from left to right
and mark two nondeterministically chosen cells

2. Check that:
the input length is a multiple of n,
the last marked cell is the leftmost one of the last block, and
the other marked cell is the leftmost one of another block

3. Compare symbol by symbol the two blocks that start from the
marked cells

4. Accept if the two blocks are equal

Complexity:

I O(n) states
I Fixed working alphabet

⇒ 1-LA of size O(n)

Lower bounds for Bn

Bn = {x1 x2 · · · xk x ∈ {0, 1}∗ | |x1| = · · · = |xk | = |x | = n, k > 0,
and xj = x , for some 1 ≤ j ≤ k }

Finite automata
Each 1DFA accepting Bn requires a number of
states at least double exponential in n

Proof: standard distinguishability arguments

1-LAs → 1DFAs

At least double
exponential gap!

CFGs and PDAs
Each CFG generating Bn (PDA recognizing Bn)
has size at least exponential in n

Proof: “interchange” lemma for CFLs

det-2-LAs → PDAs

At least
exponential gap!

Lower bounds for Bn

Bn = {x1 x2 · · · xk x ∈ {0, 1}∗ | |x1| = · · · = |xk | = |x | = n, k > 0,
and xj = x , for some 1 ≤ j ≤ k }

Finite automata
Each 1DFA accepting Bn requires a number of
states at least double exponential in n

Proof: standard distinguishability arguments

1-LAs → 1DFAs

At least double
exponential gap!

CFGs and PDAs
Each CFG generating Bn (PDA recognizing Bn)
has size at least exponential in n

Proof: “interchange” lemma for CFLs

det-2-LAs → PDAs

At least
exponential gap!

Lower bounds for Bn

Bn = {x1 x2 · · · xk x ∈ {0, 1}∗ | |x1| = · · · = |xk | = |x | = n, k > 0,
and xj = x , for some 1 ≤ j ≤ k }

Finite automata
Each 1DFA accepting Bn requires a number of
states at least double exponential in n

Proof: standard distinguishability arguments

1-LAs → 1DFAs

At least double
exponential gap!

CFGs and PDAs
Each CFG generating Bn (PDA recognizing Bn)
has size at least exponential in n

Proof: “interchange” lemma for CFLs

det-2-LAs → PDAs

At least
exponential gap!

Lower bounds for Bn

Bn = {x1 x2 · · · xk x ∈ {0, 1}∗ | |x1| = · · · = |xk | = |x | = n, k > 0,
and xj = x , for some 1 ≤ j ≤ k }

Finite automata
Each 1DFA accepting Bn requires a number of
states at least double exponential in n

Proof: standard distinguishability arguments

1-LAs → 1DFAs

At least double
exponential gap!

CFGs and PDAs
Each CFG generating Bn (PDA recognizing Bn)
has size at least exponential in n

Proof: “interchange” lemma for CFLs

det-2-LAs → PDAs

At least
exponential gap!

Lower bounds for Bn

Bn = {x1 x2 · · · xk x ∈ {0, 1}∗ | |x1| = · · · = |xk | = |x | = n, k > 0,
and xj = x , for some 1 ≤ j ≤ k }

Finite automata
Each 1DFA accepting Bn requires a number of
states at least double exponential in n

Proof: standard distinguishability arguments

1-LAs → 1DFAs

At least double
exponential gap!

CFGs and PDAs
Each CFG generating Bn (PDA recognizing Bn)
has size at least exponential in n

Proof: “interchange” lemma for CFLs

det-2-LAs → PDAs

At least
exponential gap!

Size Costs of Simulations
d-LAs versus PDAs (or CFGs), d ≥ 2

I 2-LAs → PDAs [P.&Pisoni ’15]
d-LAs → PDAs, d > 2 [Kutrib&P.&Wendlandt ’18]
exponential

I det-2-LAs → DPDAs [P.&Pisoni ’15]
double exponential upper bound (optimal?)
exponential if the input for the simulating DPDA is end-marked

I PDAs → 2-LAs,
DPDAs → det-2-LAs [P.&Pisoni ’15]
polynomial

Size Costs of Simulations
d-LAs versus PDAs (or CFGs), d ≥ 2

I 2-LAs → PDAs [P.&Pisoni ’15]
d-LAs → PDAs, d > 2 [Kutrib&P.&Wendlandt ’18]
exponential

I det-2-LAs → DPDAs [P.&Pisoni ’15]
double exponential upper bound (optimal?)
exponential if the input for the simulating DPDA is end-marked

I PDAs → 2-LAs,
DPDAs → det-2-LAs [P.&Pisoni ’15]
polynomial

Size Costs of Simulations
d-LAs versus PDAs (or CFGs), d ≥ 2

I 2-LAs → PDAs [P.&Pisoni ’15]
d-LAs → PDAs, d > 2 [Kutrib&P.&Wendlandt ’18]
exponential

I det-2-LAs → DPDAs [P.&Pisoni ’15]
double exponential upper bound (optimal?)
exponential if the input for the simulating DPDA is end-marked

I PDAs → 2-LAs,
DPDAs → det-2-LAs [P.&Pisoni ’15]
polynomial

Size Costs of Simulations
1-LAs versus Finite Automata [Wagner&Wechsung ’86, P.&Pisoni ’14]

I 1-LAs → 1NFA
exponential

I 1-LAs → 1DFA
double exponential

I det-1-LAs → 1DFA
exponential

Double role of nondeterminism in 1-LAs
On a tape cell:

First visit: To overwrite the content
by a nondeterministically chosen symbol σ

Next visits: To select a transition
the set of available transitions depends on σ!

Size Costs of Simulations
1-LAs versus Finite Automata [Wagner&Wechsung ’86, P.&Pisoni ’14]

I 1-LAs → 1NFA
exponential

I 1-LAs → 1DFA
double exponential

I det-1-LAs → 1DFA
exponential

Double role of nondeterminism in 1-LAs
On a tape cell:

First visit: To overwrite the content
by a nondeterministically chosen symbol σ

Next visits: To select a transition
the set of available transitions depends on σ!

Size Costs of Simulations
1-LAs versus Finite Automata [Wagner&Wechsung ’86, P.&Pisoni ’14]

I 1-LAs → 1NFA
exponential

I 1-LAs → 1DFA
double exponential

I det-1-LAs → 1DFA
exponential

Double role of nondeterminism in 1-LAs
On a tape cell:

First visit: To overwrite the content
by a nondeterministically chosen symbol σ

Next visits: To select a transition
the set of available transitions depends on σ!

Size Costs of Simulations
1-LAs versus Finite Automata [Wagner&Wechsung ’86, P.&Pisoni ’14]

I 1-LAs → 1NFA
exponential

I 1-LAs → 1DFA
double exponential

I det-1-LAs → 1DFA
exponential

Double role of nondeterminism in 1-LAs
On a tape cell:

First visit: To overwrite the content
by a nondeterministically chosen symbol σ

Next visits: To select a transition
the set of available transitions depends on σ!

The Unary Case

Previous gaps are witnessed using languages Bn, defined over a two
letter alphabet

What happens in the unary case?

I Preliminary observations in [P.&Pisoni ’14]

I Several results in [Kutrib&Wendlandt ’15]
(including superpolynomial gaps 1-LAs→ finite automata)

I An exponential gap [P.&Prigioniero ’19]
Languages Un = {a2n}∗

Recognition by “small” deterministic 1-LAs of size O(n)

Each 2NFA accepting Un should have at least 2n states
[Mereghetti&P.’00]

The Unary Case

Previous gaps are witnessed using languages Bn, defined over a two
letter alphabet

What happens in the unary case?

I Preliminary observations in [P.&Pisoni ’14]

I Several results in [Kutrib&Wendlandt ’15]
(including superpolynomial gaps 1-LAs→ finite automata)

I An exponential gap [P.&Prigioniero ’19]
Languages Un = {a2n}∗

Recognition by “small” deterministic 1-LAs of size O(n)

Each 2NFA accepting Un should have at least 2n states
[Mereghetti&P.’00]

The Unary Case

Previous gaps are witnessed using languages Bn, defined over a two
letter alphabet

What happens in the unary case?

I Preliminary observations in [P.&Pisoni ’14]

I Several results in [Kutrib&Wendlandt ’15]
(including superpolynomial gaps 1-LAs→ finite automata)

I An exponential gap [P.&Prigioniero ’19]
Languages Un = {a2n}∗

Recognition by “small” deterministic 1-LAs of size O(n)

Each 2NFA accepting Un should have at least 2n states
[Mereghetti&P.’00]

The Unary Case

Previous gaps are witnessed using languages Bn, defined over a two
letter alphabet

What happens in the unary case?

I Preliminary observations in [P.&Pisoni ’14]

I Several results in [Kutrib&Wendlandt ’15]
(including superpolynomial gaps 1-LAs→ finite automata)

I An exponential gap [P.&Prigioniero ’19]
Languages Un = {a2n}∗

Recognition by “small” deterministic 1-LAs of size O(n)

Each 2NFA accepting Un should have at least 2n states
[Mereghetti&P.’00]

The Unary Case

Previous gaps are witnessed using languages Bn, defined over a two
letter alphabet

What happens in the unary case?

I Preliminary observations in [P.&Pisoni ’14]

I Several results in [Kutrib&Wendlandt ’15]
(including superpolynomial gaps 1-LAs→ finite automata)

I An exponential gap [P.&Prigioniero ’19]
Languages Un = {a2n}∗

Recognition by “small” deterministic 1-LAs of size O(n)

Each 2NFA accepting Un should have at least 2n states
[Mereghetti&P.’00]

The Unary Case

Previous gaps are witnessed using languages Bn, defined over a two
letter alphabet

What happens in the unary case?

I Preliminary observations in [P.&Pisoni ’14]

I Several results in [Kutrib&Wendlandt ’15]
(including superpolynomial gaps 1-LAs→ finite automata)

I An exponential gap [P.&Prigioniero ’19]
Languages Un = {a2n}∗

Recognition by “small” deterministic 1-LAs of size O(n)

Each 2NFA accepting Un should have at least 2n states
[Mereghetti&P.’00]

Size of Limited Automata vs Finite Automata

det-1-LA

1NFA

/2NFA 2DFA

1DFA

1-LA

-?

@
@
@
@
@
@@R

?

�
�
�

�
�
��	

exp
BnUn

?

≥ exp

@
@
@
@
@
@@R

≥ exp

H
HHH

HHHH
HHH

HHj

double exp
Bn

@
@
@

@
@

@@I

exp
Un

�
�
�
�
�
���

exp
Un

��
��

�
��
�
��

�
��*

exp
Un

Size of Limited Automata vs Finite Automata

det-1-LA

1NFA

/2NFA 2DFA

1DFA

1-LA

-?

@
@
@
@
@
@@R

?

�
�
�

�
�
��	

exp

BnUn

?

≥ exp

@
@
@
@
@
@@R

≥ exp

H
HHH

HHHH
HHH

HHj

double exp

Bn

@
@
@

@
@

@@I

exp
Un

�
�
�
�
�
���

exp
Un

��
��

�
��

�
��

�
��*

exp

Un

Simulations
[Wagner&Wechsung ’86,
P.&Pisoni ’14]

Size of Limited Automata vs Finite Automata

det-1-LA

1NFA

/2NFA 2DFA

1DFA

1-LA

-?

@
@
@
@
@
@@R

?

�
�
�

�
�
��	

exp
Bn

Un

?

≥ exp

@
@
@
@
@
@@R

≥ exp

H
HHH

HHHH
HHH

HHj

double exp
Bn

@
@
@

@
@

@@I

exp
Un

�
�
�
�
�
���

exp
Un

��
��

�
��

�
��

�
��*

exp

Un

Bn ⊆ {0, 1}∗

1-LA: size O(n)

1DFA: ≥ 22
n
states

Size of Limited Automata vs Finite Automata

det-1-LA

1NFA/2NFA

2DFA

1DFA

1-LA

-?

@
@
@
@
@
@@R

?

�
�
�

�
�
��	

exp
Bn

Un

?

≥ exp

@
@
@
@
@
@@R

≥ exp

H
HHH

HHHH
HHH

HHj

double exp
Bn

@
@
@

@
@

@@I

exp
Un

�
�
�
�
�
���

exp
Un

��
��

�
��

�
��

�
��*

exp

Un

Un = {a2
n}∗

det-1-LA: size O(n)

2NFA: ≥ 2n states

Size of Limited Automata vs Finite Automata

det-1-LA

1NFA/2NFA

2DFA

1DFA

1-LA

-?

@
@
@
@
@
@@R

?

�
�
�

�
�
��	

exp
Bn

Un

?

≥ exp

@
@
@
@
@
@@R

≥ exp

H
HHH

HHHH
HHH

HHj

double exp
Bn

@
@
@

@
@

@@I

exp
Un

�
�
�
�
�
���

exp
Un

��
��

�
��

�
��

�
��*

exp
Un

Un = {a2
n}∗

det-1-LA: size O(n)

2NFA: ≥ 2n states

Size of Limited Automata vs Finite Automata

det-1-LA

1NFA/2NFA

2DFA

1DFA

1-LA

-?

@
@
@
@
@
@@R

?

�
�
�

�
�
��	

exp

Bn

Un

?

≥ exp

@
@
@
@
@
@@R

≥ exp

H
HHH

HHHH
HHH

HHj

double exp
Bn

@
@
@

@
@

@@I

exp
Un

�
�
�
�
�
���

exp
Un

��
��

�
��

�
��

�
��*

exp
Un

Un = {a2
n}∗

det-1-LA: size O(n)

2NFA: ≥ 2n states

Size of Limited Automata vs Finite Automata

det-1-LA

1NFA/2NFA 2DFA 1DFA

1-LA

-?

@
@
@
@
@
@@R

?

�
�
�

�
�
��	

exp

Bn

Un

?

≥ exp

@
@
@
@
@
@@R

≥ exp

H
HHH

HHHH
HHH

HHj

double exp
Bn

@
@
@

@
@

@@I

exp
Un

�
�
�
�
�
���

exp
Un

��
��

�
��

�
��

�
��*

exp
Un

Un = {a2
n}∗

det-1-LA: size O(n)

2NFA: ≥ 2n states

Size of Limited Automata vs Finite Automata

det-1-LA

1NFA/2NFA 2DFA 1DFA

1-LA

-?

@
@
@
@
@
@@R

?

�
�
�

�
�
��	

exp

Bn

Un

?

≥ exp

@
@
@
@
@
@@R

≥ exp

H
HHH

HHHH
HHH

HHj

double exp
Bn

@
@
@

@
@

@@I

exp
Un

�
�
�
�
�
���

exp
Un

��
��

�
��

�
��

�
��*

exp
Un

Un = {a2
n}∗

det-1-LA: size O(n)

2NFA: ≥ 2n states

Size of Limited Automata vs Finite Automata

det-1-LA

1NFA/2NFA 2DFA 1DFA

1-LA

-?

@
@
@
@
@
@@R

?

�
�
�

�
�
��	

exp

Bn

Un

?

≥ exp

@
@
@
@
@
@@R

≥ exp

H
HHH

HHHH
HHH

HHj

double exp
Bn

@
@
@

@
@

@@I

exp
Un

�
�
�
�
�
���

exp
Un

��
��

�
��

�
��

�
��*

exp
Un

From det-1-LA→2DFA

Size of Limited Automata vs Finite Automata

det-1-LA

1NFA/2NFA 2DFA 1DFA

1-LA

-?

@
@
@
@
@
@@R

?

�
�
�

�
�
��	

exp

Bn

Un

?

≥ exp

@
@
@
@
@
@@R

≥ exp

H
HHH

HHHH
HHH

HHj

double exp
Bn

@
@
@

@
@

@@I

exp
Un

�
�
�
�
�
���

exp
Un

��
��

�
��

�
��

�
��*

exp
Un

From 1-LA→1DFA
and det-1-LA→1DFA

Size of Limited Automata vs Finite Automata

det-1-LA

1NFA/2NFA 2DFA 1DFA

1-LA

-?

@
@
@
@
@
@@R

?

�
�
�

�
�
��	

exp

Bn

Un

?

≥ exp

@
@
@
@
@
@@R

≥ exp

H
HHH

HHHH
HHH

HHj

double exp
Bn

@
@
@

@
@

@@I

exp
Un

�
�
�
�
�
���

exp
Un

��
��

�
��

�
��

�
��*

exp
Un

Problem 1
Cost of 1-LA→ 1DFA
in the unary case

Size of Limited Automata vs Finite Automata

det-1-LA

1NFA/2NFA 2DFA 1DFA

1-LA

-?

@
@
@
@
@
@@R

?

�
�
�

�
�
��	

exp

Bn

Un

?

≥ exp

@
@
@
@
@
@@R

≥ exp

H
HHH

HHHH
HHH

HHj

double exp
Bn

@
@
@

@
@

@@I

exp
Un

�
�
�
�
�
���

exp
Un

��
��

�
��

�
��

�
��*

exp
Un

Problem 2
Costs of 1-LA→ det-1-LA

Problem 3
Costs of 1-LA→ 2DFA

(general and unary case)

Size of Limited Automata vs Finite Automata

det-1-LA

1NFA/2NFA 2DFA 1DFA

1-LA

-?

@
@
@
@
@
@@R

?

�
�
�

�
�
��	

exp

Bn

Un

?

≥ exp

@
@
@
@
@
@@R

≥ exp

H
HHH

HHHH
HHH

HHj

double exp
Bn

@
@
@

@
@

@@I

exp
Un

�
�
�
�
�
���

exp
Un

��
��

�
��

�
��

�
��*

exp
Un

Problem 2
Costs of 1-LA→ det-1-LA

Problem 3
Costs of 1-LA→ 2DFA

(general and unary case)

Variant of the Sakoda and Sipser
question 1NFA/2NFA→ 2DFA

Size of Limited Automata vs Finite Automata

det-1-LA

1NFA/2NFA 2DFA 1DFA

1-LA

-?

@
@
@
@
@
@@R

?

�
�
�

�
�
��	

exp

Bn

Un

?

≥ exp

@
@
@
@
@
@@R

≥ exp

H
HHH

HHHH
HHH

HHj

double exp
Bn

@
@
@

@
@

@@I

exp
Un

�
�
�
�
�
���

exp
Un

��
��

�
��

�
��

�
��*

exp
Un

Problem 4
Costs of 1NFA→ det-1-LA
and of 2NFA→ det-1-LA

(general and unary case)

Size of Limited Automata vs Finite Automata

det-1-LA

1NFA/2NFA 2DFA 1DFA

1-LA

-?

@
@
@
@
@
@@R

?

�
�
�

�
�
��	

exp

Bn

Un

?

≥ exp

@
@
@
@
@
@@R

≥ exp

H
HHH

HHHH
HHH

HHj

double exp
Bn

@
@
@

@
@

@@I

exp
Un

�
�
�
�
�
���

exp
Un

��
��

�
��

�
��

�
��*

exp
Un

Problem 4
Costs of 1NFA→ det-1-LA
and of 2NFA→ det-1-LA

(general and unary case)

“Relaxed” version of the Sakoda and
Sipser question 1NFA/2NFA→ 2DFA

Variants of Limited Automata

Further Restrictions

Restrictions of 2-limited automata which still characterize CFLs:

I Forgetting automata [Jancar&Mráz&Plátek ’96]

I Strongly limited automata [P.’15]

I

Active Visits and Return Complexity [Wechsung ’75]

Active visit to a tape cell: any visit overwriting the content

d-limited automata (dual d-return complexity)
Only the first d visits to a tape cell can be active

d-return complexity (ret-c(d))
Only the last d visits to a tape cell can be active
I ret-c(1): regular languages

I ret-c(d), d ≥ 2: context-free languages [Wechsung ’75]

I det-ret-c(2): not comparable with DCFL [Peckel ’77]
PAL∈ det-ret-c(2) \ DCFL
{anbn+mam | n,m > 0} ∈ DCFL\det-ret-c(2)

Active Visits and Return Complexity [Wechsung ’75]

Active visit to a tape cell: any visit overwriting the content

d-limited automata (dual d-return complexity)
Only the first d visits to a tape cell can be active

d-return complexity (ret-c(d))
Only the last d visits to a tape cell can be active
I ret-c(1): regular languages

I ret-c(d), d ≥ 2: context-free languages [Wechsung ’75]

I det-ret-c(2): not comparable with DCFL [Peckel ’77]
PAL∈ det-ret-c(2) \ DCFL
{anbn+mam | n,m > 0} ∈ DCFL\det-ret-c(2)

Active Visits and Return Complexity [Wechsung ’75]

Active visit to a tape cell: any visit overwriting the content

d-limited automata (dual d-return complexity)
Only the first d visits to a tape cell can be active

d-return complexity (ret-c(d))
Only the last d visits to a tape cell can be active

I ret-c(1): regular languages

I ret-c(d), d ≥ 2: context-free languages [Wechsung ’75]

I det-ret-c(2): not comparable with DCFL [Peckel ’77]
PAL∈ det-ret-c(2) \ DCFL
{anbn+mam | n,m > 0} ∈ DCFL\det-ret-c(2)

Active Visits and Return Complexity [Wechsung ’75]

Active visit to a tape cell: any visit overwriting the content

d-limited automata (dual d-return complexity)
Only the first d visits to a tape cell can be active

d-return complexity (ret-c(d))
Only the last d visits to a tape cell can be active
I ret-c(1): regular languages

I ret-c(d), d ≥ 2: context-free languages [Wechsung ’75]

I det-ret-c(2): not comparable with DCFL [Peckel ’77]
PAL∈ det-ret-c(2) \ DCFL
{anbn+mam | n,m > 0} ∈ DCFL\det-ret-c(2)

Active Visits and Return Complexity [Wechsung ’75]

Active visit to a tape cell: any visit overwriting the content

d-limited automata (dual d-return complexity)
Only the first d visits to a tape cell can be active

d-return complexity (ret-c(d))
Only the last d visits to a tape cell can be active
I ret-c(1): regular languages

I ret-c(d), d ≥ 2: context-free languages [Wechsung ’75]

I det-ret-c(2): not comparable with DCFL [Peckel ’77]
PAL∈ det-ret-c(2) \ DCFL
{anbn+mam | n,m > 0} ∈ DCFL\det-ret-c(2)

Active Visits and Return Complexity [Wechsung ’75]

Active visit to a tape cell: any visit overwriting the content

d-limited automata (dual d-return complexity)
Only the first d visits to a tape cell can be active

d-return complexity (ret-c(d))
Only the last d visits to a tape cell can be active
I ret-c(1): regular languages

I ret-c(d), d ≥ 2: context-free languages [Wechsung ’75]

I det-ret-c(2): not comparable with DCFL [Peckel ’77]
PAL∈ det-ret-c(2) \ DCFL
{anbn+mam | n,m > 0} ∈ DCFL\det-ret-c(2)

Conclusion

Final Remarks

I 2-limited automata:
interesting machine characterization of CFL

I 1-limited automata:
stimulating open problems in descriptional complexity,
connections with the question of Sakoda and Sipser

I Reversible limited automata:
computational and descriptional power

[Kutrib&Wendlandt ’17]

I Probabilistic limited automata:
Probabilistic extensions [Yamakami ’19]

I Connections with nest word automata (input-driven PDAs):
any investigation?

Final Remarks

I 2-limited automata:
interesting machine characterization of CFL

I 1-limited automata:
stimulating open problems in descriptional complexity,
connections with the question of Sakoda and Sipser

I Reversible limited automata:
computational and descriptional power

[Kutrib&Wendlandt ’17]

I Probabilistic limited automata:
Probabilistic extensions [Yamakami ’19]

I Connections with nest word automata (input-driven PDAs):
any investigation?

Final Remarks

I 2-limited automata:
interesting machine characterization of CFL

I 1-limited automata:
stimulating open problems in descriptional complexity,
connections with the question of Sakoda and Sipser

I Reversible limited automata:
computational and descriptional power

[Kutrib&Wendlandt ’17]

I Probabilistic limited automata:
Probabilistic extensions [Yamakami ’19]

I Connections with nest word automata (input-driven PDAs):
any investigation?

Final Remarks

I 2-limited automata:
interesting machine characterization of CFL

I 1-limited automata:
stimulating open problems in descriptional complexity,
connections with the question of Sakoda and Sipser

I Reversible limited automata:
computational and descriptional power

[Kutrib&Wendlandt ’17]

I Probabilistic limited automata:
Probabilistic extensions [Yamakami ’19]

I Connections with nest word automata (input-driven PDAs):
any investigation?

Final Remarks

I 2-limited automata:
interesting machine characterization of CFL

I 1-limited automata:
stimulating open problems in descriptional complexity,
connections with the question of Sakoda and Sipser

I Reversible limited automata:
computational and descriptional power

[Kutrib&Wendlandt ’17]

I Probabilistic limited automata:
Probabilistic extensions [Yamakami ’19]

I Connections with nest word automata (input-driven PDAs):
any investigation?

Thank you for your attention!

	Introduction
	Introduction to Limited Automata
	Descriptional Complexity of Limited Automata
	Variants of Limited Automata
	Conclusion
	Thank you for your attention!

