Limited Automata and Unary Languages

Giovanni Pighizzini and Luca Prigioniero

Dipartimento di Informatica
Universita degli Studi di Milano, Italy

DLT 2017 — Liege
August 7-11, 2017

UNIVERSITA DEGLI STUDI
DI MILANO

Limited Automata [Hibbard '67]

One-tape Turing machines with restricted rewritings
Definition
Fixed an integer d > 1, a d-limited automaton is

> a one-tape Turing machine

» which is allowed to rewrite the content of each tape cell
only in the first d visits

Computational power

» For each d > 2, d-limited automata characterize
context-free languages [Hibbard '67]

» 1-limited automata characterize regular languages
[Wagner&Wechsung '86]

Example: 2-LA for the Dyck Language over {[], ()}

Idea:
» Move to the right to search a closed bracket and rewrite it
» Then move to the left, to search an open bracket.

If it is of the same type, then rewrite it and repeat

nnnEnnne

Each cell is rewritten only in the first 2 visits!

Descriptional Complexity: Limited Automata vs PDAs

» d =2 [P.&Pisoni'15]

2-LAs — PDAs

PDAs — 2-LAs
Exponential gap

Polynomial upper bound

» d > 2 [Kutrib&P.&Wendlandt to app.]
d-LAs — PDAs

Still exponential!

Descriptional Complexity: Limited vs Finite Automata

» d=1 [P.&Pisoni 14]

n-state 1-LAs — finite automata
DFA NFA

2
nondet. 1-LA s n-2"
det. I-LA | n-(n+1)" | n-(n+1)"

2

» The gaps are optimal! (binary witness)

What about the unary case?

The Unary Case, d =1

Theorem ([P.&Pisoni '14])
For n prime, the language {a™ }*:
> s accepted by a 1-LA with n+ 1 states and a constant size

tape alphabet

2

> requires n“ many states to be accepted be a 2NFA

= Quadratic lower bound for the simulation
of unary 1-LAs by finite automata

The Unary Case, d =1

Theorem ([Kutrib&Wendlandt '15])
For n prime, the language {a™"("}:
> js accepted by a 1-LA with 4n states and a tape alphabet
with n + 1 symbols

> requires n - F(n) many states to be accepted be a 2NFA
where F(n) = eV ™" (mA+o() (] andau function)

= Superpolynomial lower bound for the simulation
of unary 1-LAs by finite automata

This paper: Exponential lower bound

The Unary Case, d > 1

> d-LA = CFLs (d > 1)
» Each unary CFL is regular [Ginsburg&Rice '62]
= unary d-LA = unary REG

Theorem ([P.&Pisoni '15])
For n > 0, the language {a*"}*:
> is accepted by a deterministic 2-LA of size O(n)
> requires 2" many states to be accepted by a 2NFA

=- Exponential lower bound for the simulation
of unary 2-LAs by finite automata

This paper: Same lower bound for the simulation of unary 1-LAs

Unary 1-LA vs Finite Automata
The Exponential Separation

The Witness Language

» Fixed n > 0: L, = {a*"}
» The smallest NFA accepting L, has 2" + 1 many states

» We show the existence of a deterministic 1-LA of O(n) size

accepting L,

A Linear Bounded Automaton for L, = {a*'}

Idea: “divide” the input n times by 2

Telal =]][]]<]]]<]]]-

» Make n sweeps of the tape
» At each sweep overwrite each “odd” a
» Accept if only one a is left on the tape

» O(n) states

A Linear Bounded Automaton for L, = {a*'}

Idea: “divide” the input n times by 2

>]0\1\0\2\0\1\0\3\0\1\0\2\0\1\0\4\2

Possible variation:

» Rewrite input symbols with the number of current sweep

We can build a 1-LA that, for each tape cell,
guesses the number of the sweep
in which this linear bounded automaton rewrites the cell

A 1-Limited Automaton for L, = {azn}

~loftfof2]of1]o]3]of1]o]2]o]1]o]4]-

> Ist sweep:
For each cell, guess and write a symbol in {0,1,...,n}
> (i + 2)th sweep, i =0,...,n:
Verify that the symbol i occurs in all odd positions,
where positions are counted ignoring cells containing j < i

» Size O(n)
We can do better!

Size O(n), only deterministic transitions

The Binary Carry Sequence

The string written by the above linear bounded automaton is a
prefix of the binary carry sequence:

» First two elements: 0 1

> Next elements: w — ww’

m w part already constructed,
m w’ copy of w, with the last symbol replaced by its successor

o1 0 2 01 0 3 01 0 2 0 1 0 4

The Binary Carry Sequence: Properties

» w; = prefix of length j of the binary carry sequence

» BIS(w;j) := Backward Increasing Sequence of w;

longest increasing sequence obtained with the greedy method
by inspecting w; from the end

wip= 0 1 0 2 0 1 0 3 0 1 O
BIS(WH):O 1 3

1= 20+20+2° Property 1

BIS(wj) = positions of 1s in
the binary representation of j

The Binary Carry Sequence: Properties

wii= 0 1 0 2 0 1 0 3 0 1 0
BIS(wi1)= 0 1 3
11= 20 + 2t 4+ 23
12 = 22 + 28
BIS(wi2) = 2 3
wp= 0 1 0 2 0 1 0 3 0 1 0 2

Property 2

The symbol of the binary carry sequence in
position j 4 1 is the smallest nonnegative
integer that does not occur in BIS(w;)

A Deterministic 1-LA for L, = {a*"}

Idea: Write on the tape prefixes of the binary carry sequence

[o[x[ol2[o s o s o]t o] o [=]2]-

0
» 0 is written on the first cell

» For j > 0, with w; on the first j cells, head on cell j:

m Compute the smallest i ¢ BIS(w;),

inspecting the left part of the tape
m Move to the right to search the first cell containing a
m Write i on that cell

» When n is written on a cell:

m Move one position to the right
m Accept iff the current cell contains the right endmarker

A Deterministic 1-LA for L, = {a*"}

Idea: Write on the tape prefixes of the binary carry sequence

~loft]of2]of1]o]3]of1]o|2]0]1]0]4]-

T

» Each cell is rewritten only in the first visit
» Tape alphabet {0, ..., n}
» Finite state control with O(n) states

» Total size of the description O(n)

Unary 1-LA vs Finite Automata: Upper and Lower Bounds

det-1-LAs — NFAS/DFAS
ndet-1-LAs — NFAs

Exponential gap
[.b. our result
u.b. general case ndet-1-LAs — DFAs

The gap does not change
in the conversion into
two-way automata

l.b. exp (our result)
u.b. exp exp (general case)

Problem
Can we reduce the distance
between I.b. and u.b.?

From Unary Finite Automata to 1-LAs

An exponential reduction is not always achievable:

Theorem

There is a constant c s.t. for each sufficiently large n
there is a unary n-state DFA s.t. all equivalent d-LAs have
descriptions of size > ¢ - n*/2, for each d > 0

Unary CFGs vs Limited Automata

Unary Context-Free Languages

Theorem ([Ginsburg&Rice '62])
Each unary context-free language is regular

Theorem ([P.&Shallit&Wang '02])

Each unary context-free grammar can be converted into equivalent
DFAs/NFAs of exponential size. These costs cannot be reduced

Problem :

: . [This work]
Study the size relationships _
between unary CFGs and The conversion
limited automata unary CFGs — 1-LAs

is polynomial in size

A Variant of the Chomsky-Schiitzenberger Theorem

Extended Dyck Language Dq

» Balanced brackets padded with neutral symbols

> Bx. Q@ =A{(), [11} strings [[(]). ((LIDDIDIODI -+

Theorem ([Okhotin '12])

L C ¥* is context-free iff L = h(BQ N R), where
» Q is an extended bracket alphabet
» R C Q* is regular

> h:Q — X is a letter-to-letter homomorphism

Remarks

» The size of Q is polynomial wrt the size of a given CFG G
specifying L
» The language R is local

» Strings in 59 N R encode derivation trees of G

Chomsky-Schiitzenberger Theorem in the Unary Case

» G =(V,{a},P,S) unary CFG generating L(G)
» The membership to L(G) can be witnessed by a sequence of
trees each one of height < #V

DN AN A

Then LthD#VﬁR

The “restricted extended” Dyck Language 58?/) C 5QG
» contains only the strings with bracket nesting depth < #V

» is recognized by a 2DFA of size polynomial wrt the size of G

A 1-LA Accepting L(G) = h([/)\giév) N R)

1. Input a™
2. Guess w € h~1(a™)

» Scan the tape from left to right
» Rewrite each input cell with a symbol from Q¢

3. Check if w € 55‘7;‘/)

» 2DFA of polynomial size
4. Check if we R

» DFA of polynomial size

Summing up:
» Each cell is rewritten only in the first visit

» The total size of the resulting 1-LA is polynomial

Unary CFGs vs Limited Automata

We proved that

Theorem

The conversion of unary CFGs into 1-LAs is polynomial in size

Problems

» Cost of the converse conversion, i.e., (unary) 1-LAs — CFGs
General alphabets: 2-LAs — CFGs is exponential in size

» Conversion of unary CFGs into deterministic limited automata

Thank you for your attention!

	 Unary 1-LA vs Finite AutomataThe Exponential Separation
	Unary CFGs vs Limited Automata
	Thank you for your attention!

