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We are interested in...

I Computational models and their computational power

I Computational models operating with restricted resources

I Descriptional complexity

Investigation of computational models with respect to the sizes
of their descriptions (roughly, number of symbols used to write
down the description)



Descriptional Complexity
A Classical Example: NFAs vs DFAs

Formal language (or computability) point of view:
I The class of languages recognized by NFAs coincides with the

class of languages recognized by DFAs

Descriptional complexity point of view:
I Each n-state NFA can be simulated by a DFA with 2n states

[Rabin&Scott ’59]
I For each integer n there exists a language Ln s.t.:

Ln is accepted by an n-state NFA
the minimum DFA for Ln requires 2n states

[Meyer&Fischer ’71]
I Hence:

The exact cost, in terms of states, of the simulation
of NFAs by DFAs is 2n
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Given
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S a formal system (e.g., class of devices, class of grammars,...)
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What is the size of the representations of the languages in C
by the system S?

Descriptional complexity compares different descriptions
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S ′ another formal system able to represent all the languages in C:

Question

Find the relationships between the sizes of the representations in
the system S and in the system S ′ of the languages of C
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A Long-standing Open Problem in Descriptional Complexity

The Question of Sakoda and Sipser (1978)

I Two-way finite automata
input head can be moved to the left or to the right
computational power does not increase
exponential simulation by one-way DFA

I Can we use two-way motion to remove nondeterminism from
finite automata?

YES (same class of languages)

I How much it costs (in terms of states)?

I Can we obtain a “small” 2DFA from a 1NFA or a 2NFA?
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I Exponential upper bounds
deriving from the simulations of 1NFAs and 2NFAs by 1DFAs

I Polynomial lower bound
Ω(n2) for the cost of the simulation of 1NFAs by 2DFAs

[Chrobak ’86]



The Question of Sakoda and Sipser

I Open since 1978

I It seems to be very difficult in the general case

I Results and exponential separations for restricted versions

I Connections with fundamental structural complexity questions
as P vs NP and L vs NL



The Question of Sakoda and Sipser

I Open since 1978

I It seems to be very difficult in the general case

I Results and exponential separations for restricted versions

I Connections with fundamental structural complexity questions
as P vs NP and L vs NL



The Question of Sakoda and Sipser

I Open since 1978

I It seems to be very difficult in the general case

I Results and exponential separations for restricted versions

I Connections with fundamental structural complexity questions
as P vs NP and L vs NL



The Question of Sakoda and Sipser

I Open since 1978

I It seems to be very difficult in the general case

I Results and exponential separations for restricted versions

I Connections with fundamental structural complexity questions
as P vs NP and L vs NL



Introduction to Limited Automata



Limited automata

I Model proposed by Thomas N. Hibbard in 1967
(scan limited automata)

I One-tape Turing machines with rewriting restrictions

I Variants characterizing regular, context-free, deterministic
context-free languages



Limited automata

I Model proposed by Thomas N. Hibbard in 1967
(scan limited automata)

I One-tape Turing machines with rewriting restrictions

I Variants characterizing regular, context-free, deterministic
context-free languages



Limited automata

I Model proposed by Thomas N. Hibbard in 1967
(scan limited automata)

I One-tape Turing machines with rewriting restrictions

I Variants characterizing regular, context-free, deterministic
context-free languages



A Classical Example: Balanced Brackets

( ( ) ( ( ) ) )

How to recognize if a sequence of brackets is correctly balanced?

I For each opening bracket
locate its corresponding closing bracket

Use counters!

I For each closing bracket
locate its corresponding opening bracket

Limited automata!



A Classical Example: Balanced Brackets

( ( ) ( ( ) ) )

How to recognize if a sequence of brackets is correctly balanced?

I For each opening bracket
locate its corresponding closing bracket

Use counters!

I For each closing bracket
locate its corresponding opening bracket

Limited automata!



A Classical Example: Balanced Brackets

( ( ) ( ( ) ) )

How to recognize if a sequence of brackets is correctly balanced?

I For each opening bracket
locate its corresponding closing bracket

Use counters!

I For each closing bracket
locate its corresponding opening bracket

Limited automata!



A Classical Example: Balanced Brackets

(1 (2 )2 (2 (3 )3 )2 )1

How to recognize if a sequence of brackets is correctly balanced?

I For each opening bracket
locate its corresponding closing bracket

Use counters!

I For each closing bracket
locate its corresponding opening bracket

Limited automata!



A Classical Example: Balanced Brackets

(

(x

6

(

(x

6

)

xx

6

(

(x

6

(

(x

6

)

xx

6

)

xx

6

)

xx

6−→ ←−

How to recognize if a sequence of brackets its correctly balanced?

I For each opening bracket
locate its corresponding closing bracket

Use counters!

I For each closing bracket
locate its corresponding opening bracket

Limited automata!



A Classical Example: Balanced Brackets

(

(x

6

(

(x

6

)

xx

6

(

(x

6

(

(x

6

)

xx

6

)

xx

6

)

xx

6

−→

←−

How to recognize if a sequence of brackets its correctly balanced?

I For each opening bracket
locate its corresponding closing bracket

Use counters!

I For each closing bracket
locate its corresponding opening bracket

Limited automata!



A Classical Example: Balanced Brackets

(

(

x

6

(

(x

6

)

xx

6

(

(x

6

(

(x

6

)

xx

6

)

xx

6

)

xx

6

−→

←−

How to recognize if a sequence of brackets its correctly balanced?

I For each opening bracket
locate its corresponding closing bracket

Use counters!

I For each closing bracket
locate its corresponding opening bracket

Limited automata!



A Classical Example: Balanced Brackets

(

(

x

6

(

(

x

6

)

xx

6

(

(x

6

(

(x

6

)

xx

6

)

xx

6

)

xx

6

−→

←−

How to recognize if a sequence of brackets its correctly balanced?

I For each opening bracket
locate its corresponding closing bracket

Use counters!

I For each closing bracket
locate its corresponding opening bracket

Limited automata!



A Classical Example: Balanced Brackets

(

(

x

6

(

(

x

6

)

x

x

6

(

(x

6

(

(x

6

)

xx

6

)

xx

6

)

xx

6

−→

←−

How to recognize if a sequence of brackets its correctly balanced?

I For each opening bracket
locate its corresponding closing bracket

Use counters!

I For each closing bracket
locate its corresponding opening bracket

Limited automata!



A Classical Example: Balanced Brackets

(

(

x

6

(

(

x

6

)x

x

6

(

(x

6

(

(x

6

)

xx

6

)

xx

6

)

xx

6−→

←−

How to recognize if a sequence of brackets its correctly balanced?

I For each opening bracket
locate its corresponding closing bracket

Use counters!

I For each closing bracket
locate its corresponding opening bracket

Limited automata!



A Classical Example: Balanced Brackets

(

(

x

6

(

(

x

6

)x

x

6

(

(x

6

(

(x

6

)

xx

6

)

xx

6

)

xx

6−→

←−

How to recognize if a sequence of brackets its correctly balanced?

I For each opening bracket
locate its corresponding closing bracket

Use counters!

I For each closing bracket
locate its corresponding opening bracket

Limited automata!



A Classical Example: Balanced Brackets

(

(

x

6

((

x

6

)x

x

6

(

(x

6

(

(x

6

)

xx

6

)

xx

6

)

xx

6−→

←−

How to recognize if a sequence of brackets its correctly balanced?

I For each opening bracket
locate its corresponding closing bracket

Use counters!

I For each closing bracket
locate its corresponding opening bracket

Limited automata!



A Classical Example: Balanced Brackets

(

(

x

6

((

x

6

)x

x

6

(

(x

6

(

(x

6

)

xx

6

)

xx

6

)

xx

6

−→

←−

How to recognize if a sequence of brackets its correctly balanced?

I For each opening bracket
locate its corresponding closing bracket

Use counters!

I For each closing bracket
locate its corresponding opening bracket

Limited automata!



A Classical Example: Balanced Brackets

(

(

x

6

((

x

6

)x

x

6

(

(x

6

(

(x

6

)

xx

6

)

xx

6

)

xx

6

−→

←−

How to recognize if a sequence of brackets its correctly balanced?

I For each opening bracket
locate its corresponding closing bracket

Use counters!

I For each closing bracket
locate its corresponding opening bracket

Limited automata!



A Classical Example: Balanced Brackets

(

(

x

6

((

x

6

)x

x

6

(

(x

6

(

(x

6

)

xx

6

)

xx

6

)

xx

6

−→

←−

How to recognize if a sequence of brackets its correctly balanced?

I For each opening bracket
locate its corresponding closing bracket

Use counters!

I For each closing bracket
locate its corresponding opening bracket

Limited automata!



A Classical Example: Balanced Brackets

(

(

x

6

((

x

6

)x

x

6

(

(

x

6

(

(x

6

)

xx

6

)

xx

6

)

xx

6

−→

←−

How to recognize if a sequence of brackets its correctly balanced?

I For each opening bracket
locate its corresponding closing bracket

Use counters!

I For each closing bracket
locate its corresponding opening bracket

Limited automata!



A Classical Example: Balanced Brackets

(

(

x

6

((

x

6

)x

x

6

(

(

x

6

(

(

x

6

)

xx

6

)

xx

6

)

xx

6

−→

←−

How to recognize if a sequence of brackets its correctly balanced?

I For each opening bracket
locate its corresponding closing bracket

Use counters!

I For each closing bracket
locate its corresponding opening bracket

Limited automata!



A Classical Example: Balanced Brackets

(

(

x

6

((

x

6

)x

x

6

(

(

x

6

(

(

x

6

)x

x

6

)

xx

6

)

xx

6

−→

←−

How to recognize if a sequence of brackets its correctly balanced?

I For each opening bracket
locate its corresponding closing bracket

Use counters!

I For each closing bracket
locate its corresponding opening bracket

Limited automata!



A Classical Example: Balanced Brackets

(

(

x

6

((

x

6

)x

x

6

(

(

x

6

(

(

x

6

)x

x

6

)

xx

6

)

xx

6−→

←−

How to recognize if a sequence of brackets its correctly balanced?

I For each opening bracket
locate its corresponding closing bracket

Use counters!

I For each closing bracket
locate its corresponding opening bracket

Limited automata!



A Classical Example: Balanced Brackets

(

(

x

6

((

x

6

)x

x

6

(

(

x

6

(

(

x

6

)x

x

6

)

xx

6

)

xx

6−→

←−

How to recognize if a sequence of brackets its correctly balanced?

I For each opening bracket
locate its corresponding closing bracket

Use counters!

I For each closing bracket
locate its corresponding opening bracket

Limited automata!



A Classical Example: Balanced Brackets

(

(

x

6

((

x

6

)x

x

6

(

(

x

6

((

x

6

)x

x

6

)

xx

6

)

xx

6−→

←−

How to recognize if a sequence of brackets its correctly balanced?

I For each opening bracket
locate its corresponding closing bracket

Use counters!

I For each closing bracket
locate its corresponding opening bracket

Limited automata!



A Classical Example: Balanced Brackets

(

(

x

6

((

x

6

)x

x

6

(

(

x

6

((

x

6

)x

x

6

)

xx

6

)

xx

6

−→

←−

How to recognize if a sequence of brackets its correctly balanced?

I For each opening bracket
locate its corresponding closing bracket

Use counters!

I For each closing bracket
locate its corresponding opening bracket

Limited automata!



A Classical Example: Balanced Brackets

(

(

x

6

((

x

6

)x

x

6

(

(

x

6

((

x

6

)x

x

6

)

xx

6

)

xx

6

−→

←−

How to recognize if a sequence of brackets its correctly balanced?

I For each opening bracket
locate its corresponding closing bracket

Use counters!

I For each closing bracket
locate its corresponding opening bracket

Limited automata!



A Classical Example: Balanced Brackets

(

(

x

6

((

x

6

)x

x

6

(

(

x

6

((

x

6

)x

x

6

)

xx

6

)

xx

6

−→

←−

How to recognize if a sequence of brackets its correctly balanced?

I For each opening bracket
locate its corresponding closing bracket

Use counters!

I For each closing bracket
locate its corresponding opening bracket

Limited automata!



A Classical Example: Balanced Brackets

(

(

x

6

((

x

6

)x

x

6

(

(

x

6

((

x

6

)x

x

6

)

x

x

6

)

xx

6

−→

←−

How to recognize if a sequence of brackets its correctly balanced?

I For each opening bracket
locate its corresponding closing bracket

Use counters!

I For each closing bracket
locate its corresponding opening bracket

Limited automata!



A Classical Example: Balanced Brackets

(

(

x

6

((

x

6

)x

x

6

(

(

x

6

((

x

6

)x

x

6

)x

x

6

)

xx

6

−→

←−

How to recognize if a sequence of brackets its correctly balanced?

I For each opening bracket
locate its corresponding closing bracket

Use counters!

I For each closing bracket
locate its corresponding opening bracket

Limited automata!



A Classical Example: Balanced Brackets

(

(

x

6

((

x

6

)x

x

6

(

(

x

6

((

x

6

)x

x

6

)x

x

6

)

xx

6−→

←−

How to recognize if a sequence of brackets its correctly balanced?

I For each opening bracket
locate its corresponding closing bracket

Use counters!

I For each closing bracket
locate its corresponding opening bracket

Limited automata!



A Classical Example: Balanced Brackets

(

(

x

6

((

x

6

)x

x

6

(

(

x

6

((

x

6

)x

x

6

)x

x

6

)

xx

6−→

←−

How to recognize if a sequence of brackets its correctly balanced?

I For each opening bracket
locate its corresponding closing bracket

Use counters!

I For each closing bracket
locate its corresponding opening bracket

Limited automata!



A Classical Example: Balanced Brackets

(

(

x

6

((

x

6

)x

x

6

(

(

x

6

((

x

6

)x

x

6

)x

x

6

)

xx

6−→

←−

How to recognize if a sequence of brackets its correctly balanced?

I For each opening bracket
locate its corresponding closing bracket

Use counters!

I For each closing bracket
locate its corresponding opening bracket

Limited automata!



A Classical Example: Balanced Brackets

(

(

x

6

((

x

6

)x

x

6

((

x

6

((

x

6

)x

x

6

)x

x

6

)

xx

6−→

←−

How to recognize if a sequence of brackets its correctly balanced?

I For each opening bracket
locate its corresponding closing bracket

Use counters!

I For each closing bracket
locate its corresponding opening bracket

Limited automata!



A Classical Example: Balanced Brackets

(

(

x

6

((

x

6

)x

x

6

((

x

6

((

x

6

)x

x

6

)x

x

6

)

xx

6

−→

←−

How to recognize if a sequence of brackets its correctly balanced?

I For each opening bracket
locate its corresponding closing bracket

Use counters!

I For each closing bracket
locate its corresponding opening bracket

Limited automata!



A Classical Example: Balanced Brackets

(

(

x

6

((

x

6

)x

x

6

((

x

6

((

x

6

)x

x

6

)x

x

6

)

xx

6

−→

←−

How to recognize if a sequence of brackets its correctly balanced?

I For each opening bracket
locate its corresponding closing bracket

Use counters!

I For each closing bracket
locate its corresponding opening bracket

Limited automata!



A Classical Example: Balanced Brackets

(

(

x

6

((

x

6

)x

x

6

((

x

6

((

x

6

)x

x

6

)x

x

6

)

xx

6

−→

←−

How to recognize if a sequence of brackets its correctly balanced?

I For each opening bracket
locate its corresponding closing bracket

Use counters!

I For each closing bracket
locate its corresponding opening bracket

Limited automata!



A Classical Example: Balanced Brackets

(

(

x

6

((

x

6

)x

x

6

((

x

6

((

x

6

)x

x

6

)x

x

6

)

xx

6

−→

←−

How to recognize if a sequence of brackets its correctly balanced?

I For each opening bracket
locate its corresponding closing bracket

Use counters!

I For each closing bracket
locate its corresponding opening bracket

Limited automata!



A Classical Example: Balanced Brackets

(

(

x

6

((

x

6

)x

x

6

((

x

6

((

x

6

)x

x

6

)x

x

6

)

xx

6−→

←−

How to recognize if a sequence of brackets its correctly balanced?

I For each opening bracket
locate its corresponding closing bracket

Use counters!

I For each closing bracket
locate its corresponding opening bracket

Limited automata!



A Classical Example: Balanced Brackets

(

(

x

6

((

x

6

)x

x

6

((

x

6

((

x

6

)x

x

6

)x

x

6

)

x

x

6−→

←−

How to recognize if a sequence of brackets its correctly balanced?

I For each opening bracket
locate its corresponding closing bracket

Use counters!

I For each closing bracket
locate its corresponding opening bracket

Limited automata!



A Classical Example: Balanced Brackets

(

(

x

6

((

x

6

)x

x

6

((

x

6

((

x

6

)x

x

6

)x

x

6

)x

x

6

−→

←−

How to recognize if a sequence of brackets its correctly balanced?

I For each opening bracket
locate its corresponding closing bracket

Use counters!

I For each closing bracket
locate its corresponding opening bracket

Limited automata!



A Classical Example: Balanced Brackets

(

(

x

6

((

x

6

)x

x

6

((

x

6

((

x

6

)x

x

6

)x

x

6

)x

x

6−→

←−

How to recognize if a sequence of brackets its correctly balanced?

I For each opening bracket
locate its corresponding closing bracket

Use counters!

I For each closing bracket
locate its corresponding opening bracket

Limited automata!



A Classical Example: Balanced Brackets

(

(

x

6

((

x

6

)x

x

6

((

x

6

((

x

6

)x

x

6

)x

x

6

)x

x

6−→

←−

How to recognize if a sequence of brackets its correctly balanced?

I For each opening bracket
locate its corresponding closing bracket

Use counters!

I For each closing bracket
locate its corresponding opening bracket

Limited automata!



A Classical Example: Balanced Brackets

(

(

x

6

((

x

6

)x

x

6

((

x

6

((

x

6

)x

x

6

)x

x

6

)x

x

6−→

←−

How to recognize if a sequence of brackets its correctly balanced?

I For each opening bracket
locate its corresponding closing bracket

Use counters!

I For each closing bracket
locate its corresponding opening bracket

Limited automata!



A Classical Example: Balanced Brackets

(

(

x

6

((

x

6

)x

x

6

((

x

6

((

x

6

)x

x

6

)x

x

6

)x

x

6−→

←−

How to recognize if a sequence of brackets its correctly balanced?

I For each opening bracket
locate its corresponding closing bracket

Use counters!

I For each closing bracket
locate its corresponding opening bracket

Limited automata!



A Classical Example: Balanced Brackets

(

(

x

6

((

x

6

)x

x

6

((

x

6

((

x

6

)x

x

6

)x

x

6

)x

x

6−→

←−

How to recognize if a sequence of brackets its correctly balanced?

I For each opening bracket
locate its corresponding closing bracket

Use counters!

I For each closing bracket
locate its corresponding opening bracket

Limited automata!



A Classical Example: Balanced Brackets

(

(

x

6

((

x

6

)x

x

6

((

x

6

((

x

6

)x

x

6

)x

x

6

)x

x

6−→

←−

How to recognize if a sequence of brackets its correctly balanced?

I For each opening bracket
locate its corresponding closing bracket

Use counters!

I For each closing bracket
locate its corresponding opening bracket

Limited automata!



A Classical Example: Balanced Brackets

(

(

x

6

((

x

6

)x

x

6

((

x

6

((

x

6

)x

x

6

)x

x

6

)x

x

6−→

←−

How to recognize if a sequence of brackets its correctly balanced?

I For each opening bracket
locate its corresponding closing bracket

Use counters!

I For each closing bracket
locate its corresponding opening bracket

Limited automata!



A Classical Example: Balanced Brackets

((

x

6

((

x

6

)x

x

6

((

x

6

((

x

6

)x

x

6

)x

x

6

)x

x

6

−→

←−

How to recognize if a sequence of brackets its correctly balanced?

I For each opening bracket
locate its corresponding closing bracket

Use counters!

I For each closing bracket
locate its corresponding opening bracket

Limited automata!



A Classical Example: Balanced Brackets

((

x

6

((

x

6

)x

x

6

((

x

6

((

x

6

)x

x

6

)x

x

6

)x

x

6

−→

←−

How to recognize if a sequence of brackets its correctly balanced?

I For each opening bracket
locate its corresponding closing bracket

Use counters!

I For each closing bracket
locate its corresponding opening bracket

Limited automata!



A Classical Example: Balanced Brackets

((

x

6

((

x

6

)x

x

6

((

x

6

((

x

6

)x

x

6

)x

x

6

)x

x

6

−→

←−

How to recognize if a sequence of brackets its correctly balanced?

I For each opening bracket
locate its corresponding closing bracket

Use counters!

I For each closing bracket
locate its corresponding opening bracket

Limited automata!



A Classical Example: Balanced Brackets

((

x

6

((

x

6

)x

x

6

((

x

6

((

x

6

)x

x

6

)x

x

6

)x

x

6

−→

←−

How to recognize if a sequence of brackets its correctly balanced?

I For each opening bracket
locate its corresponding closing bracket

Use counters!

I For each closing bracket
locate its corresponding opening bracket

Limited automata!



A Classical Example: Balanced Brackets

((

x

6

((

x

6

)x

x

6

((

x

6

((

x

6

)x

x

6

)x

x

6

)x

x

6

−→

←−

How to recognize if a sequence of brackets its correctly balanced?

I For each opening bracket
locate its corresponding closing bracket

Use counters!

I For each closing bracket
locate its corresponding opening bracket

Limited automata!



A Classical Example: Balanced Brackets

((

x

6

((

x

6

)x

x

6

((

x

6

((

x

6

)x

x

6

)x

x

6

)x

x

6

−→

←−

How to recognize if a sequence of brackets its correctly balanced?

I For each opening bracket
locate its corresponding closing bracket

Use counters!

I For each closing bracket
locate its corresponding opening bracket

Limited automata!



A Classical Example: Balanced Brackets

((

x

6

((

x

6

)x

x

6

((

x

6

((

x

6

)x

x

6

)x

x

6

)x

x

6

−→

←−

How to recognize if a sequence of brackets its correctly balanced?

I For each opening bracket
locate its corresponding closing bracket

Use counters!

I For each closing bracket
locate its corresponding opening bracket

Limited automata!



A Classical Example: Balanced Brackets

((

x

6

((

x

6

)x

x

6

((

x

6

((

x

6

)x

x

6

)x

x

6

)x

x

6−→

←−

How to recognize if a sequence of brackets its correctly balanced?

I For each opening bracket
locate its corresponding closing bracket

Use counters!

I For each closing bracket
locate its corresponding opening bracket

Limited automata!



A Classical Example: Balanced Brackets

((

x

6

((

x

6

)x

x

6

((

x

6

((

x

6

)x

x

6

)x

x

6

)x

x

6−→ ←−

How to recognize if a sequence of brackets its correctly balanced?

I For each opening bracket
locate its corresponding closing bracket

Use counters!

I For each closing bracket
locate its corresponding opening bracket

Limited automata!



Limited Automata [Hibbard ’67]

One-tape Turing machines with restricted rewritings

Definition
Fixed an integer d ≥ 1, a d-limited automaton is
I a one-tape Turing machine
I which is allowed to overwrite the content of each tape cell

only in the first d visits

Computational power

I For each d ≥ 2, d-limited automata characterize
context-free languages [Hibbard ’67]

I 1-limited automata characterize regular languages
[Wagner&Wechsung ’86]
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Why Each CFL is Accepted by a 2-LA [P.&Pisoni ’14]

Theorem ([Chomsky&Schützenberger ’63])
Each CFL L ⊆ Σ∗ can be expressed as L = h(Dk ∩ R) where:
I Dk ⊆ Ω∗

k is a Dyck language (i.e., balanced brackets)
over Ωk = {(1, )1, (2, )2, . . . , (k , )k}

2-LA AD

I R ⊆ Ω∗
k is a regular language

Finite automaton AR

I h : Ωk → Σ∗ is a homomorphism

Transducer T for h−1

T

AR

AD
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��
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z ∈ R?

@
@
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Suitably simulating this combination of T, AD and AR we obtain a 2-LA
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Determinism vs Nondeterminism

I Simulations in [Hibbard ’67]:
Determinism is preserved by the simulation PDAs by 2-LAs,
but not by the converse simulation

I A different simulation of 2-LAs by PDAs,
which preserves determinism, is given in [P.&Pisoni ’15]

Deterministic 2-Limited Automata ≡ DCFLs
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Determinism vs Nondeterminism

What about deterministic d-Limited Automata, d > 2?

I L = {anbnc | n ≥ 0} ∪ {anb2nd | n ≥ 0}
is accepted by a deterministic 3-LA, but is not a DCFL

I Infinite hierarchy [Hibbard ’67]
For each d ≥ 2 there is a language which is accepted by a
deterministic d-limited automaton and that cannot be accepted
by any deterministic (d − 1)-limited automaton

Claim [Hibbard ’67]
For any d > 0, the set of Palindromes cannot be
accepted by any deterministic d-LA

Hence
⋃
d>0

det-d-LA ⊂ CFL properly

Open Problem

Any proof?



Determinism vs Nondeterminism

What about deterministic d-Limited Automata, d > 2?

I L = {anbnc | n ≥ 0} ∪ {anb2nd | n ≥ 0}
is accepted by a deterministic 3-LA, but is not a DCFL

I Infinite hierarchy [Hibbard ’67]
For each d ≥ 2 there is a language which is accepted by a
deterministic d-limited automaton and that cannot be accepted
by any deterministic (d − 1)-limited automaton

Claim [Hibbard ’67]
For any d > 0, the set of Palindromes cannot be
accepted by any deterministic d-LA

Hence
⋃
d>0

det-d-LA ⊂ CFL properly

Open Problem

Any proof?



Determinism vs Nondeterminism

What about deterministic d-Limited Automata, d > 2?

I L = {anbnc | n ≥ 0} ∪ {anb2nd | n ≥ 0}
is accepted by a deterministic 3-LA, but is not a DCFL

I Infinite hierarchy [Hibbard ’67]
For each d ≥ 2 there is a language which is accepted by a
deterministic d-limited automaton and that cannot be accepted
by any deterministic (d − 1)-limited automaton

Claim [Hibbard ’67]
For any d > 0, the set of Palindromes cannot be
accepted by any deterministic d-LA

Hence
⋃
d>0

det-d-LA ⊂ CFL properly

Open Problem

Any proof?



Determinism vs Nondeterminism

What about deterministic d-Limited Automata, d > 2?

I L = {anbnc | n ≥ 0} ∪ {anb2nd | n ≥ 0}
is accepted by a deterministic 3-LA, but is not a DCFL

I Infinite hierarchy [Hibbard ’67]
For each d ≥ 2 there is a language which is accepted by a
deterministic d-limited automaton and that cannot be accepted
by any deterministic (d − 1)-limited automaton

Claim [Hibbard ’67]
For any d > 0, the set of Palindromes cannot be
accepted by any deterministic d-LA

Hence
⋃
d>0

det-d-LA ⊂ CFL properly

Open Problem

Any proof?



Determinism vs Nondeterminism

What about deterministic d-Limited Automata, d > 2?

I L = {anbnc | n ≥ 0} ∪ {anb2nd | n ≥ 0}
is accepted by a deterministic 3-LA, but is not a DCFL

I Infinite hierarchy [Hibbard ’67]
For each d ≥ 2 there is a language which is accepted by a
deterministic d-limited automaton and that cannot be accepted
by any deterministic (d − 1)-limited automaton

Claim [Hibbard ’67]
For any d > 0, the set of Palindromes cannot be
accepted by any deterministic d-LA

Hence
⋃
d>0

det-d-LA ⊂ CFL properly

Open Problem

Any proof?



Determinism vs Nondeterminism

What about deterministic d-Limited Automata, d > 2?

I L = {anbnc | n ≥ 0} ∪ {anb2nd | n ≥ 0}
is accepted by a deterministic 3-LA, but is not a DCFL

I Infinite hierarchy [Hibbard ’67]
For each d ≥ 2 there is a language which is accepted by a
deterministic d-limited automaton and that cannot be accepted
by any deterministic (d − 1)-limited automaton

Claim [Hibbard ’67]
For any d > 0, the set of Palindromes cannot be
accepted by any deterministic d-LA

Hence
⋃
d>0

det-d-LA ⊂ CFL properly

Open Problem

Any proof?
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of Limited Automata



The Language Bn (n > 0)

Bn = {x1 x2 · · · xk x ∈ {0, 1}∗ | |x1| = · · · = |xk | = |x | = n, k > 0,

and xj = x , for some 1 ≤ j ≤ k }

Example (n = 3):
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The Language Bn (n > 0)

Bn = {x1 x2 · · · xk x ∈ {0, 1}∗ | |x1| = · · · = |xk | = |x | = n, k > 0,
and xj = x , for some 1 ≤ j ≤ k }

Example (n = 3):
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A Deterministic 2-Limited Automaton for Bn

B 0 0 1

|

0 1 0
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1 1 0 C (n = 3)

1. Scan all the tape from left to right
and check if the input length is a multiple of n

2. Move to the left and mark the rightmost block of n symbols
3. Compare the other blocks of length n (from the right),

symbol by symbol, with the last block
4. When the matching block is found, accept

Complexity:

I O(n) states
I Fixed working alphabet

⇒ det-2-LA of size O(n)
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Lower bounds for Bn

Bn = {x1 x2 · · · xk x ∈ {0, 1}∗ | |x1| = · · · = |xk | = |x | = n, k > 0,
and xj = x , for some 1 ≤ j ≤ k }

Finite automata
Each 1DFA accepting Bn requires a number of
states at least double exponential in n

Proof: standard distinguishability arguments

1-LAs → 1DFAs

At least double
exponential gap!

CFGs and PDAs
Each CFG generating Bn (PDA recognizing Bn)
has size at least exponential in n

Proof: “interchange” lemma for CFLs

det-2-LAs → PDAs

At least
exponential gap!
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Size Costs of Simulations
d-LAs versus PDAs (or CFGs), d ≥ 2

I 2-LAs → PDAs [P.&Pisoni ’15]
d-LAs → PDAs, d > 2 [Kutrib&P.&Wendlandt ’18]
exponential

I det-2-LAs → DPDAs [P.&Pisoni ’15]
double exponential upper bound (optimal?)
exponential if the input for the simulating DPDA is end-marked

I PDAs → 2-LAs,
DPDAs → det-2-LAs [P.&Pisoni ’15]
polynomial
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Size Costs of Simulations
1-LAs versus Finite Automata [Wagner&Wechsung ’86, P.&Pisoni ’14]

I 1-LAs → 1NFA
exponential

I 1-LAs → 1DFA
double exponential

I det-1-LAs → 1DFA
exponential

Double role of nondeterminism in 1-LAs
On a tape cell:

First visit: To overwrite the content
by a nondeterministically chosen symbol σ

Next visits: To select a transition
the set of available transitions depends on σ!
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The Unary Case

Previous gaps are witnessed using languages Bn, defined over a two
letter alphabet

What happens in the unary case?

I Preliminary observations in [P.&Pisoni ’14]

I Several results in [Kutrib&Wendlandt ’15]
(including superpolynomial gaps 1-LAs→ finite automata)

I An exponential gap [P.&Prigioniero ’19]
Languages Un = {a2n}∗

Recognition by “small” deterministic 1-LAs of size O(n)

Each 2NFA accepting Un should have at least 2n states
[Mereghetti&P.’00]
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question 1NFA/2NFA→ 2DFA
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(general and unary case)

“Relaxed” version of the Sakoda and
Sipser question 1NFA/2NFA→ 2DFA



Variants of Limited Automata



Further Restrictions

Restrictions of 2-limited automata which still characterize CFLs:

I Forgetting automata [Jancar&Mráz&Plátek ’96]

I Strongly limited automata [P.’15]

I ....



Active Visits and Return Complexity [Wechsung ’75]

Active visit to a tape cell: any visit overwriting the content

d-limited automata (dual d-return complexity)
Only the first d visits to a tape cell can be active

d-return complexity (ret-c(d))
Only the last d visits to a tape cell can be active
I ret-c(1): regular languages

I ret-c(d), d ≥ 2: context-free languages [Wechsung ’75]

I det-ret-c(2): not comparable with DCFL [Peckel ’77]
PAL∈ det-ret-c(2) \ DCFL
{anbn+mam | n,m > 0} ∈ DCFL\det-ret-c(2)
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Final Remarks

I 2-limited automata:
interesting machine characterization of CFL

I 1-limited automata:
stimulating open problems in descriptional complexity,
connections with the question of Sakoda and Sipser

I Reversible limited automata:
computational and descriptional power

[Kutrib&Wendlandt ’17]

I Probabilistic limited automata:
Probabilistic extensions [Yamakami ’19]

I Connections with nest word automata (input-driven PDAs):
any investigation?
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