
Limited Automata and Unary Languages

Giovanni Pighizzini and Luca Prigioniero

Dipartimento di Informatica
Università degli Studi di Milano, Italy

DLT 2017 – Liège
August 7-11, 2017



Limited Automata [Hibbard ’67]

One-tape Turing machines with restricted rewritings

Definition
Fixed an integer d ≥ 1, a d-limited automaton is

I a one-tape Turing machine
I which is allowed to rewrite the content of each tape cell

only in the first d visits

Computational power

I For each d ≥ 2, d-limited automata characterize
context-free languages [Hibbard ’67]

I 1-limited automata characterize regular languages
[Wagner&Wechsung ’86]



Example: 2-LA for the Dyck Language over {[], ()}

Idea:
I Move to the right to search a closed bracket and rewrite it
I Then move to the left, to search an open bracket.

If it is of the same type, then rewrite it and repeat

B

6

[

[x

6

]

xx

6

[

[x

6

(

(x

6

(

(x

6

)

xx

6

)

xx

6

]

xx

6

C

6−→ ←−yes!

Each cell is rewritten only in the first 2 visits!



Example: 2-LA for the Dyck Language over {[], ()}

Idea:
I Move to the right to search a closed bracket and rewrite it
I Then move to the left, to search an open bracket.

If it is of the same type, then rewrite it and repeat

B

6

[

[x

6

]

xx

6

[

[x

6

(

(x

6

(

(x

6

)

xx

6

)

xx

6

]

xx

6

C

6

−→

←−yes!

Each cell is rewritten only in the first 2 visits!



Example: 2-LA for the Dyck Language over {[], ()}

Idea:
I Move to the right to search a closed bracket and rewrite it
I Then move to the left, to search an open bracket.

If it is of the same type, then rewrite it and repeat

B

6

[

[

x

6

]

xx

6

[

[x

6

(

(x

6

(

(x

6

)

xx

6

)

xx

6

]

xx

6

C

6

−→

←−yes!

Each cell is rewritten only in the first 2 visits!



Example: 2-LA for the Dyck Language over {[], ()}

Idea:
I Move to the right to search a closed bracket and rewrite it
I Then move to the left, to search an open bracket.

If it is of the same type, then rewrite it and repeat

B

6

[

[

x

6

]

x

x

6

[

[x

6

(

(x

6

(

(x

6

)

xx

6

)

xx

6

]

xx

6

C

6

−→

←−yes!

Each cell is rewritten only in the first 2 visits!



Example: 2-LA for the Dyck Language over {[], ()}

Idea:
I Move to the right to search a closed bracket and rewrite it
I Then move to the left, to search an open bracket.

If it is of the same type, then rewrite it and repeat

B

6

[

[

x

6

]x

x

6

[

[x

6

(

(x

6

(

(x

6

)

xx

6

)

xx

6

]

xx

6

C

6−→

←−

yes!

Each cell is rewritten only in the first 2 visits!



Example: 2-LA for the Dyck Language over {[], ()}

Idea:
I Move to the right to search a closed bracket and rewrite it
I Then move to the left, to search an open bracket.

If it is of the same type, then rewrite it and repeat

B

6

[

[

x

6

]x

x

6

[

[x

6

(

(x

6

(

(x

6

)

xx

6

)

xx

6

]

xx

6

C

6−→

←−

yes!

Each cell is rewritten only in the first 2 visits!



Example: 2-LA for the Dyck Language over {[], ()}

Idea:
I Move to the right to search a closed bracket and rewrite it
I Then move to the left, to search an open bracket.

If it is of the same type, then rewrite it and repeat

B

6

[[

x

6

]x

x

6

[

[x

6

(

(x

6

(

(x

6

)

xx

6

)

xx

6

]

xx

6

C

6−→

←−

yes!

Each cell is rewritten only in the first 2 visits!



Example: 2-LA for the Dyck Language over {[], ()}

Idea:
I Move to the right to search a closed bracket and rewrite it
I Then move to the left, to search an open bracket.

If it is of the same type, then rewrite it and repeat

B

6

[[

x

6

]x

x

6

[

[x

6

(

(x

6

(

(x

6

)

xx

6

)

xx

6

]

xx

6

C

6−→

←−

yes!

Each cell is rewritten only in the first 2 visits!



Example: 2-LA for the Dyck Language over {[], ()}

Idea:
I Move to the right to search a closed bracket and rewrite it
I Then move to the left, to search an open bracket.

If it is of the same type, then rewrite it and repeat

B

6

[[

x

6

]x

x

6

[

[x

6

(

(x

6

(

(x

6

)

xx

6

)

xx

6

]

xx

6

C

6

−→

←−yes!

Each cell is rewritten only in the first 2 visits!



Example: 2-LA for the Dyck Language over {[], ()}

Idea:
I Move to the right to search a closed bracket and rewrite it
I Then move to the left, to search an open bracket.

If it is of the same type, then rewrite it and repeat

B

6

[[

x

6

]x

x

6

[

[x

6

(

(x

6

(

(x

6

)

xx

6

)

xx

6

]

xx

6

C

6

−→

←−yes!

Each cell is rewritten only in the first 2 visits!



Example: 2-LA for the Dyck Language over {[], ()}

Idea:
I Move to the right to search a closed bracket and rewrite it
I Then move to the left, to search an open bracket.

If it is of the same type, then rewrite it and repeat

B

6

[[

x

6

]x

x

6

[

[x

6

(

(x

6

(

(x

6

)

xx

6

)

xx

6

]

xx

6

C

6

−→

←−yes!

Each cell is rewritten only in the first 2 visits!



Example: 2-LA for the Dyck Language over {[], ()}

Idea:
I Move to the right to search a closed bracket and rewrite it
I Then move to the left, to search an open bracket.

If it is of the same type, then rewrite it and repeat

B

6

[[

x

6

]x

x

6

[

[

x

6

(

(x

6

(

(x

6

)

xx

6

)

xx

6

]

xx

6

C

6

−→

←−yes!

Each cell is rewritten only in the first 2 visits!



Example: 2-LA for the Dyck Language over {[], ()}

Idea:
I Move to the right to search a closed bracket and rewrite it
I Then move to the left, to search an open bracket.

If it is of the same type, then rewrite it and repeat

B

6

[[

x

6

]x

x

6

[

[

x

6

(

(

x

6

(

(x

6

)

xx

6

)

xx

6

]

xx

6

C

6

−→

←−yes!

Each cell is rewritten only in the first 2 visits!



Example: 2-LA for the Dyck Language over {[], ()}

Idea:
I Move to the right to search a closed bracket and rewrite it
I Then move to the left, to search an open bracket.

If it is of the same type, then rewrite it and repeat

B

6

[[

x

6

]x

x

6

[

[

x

6

(

(

x

6

(

(

x

6

)

xx

6

)

xx

6

]

xx

6

C

6

−→

←−yes!

Each cell is rewritten only in the first 2 visits!



Example: 2-LA for the Dyck Language over {[], ()}

Idea:
I Move to the right to search a closed bracket and rewrite it
I Then move to the left, to search an open bracket.

If it is of the same type, then rewrite it and repeat

B

6

[[

x

6

]x

x

6

[

[

x

6

(

(

x

6

(

(

x

6

)

x

x

6

)

xx

6

]

xx

6

C

6

−→

←−yes!

Each cell is rewritten only in the first 2 visits!



Example: 2-LA for the Dyck Language over {[], ()}

Idea:
I Move to the right to search a closed bracket and rewrite it
I Then move to the left, to search an open bracket.

If it is of the same type, then rewrite it and repeat

B

6

[[

x

6

]x

x

6

[

[

x

6

(

(

x

6

(

(

x

6

)x

x

6

)

xx

6

]

xx

6

C

6−→

←−

yes!

Each cell is rewritten only in the first 2 visits!



Example: 2-LA for the Dyck Language over {[], ()}

Idea:
I Move to the right to search a closed bracket and rewrite it
I Then move to the left, to search an open bracket.

If it is of the same type, then rewrite it and repeat

B

6

[[

x

6

]x

x

6

[

[

x

6

(

(

x

6

(

(

x

6

)x

x

6

)

xx

6

]

xx

6

C

6−→

←−

yes!

Each cell is rewritten only in the first 2 visits!



Example: 2-LA for the Dyck Language over {[], ()}

Idea:
I Move to the right to search a closed bracket and rewrite it
I Then move to the left, to search an open bracket.

If it is of the same type, then rewrite it and repeat

B

6

[[

x

6

]x

x

6

[

[

x

6

(

(

x

6

((

x

6

)x

x

6

)

xx

6

]

xx

6

C

6−→

←−

yes!

Each cell is rewritten only in the first 2 visits!



Example: 2-LA for the Dyck Language over {[], ()}

Idea:
I Move to the right to search a closed bracket and rewrite it
I Then move to the left, to search an open bracket.

If it is of the same type, then rewrite it and repeat

B

6

[[

x

6

]x

x

6

[

[

x

6

(

(

x

6

((

x

6

)x

x

6

)

xx

6

]

xx

6

C

6

−→

←−yes!

Each cell is rewritten only in the first 2 visits!



Example: 2-LA for the Dyck Language over {[], ()}

Idea:
I Move to the right to search a closed bracket and rewrite it
I Then move to the left, to search an open bracket.

If it is of the same type, then rewrite it and repeat

B

6

[[

x

6

]x

x

6

[

[

x

6

(

(

x

6

((

x

6

)x

x

6

)

xx

6

]

xx

6

C

6

−→

←−yes!

Each cell is rewritten only in the first 2 visits!



Example: 2-LA for the Dyck Language over {[], ()}

Idea:
I Move to the right to search a closed bracket and rewrite it
I Then move to the left, to search an open bracket.

If it is of the same type, then rewrite it and repeat

B

6

[[

x

6

]x

x

6

[

[

x

6

(

(

x

6

((

x

6

)x

x

6

)

xx

6

]

xx

6

C

6

−→

←−yes!

Each cell is rewritten only in the first 2 visits!



Example: 2-LA for the Dyck Language over {[], ()}

Idea:
I Move to the right to search a closed bracket and rewrite it
I Then move to the left, to search an open bracket.

If it is of the same type, then rewrite it and repeat

B

6

[[

x

6

]x

x

6

[

[

x

6

(

(

x

6

((

x

6

)x

x

6

)

x

x

6

]

xx

6

C

6

−→

←−yes!

Each cell is rewritten only in the first 2 visits!



Example: 2-LA for the Dyck Language over {[], ()}

Idea:
I Move to the right to search a closed bracket and rewrite it
I Then move to the left, to search an open bracket.

If it is of the same type, then rewrite it and repeat

B

6

[[

x

6

]x

x

6

[

[

x

6

(

(

x

6

((

x

6

)x

x

6

)x

x

6

]

xx

6

C

6−→

←−

yes!

Each cell is rewritten only in the first 2 visits!



Example: 2-LA for the Dyck Language over {[], ()}

Idea:
I Move to the right to search a closed bracket and rewrite it
I Then move to the left, to search an open bracket.

If it is of the same type, then rewrite it and repeat

B

6

[[

x

6

]x

x

6

[

[

x

6

(

(

x

6

((

x

6

)x

x

6

)x

x

6

]

xx

6

C

6−→

←−

yes!

Each cell is rewritten only in the first 2 visits!



Example: 2-LA for the Dyck Language over {[], ()}

Idea:
I Move to the right to search a closed bracket and rewrite it
I Then move to the left, to search an open bracket.

If it is of the same type, then rewrite it and repeat

B

6

[[

x

6

]x

x

6

[

[

x

6

(

(

x

6

((

x

6

)x

x

6

)x

x

6

]

xx

6

C

6−→

←−

yes!

Each cell is rewritten only in the first 2 visits!



Example: 2-LA for the Dyck Language over {[], ()}

Idea:
I Move to the right to search a closed bracket and rewrite it
I Then move to the left, to search an open bracket.

If it is of the same type, then rewrite it and repeat

B

6

[[

x

6

]x

x

6

[

[

x

6

(

(

x

6

((

x

6

)x

x

6

)x

x

6

]

xx

6

C

6−→

←−

yes!

Each cell is rewritten only in the first 2 visits!



Example: 2-LA for the Dyck Language over {[], ()}

Idea:
I Move to the right to search a closed bracket and rewrite it
I Then move to the left, to search an open bracket.

If it is of the same type, then rewrite it and repeat

B

6

[[

x

6

]x

x

6

[

[

x

6

((

x

6

((

x

6

)x

x

6

)x

x

6

]

xx

6

C

6−→

←−

yes!

Each cell is rewritten only in the first 2 visits!



Example: 2-LA for the Dyck Language over {[], ()}

Idea:
I Move to the right to search a closed bracket and rewrite it
I Then move to the left, to search an open bracket.

If it is of the same type, then rewrite it and repeat

B

6

[[

x

6

]x

x

6

[

[

x

6

((

x

6

((

x

6

)x

x

6

)x

x

6

]

xx

6

C

6

−→

←−yes!

Each cell is rewritten only in the first 2 visits!



Example: 2-LA for the Dyck Language over {[], ()}

Idea:
I Move to the right to search a closed bracket and rewrite it
I Then move to the left, to search an open bracket.

If it is of the same type, then rewrite it and repeat

B

6

[[

x

6

]x

x

6

[

[

x

6

((

x

6

((

x

6

)x

x

6

)x

x

6

]

xx

6

C

6

−→

←−yes!

Each cell is rewritten only in the first 2 visits!



Example: 2-LA for the Dyck Language over {[], ()}

Idea:
I Move to the right to search a closed bracket and rewrite it
I Then move to the left, to search an open bracket.

If it is of the same type, then rewrite it and repeat

B

6

[[

x

6

]x

x

6

[

[

x

6

((

x

6

((

x

6

)x

x

6

)x

x

6

]

xx

6

C

6

−→

←−yes!

Each cell is rewritten only in the first 2 visits!



Example: 2-LA for the Dyck Language over {[], ()}

Idea:
I Move to the right to search a closed bracket and rewrite it
I Then move to the left, to search an open bracket.

If it is of the same type, then rewrite it and repeat

B

6

[[

x

6

]x

x

6

[

[

x

6

((

x

6

((

x

6

)x

x

6

)x

x

6

]

xx

6

C

6

−→

←−yes!

Each cell is rewritten only in the first 2 visits!



Example: 2-LA for the Dyck Language over {[], ()}

Idea:
I Move to the right to search a closed bracket and rewrite it
I Then move to the left, to search an open bracket.

If it is of the same type, then rewrite it and repeat

B

6

[[

x

6

]x

x

6

[

[

x

6

((

x

6

((

x

6

)x

x

6

)x

x

6

]

xx

6

C

6

−→

←−yes!

Each cell is rewritten only in the first 2 visits!



Example: 2-LA for the Dyck Language over {[], ()}

Idea:
I Move to the right to search a closed bracket and rewrite it
I Then move to the left, to search an open bracket.

If it is of the same type, then rewrite it and repeat

B

6

[[

x

6

]x

x

6

[

[

x

6

((

x

6

((

x

6

)x

x

6

)x

x

6

]

xx

6

C

6

−→

←−yes!

Each cell is rewritten only in the first 2 visits!



Example: 2-LA for the Dyck Language over {[], ()}

Idea:
I Move to the right to search a closed bracket and rewrite it
I Then move to the left, to search an open bracket.

If it is of the same type, then rewrite it and repeat

B

6

[[

x

6

]x

x

6

[

[

x

6

((

x

6

((

x

6

)x

x

6

)x

x

6

]

x

x

6

C

6−→

←−

yes!

Each cell is rewritten only in the first 2 visits!



Example: 2-LA for the Dyck Language over {[], ()}

Idea:
I Move to the right to search a closed bracket and rewrite it
I Then move to the left, to search an open bracket.

If it is of the same type, then rewrite it and repeat

B

6

[[

x

6

]x

x

6

[

[

x

6

((

x

6

((

x

6

)x

x

6

)x

x

6

]x

x

6

C

6−→

←−

yes!

Each cell is rewritten only in the first 2 visits!



Example: 2-LA for the Dyck Language over {[], ()}

Idea:
I Move to the right to search a closed bracket and rewrite it
I Then move to the left, to search an open bracket.

If it is of the same type, then rewrite it and repeat

B

6

[[

x

6

]x

x

6

[

[

x

6

((

x

6

((

x

6

)x

x

6

)x

x

6

]x

x

6

C

6−→

←−

yes!

Each cell is rewritten only in the first 2 visits!



Example: 2-LA for the Dyck Language over {[], ()}

Idea:
I Move to the right to search a closed bracket and rewrite it
I Then move to the left, to search an open bracket.

If it is of the same type, then rewrite it and repeat

B

6

[[

x

6

]x

x

6

[

[

x

6

((

x

6

((

x

6

)x

x

6

)x

x

6

]x

x

6

C

6−→

←−

yes!

Each cell is rewritten only in the first 2 visits!



Example: 2-LA for the Dyck Language over {[], ()}

Idea:
I Move to the right to search a closed bracket and rewrite it
I Then move to the left, to search an open bracket.

If it is of the same type, then rewrite it and repeat

B

6

[[

x

6

]x

x

6

[

[

x

6

((

x

6

((

x

6

)x

x

6

)x

x

6

]x

x

6

C

6−→

←−

yes!

Each cell is rewritten only in the first 2 visits!



Example: 2-LA for the Dyck Language over {[], ()}

Idea:
I Move to the right to search a closed bracket and rewrite it
I Then move to the left, to search an open bracket.

If it is of the same type, then rewrite it and repeat

B

6

[[

x

6

]x

x

6

[

[

x

6

((

x

6

((

x

6

)x

x

6

)x

x

6

]x

x

6

C

6−→

←−

yes!

Each cell is rewritten only in the first 2 visits!



Example: 2-LA for the Dyck Language over {[], ()}

Idea:
I Move to the right to search a closed bracket and rewrite it
I Then move to the left, to search an open bracket.

If it is of the same type, then rewrite it and repeat

B

6

[[

x

6

]x

x

6

[[

x

6

((

x

6

((

x

6

)x

x

6

)x

x

6

]x

x

6

C

6−→

←−

yes!

Each cell is rewritten only in the first 2 visits!



Example: 2-LA for the Dyck Language over {[], ()}

Idea:
I Move to the right to search a closed bracket and rewrite it
I Then move to the left, to search an open bracket.

If it is of the same type, then rewrite it and repeat

B

6

[[

x

6

]x

x

6

[[

x

6

((

x

6

((

x

6

)x

x

6

)x

x

6

]x

x

6

C

6

−→

←−yes!

Each cell is rewritten only in the first 2 visits!



Example: 2-LA for the Dyck Language over {[], ()}

Idea:
I Move to the right to search a closed bracket and rewrite it
I Then move to the left, to search an open bracket.

If it is of the same type, then rewrite it and repeat

B

6

[[

x

6

]x

x

6

[[

x

6

((

x

6

((

x

6

)x

x

6

)x

x

6

]x

x

6

C

6

−→

←−yes!

Each cell is rewritten only in the first 2 visits!



Example: 2-LA for the Dyck Language over {[], ()}

Idea:
I Move to the right to search a closed bracket and rewrite it
I Then move to the left, to search an open bracket.

If it is of the same type, then rewrite it and repeat

B

6

[[

x

6

]x

x

6

[[

x

6

((

x

6

((

x

6

)x

x

6

)x

x

6

]x

x

6

C

6

−→

←−yes!

Each cell is rewritten only in the first 2 visits!



Example: 2-LA for the Dyck Language over {[], ()}

Idea:
I Move to the right to search a closed bracket and rewrite it
I Then move to the left, to search an open bracket.

If it is of the same type, then rewrite it and repeat

B

6

[[

x

6

]x

x

6

[[

x

6

((

x

6

((

x

6

)x

x

6

)x

x

6

]x

x

6

C

6

−→

←−yes!

Each cell is rewritten only in the first 2 visits!



Example: 2-LA for the Dyck Language over {[], ()}

Idea:
I Move to the right to search a closed bracket and rewrite it
I Then move to the left, to search an open bracket.

If it is of the same type, then rewrite it and repeat

B

6

[[

x

6

]x

x

6

[[

x

6

((

x

6

((

x

6

)x

x

6

)x

x

6

]x

x

6

C

6

−→

←−yes!

Each cell is rewritten only in the first 2 visits!



Example: 2-LA for the Dyck Language over {[], ()}

Idea:
I Move to the right to search a closed bracket and rewrite it
I Then move to the left, to search an open bracket.

If it is of the same type, then rewrite it and repeat

B

6

[[

x

6

]x

x

6

[[

x

6

((

x

6

((

x

6

)x

x

6

)x

x

6

]x

x

6

C

6−→

←−yes!

Each cell is rewritten only in the first 2 visits!



Example: 2-LA for the Dyck Language over {[], ()}

Idea:
I Move to the right to search a closed bracket and rewrite it
I Then move to the left, to search an open bracket.

If it is of the same type, then rewrite it and repeat

B

6

[[

x

6

]x

x

6

[[

x

6

((

x

6

((

x

6

)x

x

6

)x

x

6

]x

x

6

C

6

−→

←−

yes!

Each cell is rewritten only in the first 2 visits!



Example: 2-LA for the Dyck Language over {[], ()}

Idea:
I Move to the right to search a closed bracket and rewrite it
I Then move to the left, to search an open bracket.

If it is of the same type, then rewrite it and repeat

B

6

[[

x

6

]x

x

6

[[

x

6

((

x

6

((

x

6

)x

x

6

)x

x

6

]x

x

6

C

6−→

←−

yes!

Each cell is rewritten only in the first 2 visits!



Example: 2-LA for the Dyck Language over {[], ()}

Idea:
I Move to the right to search a closed bracket and rewrite it
I Then move to the left, to search an open bracket.

If it is of the same type, then rewrite it and repeat

B

6

[[

x

6

]x

x

6

[[

x

6

((

x

6

((

x

6

)x

x

6

)x

x

6

]x

x

6

C

6−→

←−

yes!

Each cell is rewritten only in the first 2 visits!



Example: 2-LA for the Dyck Language over {[], ()}

Idea:
I Move to the right to search a closed bracket and rewrite it
I Then move to the left, to search an open bracket.

If it is of the same type, then rewrite it and repeat

B

6

[[

x

6

]x

x

6

[[

x

6

((

x

6

((

x

6

)x

x

6

)x

x

6

]x

x

6

C

6−→

←−

yes!

Each cell is rewritten only in the first 2 visits!



Example: 2-LA for the Dyck Language over {[], ()}

Idea:
I Move to the right to search a closed bracket and rewrite it
I Then move to the left, to search an open bracket.

If it is of the same type, then rewrite it and repeat

B

6

[[

x

6

]x

x

6

[[

x

6

((

x

6

((

x

6

)x

x

6

)x

x

6

]x

x

6

C

6−→

←−

yes!

Each cell is rewritten only in the first 2 visits!



Example: 2-LA for the Dyck Language over {[], ()}

Idea:
I Move to the right to search a closed bracket and rewrite it
I Then move to the left, to search an open bracket.

If it is of the same type, then rewrite it and repeat

B

6

[[

x

6

]x

x

6

[[

x

6

((

x

6

((

x

6

)x

x

6

)x

x

6

]x

x

6

C

6−→

←−

yes!

Each cell is rewritten only in the first 2 visits!



Example: 2-LA for the Dyck Language over {[], ()}

Idea:
I Move to the right to search a closed bracket and rewrite it
I Then move to the left, to search an open bracket.

If it is of the same type, then rewrite it and repeat

B

6

[[

x

6

]x

x

6

[[

x

6

((

x

6

((

x

6

)x

x

6

)x

x

6

]x

x

6

C

6−→

←−

yes!

Each cell is rewritten only in the first 2 visits!



Example: 2-LA for the Dyck Language over {[], ()}

Idea:
I Move to the right to search a closed bracket and rewrite it
I Then move to the left, to search an open bracket.

If it is of the same type, then rewrite it and repeat

B

6

[[

x

6

]x

x

6

[[

x

6

((

x

6

((

x

6

)x

x

6

)x

x

6

]x

x

6

C

6−→

←−

yes!

Each cell is rewritten only in the first 2 visits!



Example: 2-LA for the Dyck Language over {[], ()}

Idea:
I Move to the right to search a closed bracket and rewrite it
I Then move to the left, to search an open bracket.

If it is of the same type, then rewrite it and repeat

B

6

[[

x

6

]x

x

6

[[

x

6

((

x

6

((

x

6

)x

x

6

)x

x

6

]x

x

6

C

6−→

←−

yes!

Each cell is rewritten only in the first 2 visits!



Example: 2-LA for the Dyck Language over {[], ()}

Idea:
I Move to the right to search a closed bracket and rewrite it
I Then move to the left, to search an open bracket.

If it is of the same type, then rewrite it and repeat

B

6

[[

x

6

]x

x

6

[[

x

6

((

x

6

((

x

6

)x

x

6

)x

x

6

]x

x

6

C

6−→ ←−

yes!

Each cell is rewritten only in the first 2 visits!



Limited Automata [Hibbard ’67]

One-tape Turing machines with restricted rewritings

Definition
Fixed an integer d ≥ 1, a d-limited automaton is

I a one-tape Turing machine
I which is allowed to rewrite the content of each tape cell

only in the first d visits

Computational power

I For each d ≥ 2, d-limited automata characterize
context-free languages [Hibbard ’67]

I 1-limited automata characterize regular languages
[Wagner&Wechsung ’86]



Limited Automata [Hibbard ’67]

One-tape Turing machines with restricted rewritings

Definition
Fixed an integer d ≥ 1, a d-limited automaton is

I a one-tape Turing machine
I which is allowed to rewrite the content of each tape cell

only in the first d visits

Computational power

I For each d ≥ 2, d-limited automata characterize
context-free languages [Hibbard ’67]

I 1-limited automata characterize regular languages
[Wagner&Wechsung ’86]



Descriptional Complexity: Limited Automata vs PDAs

I d = 2 [P.&Pisoni ’15]

2-LAs → PDAs
Exponential gap

PDAs → 2-LAs
Polynomial upper bound

I d > 2 [Kutrib&P.&Wendlandt to app.]

d-LAs → PDAs
Still exponential!



Descriptional Complexity: Limited Automata vs PDAs

I d = 2 [P.&Pisoni ’15]

2-LAs → PDAs
Exponential gap

PDAs → 2-LAs
Polynomial upper bound

I d > 2 [Kutrib&P.&Wendlandt to app.]

d-LAs → PDAs
Still exponential!



Descriptional Complexity: Limited Automata vs PDAs

I d = 2 [P.&Pisoni ’15]

2-LAs → PDAs
Exponential gap

PDAs → 2-LAs
Polynomial upper bound

I d > 2 [Kutrib&P.&Wendlandt to app.]

d-LAs → PDAs
Still exponential!



Descriptional Complexity: Limited Automata vs PDAs

I d = 2 [P.&Pisoni ’15]

2-LAs → PDAs
Exponential gap

PDAs → 2-LAs
Polynomial upper bound

I d > 2 [Kutrib&P.&Wendlandt to app.]

d-LAs → PDAs
Still exponential!



Descriptional Complexity: Limited vs Finite Automata

I d = 1 [P.&Pisoni ’14]

n-state 1-LAs → finite automata

DFA NFA

nondet. 1-LA

2n·2
n2

n · 2n2

det. 1-LA

n · (n + 1)n n · (n + 1)n

I The gaps are optimal! (binary witness)

What about the unary case?



Descriptional Complexity: Limited vs Finite Automata

I d = 1 [P.&Pisoni ’14]

n-state 1-LAs → finite automata

DFA NFA

nondet. 1-LA 2n·2
n2

n · 2n2

det. 1-LA

n · (n + 1)n n · (n + 1)n

I The gaps are optimal! (binary witness)

What about the unary case?



Descriptional Complexity: Limited vs Finite Automata

I d = 1 [P.&Pisoni ’14]

n-state 1-LAs → finite automata

DFA NFA

nondet. 1-LA 2n·2
n2

n · 2n2

det. 1-LA

n · (n + 1)n n · (n + 1)n

I The gaps are optimal! (binary witness)

What about the unary case?



Descriptional Complexity: Limited vs Finite Automata

I d = 1 [P.&Pisoni ’14]

n-state 1-LAs → finite automata

DFA NFA

nondet. 1-LA 2n·2
n2

n · 2n2

det. 1-LA n · (n + 1)n n · (n + 1)n

I The gaps are optimal! (binary witness)

What about the unary case?



Descriptional Complexity: Limited vs Finite Automata

I d = 1 [P.&Pisoni ’14]

n-state 1-LAs → finite automata

DFA NFA

nondet. 1-LA 2n·2
n2

n · 2n2

det. 1-LA n · (n + 1)n n · (n + 1)n

I The gaps are optimal! (binary witness)

What about the unary case?



Descriptional Complexity: Limited vs Finite Automata

I d = 1 [P.&Pisoni ’14]

n-state 1-LAs → finite automata

DFA NFA

nondet. 1-LA 2n·2
n2

n · 2n2

det. 1-LA n · (n + 1)n n · (n + 1)n

I The gaps are optimal! (binary witness)

What about the unary case?



The Unary Case, d = 1

Theorem ([P.&Pisoni ’14])
For n prime, the language {an2}∗:

I is accepted by a 1-LA with n + 1 states and a constant size
tape alphabet

I requires n2 many states to be accepted be a 2NFA

⇒ Quadratic lower bound for the simulation
of unary 1-LAs by finite automata



The Unary Case, d = 1

Theorem ([Kutrib&Wendlandt ’15])
For n prime, the language {an·F (n)}:

I is accepted by a 1-LA with 4n states and a tape alphabet
with n + 1 symbols

I requires n · F (n) many states to be accepted be a 2NFA

where F (n) = e
√

n·ln(n)(1+o(1)) (Landau function)

⇒ Superpolynomial lower bound for the simulation
of unary 1-LAs by finite automata

This paper: Exponential lower bound



The Unary Case, d = 1

Theorem ([Kutrib&Wendlandt ’15])
For n prime, the language {an·F (n)}:

I is accepted by a 1-LA with 4n states and a tape alphabet
with n + 1 symbols

I requires n · F (n) many states to be accepted be a 2NFA

where F (n) = e
√

n·ln(n)(1+o(1)) (Landau function)

⇒ Superpolynomial lower bound for the simulation
of unary 1-LAs by finite automata

This paper: Exponential lower bound



The Unary Case, d > 1

I d-LA ≡ CFLs (d > 1)
I Each unary CFL is regular [Ginsburg&Rice ’62]
⇒ unary d-LA ≡ unary REG

Theorem ([P.&Pisoni ’15])
For n > 0, the language {a2n}∗:

I is accepted by a deterministic 2-LA of size O(n)

I requires 2n many states to be accepted by a 2NFA

⇒ Exponential lower bound for the simulation
of unary 2-LAs by finite automata

This paper: Same lower bound for the simulation of unary 1-LAs



The Unary Case, d > 1

I d-LA ≡ CFLs (d > 1)
I Each unary CFL is regular [Ginsburg&Rice ’62]
⇒ unary d-LA ≡ unary REG

Theorem ([P.&Pisoni ’15])
For n > 0, the language {a2n}∗:

I is accepted by a deterministic 2-LA of size O(n)

I requires 2n many states to be accepted by a 2NFA

⇒ Exponential lower bound for the simulation
of unary 2-LAs by finite automata

This paper: Same lower bound for the simulation of unary 1-LAs



The Unary Case, d > 1

I d-LA ≡ CFLs (d > 1)
I Each unary CFL is regular [Ginsburg&Rice ’62]
⇒ unary d-LA ≡ unary REG

Theorem ([P.&Pisoni ’15])
For n > 0, the language {a2n}∗:

I is accepted by a deterministic 2-LA of size O(n)

I requires 2n many states to be accepted by a 2NFA

⇒ Exponential lower bound for the simulation
of unary 2-LAs by finite automata

This paper: Same lower bound for the simulation of unary 1-LAs



Unary 1-LA vs Finite Automata
The Exponential Separation



The Witness Language

I Fixed n > 0: Ln = {a2n}

I The smallest NFA accepting Ln has 2n + 1 many states

I We show the existence of a deterministic 1-LA of O(n) size
accepting Ln



A Linear Bounded Automaton for Ln = {a2
n}

Idea: “divide” the input n times by 2

B C

n = 4

a

X0

a

X1

a

X0

a

X2

a

X0

a

X1

a

X0

a

X3

a

X0

a

X1

a

X0

a

X2

a

X0

a

X1

a

X0

a

4



A Linear Bounded Automaton for Ln = {a2
n}

Idea: “divide” the input n times by 2

B C

n = 4

a

X0

a

X1

a

X0

a

X2

a

X0

a

X1

a

X0

a

X3

a

X0

a

X1

a

X0

a

X2

a

X0

a

X1

a

X0

a

4

I Make n sweeps of the tape

I At each sweep overwrite each “odd” a

I Accept if only one a is left on the tape

I O(n) states



A Linear Bounded Automaton for Ln = {a2
n}

Idea: “divide” the input n times by 2

B C

n = 4

a

X

0

a

X1 a

X

0

a

X2 a

X

0

a

X1 a

X

0

a

X3 a

X

0

a

X1 a

X

0

a

X2 a

X

0

a

X1 a

X

0

a

4

I Make n sweeps of the tape

I At each sweep overwrite each “odd” a

I Accept if only one a is left on the tape

I O(n) states



A Linear Bounded Automaton for Ln = {a2
n}

Idea: “divide” the input n times by 2

B C

n = 4

a

X

0 a

X

1 a

X

0

a

X2 a

X

0 a

X

1 a

X

0

a

X3 a

X

0 a

X

1 a

X

0

a

X2 a

X

0 a

X

1 a

X

0

a

4

I Make n sweeps of the tape

I At each sweep overwrite each “odd” a

I Accept if only one a is left on the tape

I O(n) states



A Linear Bounded Automaton for Ln = {a2
n}

Idea: “divide” the input n times by 2

B C

n = 4

a

X

0 a

X

1 a

X

0 a

X

2 a

X

0 a

X

1 a

X

0

a

X3 a

X

0 a

X

1 a

X

0 a

X

2 a

X

0 a

X

1 a

X

0

a

4

I Make n sweeps of the tape

I At each sweep overwrite each “odd” a

I Accept if only one a is left on the tape

I O(n) states



A Linear Bounded Automaton for Ln = {a2
n}

Idea: “divide” the input n times by 2

B C

n = 4

a

X

0 a

X

1 a

X

0 a

X

2 a

X

0 a

X

1 a

X

0 a

X

3 a

X

0 a

X

1 a

X

0 a

X

2 a

X

0 a

X

1 a

X

0

a

4

I Make n sweeps of the tape

I At each sweep overwrite each “odd” a

I Accept if only one a is left on the tape

I O(n) states



A Linear Bounded Automaton for Ln = {a2
n}

Idea: “divide” the input n times by 2

B C

n = 4

a

X

0 a

X

1 a

X

0 a

X

2 a

X

0 a

X

1 a

X

0 a

X

3 a

X

0 a

X

1 a

X

0 a

X

2 a

X

0 a

X

1 a

X

0

a

4

I Make n sweeps of the tape

I At each sweep overwrite each “odd” a

I Accept if only one a is left on the tape

I O(n) states



A Linear Bounded Automaton for Ln = {a2
n}

Idea: “divide” the input n times by 2

B C

n = 4

a

X0

a

X1

a

X0

a

X2

a

X0

a

X1

a

X0

a

X3

a

X0

a

X1

a

X0

a

X2

a

X0

a

X1

a

X0

a

4

Possible variation:

I Rewrite input symbols with the number of current sweep

We can build a 1-LA that, for each tape cell,
guesses the number of the sweep

in which this linear bounded automaton rewrites the cell



A Linear Bounded Automaton for Ln = {a2
n}

Idea: “divide” the input n times by 2

B C

n = 4

aX

0 a

X1 aX

0 a

X2 aX

0 a

X1 aX

0 a

X3 aX

0 a

X1 aX

0 a

X2 aX

0 a

X1 aX

0 a

4

Possible variation:

I Rewrite input symbols with the number of current sweep

We can build a 1-LA that, for each tape cell,
guesses the number of the sweep

in which this linear bounded automaton rewrites the cell



A Linear Bounded Automaton for Ln = {a2
n}

Idea: “divide” the input n times by 2

B C

n = 4

aX

0

aX

1

aX

0 a

X2 aX

0

aX

1

aX

0 a

X3 aX

0

aX

1

aX

0 a

X2 aX

0

aX

1

aX

0 a

4

Possible variation:

I Rewrite input symbols with the number of current sweep

We can build a 1-LA that, for each tape cell,
guesses the number of the sweep

in which this linear bounded automaton rewrites the cell



A Linear Bounded Automaton for Ln = {a2
n}

Idea: “divide” the input n times by 2

B C

n = 4

aX

0

aX

1

aX

0

aX

2

aX

0

aX

1

aX

0 a

X3 aX

0

aX

1

aX

0

aX

2

aX

0

aX

1

aX

0 a

4

Possible variation:

I Rewrite input symbols with the number of current sweep

We can build a 1-LA that, for each tape cell,
guesses the number of the sweep

in which this linear bounded automaton rewrites the cell



A Linear Bounded Automaton for Ln = {a2
n}

Idea: “divide” the input n times by 2

B C

n = 4

aX

0

aX

1

aX

0

aX

2

aX

0

aX

1

aX

0

aX

3

aX

0

aX

1

aX

0

aX

2

aX

0

aX

1

aX

0 a

4

Possible variation:

I Rewrite input symbols with the number of current sweep

We can build a 1-LA that, for each tape cell,
guesses the number of the sweep

in which this linear bounded automaton rewrites the cell



A Linear Bounded Automaton for Ln = {a2
n}

Idea: “divide” the input n times by 2

B C

n = 4

aX

0

aX

1

aX

0

aX

2

aX

0

aX

1

aX

0

aX

3

aX

0

aX

1

aX

0

aX

2

aX

0

aX

1

aX

0

a

4

Possible variation:

I Rewrite input symbols with the number of current sweep

We can build a 1-LA that, for each tape cell,
guesses the number of the sweep

in which this linear bounded automaton rewrites the cell



A Linear Bounded Automaton for Ln = {a2
n}

Idea: “divide” the input n times by 2

B C

n = 4

aX

0

aX

1

aX

0

aX

2

aX

0

aX

1

aX

0

aX

3

aX

0

aX

1

aX

0

aX

2

aX

0

aX

1

aX

0

a

4

Possible variation:

I Rewrite input symbols with the number of current sweep

We can build a 1-LA that, for each tape cell,
guesses the number of the sweep

in which this linear bounded automaton rewrites the cell



A 1-Limited Automaton for Ln = {a2
n}

B C

n = 4

a

00

a

11

a

00

a

22

a

00

a

11

a

00

a

33

a

00

a

11

a

00

a

22

a

00

a

11

a

00

a

4

I 1st sweep:
For each cell, guess and write a symbol in {0, 1, . . . , n}

I (i + 2)th sweep, i = 0, . . . , n:
Verify that the symbol i occurs in all odd positions,
where positions are counted ignoring cells containing j < i

I Size O(n)
We can do better!

Size O(n), only deterministic transitions



A 1-Limited Automaton for Ln = {a2
n}

B C

n = 4

a

0

0 a

1

1 a

0

0 a

2

2 a

0

0 a

1

1 a

0

0 a

3

3 a

0

0 a

1

1 a

0

0 a

2

2 a

0

0 a

1

1 a

0

0 a

4

I 1st sweep:
For each cell, guess and write a symbol in {0, 1, . . . , n}

I (i + 2)th sweep, i = 0, . . . , n:
Verify that the symbol i occurs in all odd positions,
where positions are counted ignoring cells containing j < i

I Size O(n)
We can do better!

Size O(n), only deterministic transitions



A 1-Limited Automaton for Ln = {a2
n}

B C

n = 4

a

0

0 a

1

1 a

0

0 a

2

2 a

0

0 a

1

1 a

0

0 a

3

3 a

0

0 a

1

1 a

0

0 a

2

2 a

0

0 a

1

1 a

0

0 a

4

I 1st sweep:
For each cell, guess and write a symbol in {0, 1, . . . , n}

I (i + 2)th sweep, i = 0, . . . , n:
Verify that the symbol i occurs in all odd positions,
where positions are counted ignoring cells containing j < i

I Size O(n)
We can do better!

Size O(n), only deterministic transitions



A 1-Limited Automaton for Ln = {a2
n}

B C

n = 4

a

0

0 a

1

1 a

0

0 a

2

2 a

0

0 a

1

1 a

0

0 a

3

3 a

0

0 a

1

1 a

0

0 a

2

2 a

0

0 a

1

1 a

0

0 a

4

I 1st sweep:
For each cell, guess and write a symbol in {0, 1, . . . , n}

I (i + 2)th sweep, i = 0, . . . , n:
Verify that the symbol i occurs in all odd positions,
where positions are counted ignoring cells containing j < i

I Size O(n)
We can do better!

Size O(n), only deterministic transitions



A 1-Limited Automaton for Ln = {a2
n}

B C

n = 4

a0

0

a

1

1 a0

0

a

2

2 a0

0

a

1

1 a0

0

a

3

3 a0

0

a

1

1 a0

0

a

2

2 a0

0

a

1

1 a0

0

a

4

I 1st sweep:
For each cell, guess and write a symbol in {0, 1, . . . , n}

I (i + 2)th sweep, i = 0, . . . , n:
Verify that the symbol i occurs in all odd positions,
where positions are counted ignoring cells containing j < i

I Size O(n)
We can do better!

Size O(n), only deterministic transitions



A 1-Limited Automaton for Ln = {a2
n}

B C

n = 4

a0

0

a1

1

a0

0

a

2

2 a0

0

a1

1

a0

0

a

3

3 a0

0

a1

1

a0

0

a

2

2 a0

0

a1

1

a0

0

a

4

I 1st sweep:
For each cell, guess and write a symbol in {0, 1, . . . , n}

I (i + 2)th sweep, i = 0, . . . , n:
Verify that the symbol i occurs in all odd positions,
where positions are counted ignoring cells containing j < i

I Size O(n)
We can do better!

Size O(n), only deterministic transitions



A 1-Limited Automaton for Ln = {a2
n}

B C

n = 4

a0

0

a1

1

a0

0

a2

2

a0

0

a1

1

a0

0

a

3

3 a0

0

a1

1

a0

0

a2

2

a0

0

a1

1

a0

0

a

4

I 1st sweep:
For each cell, guess and write a symbol in {0, 1, . . . , n}

I (i + 2)th sweep, i = 0, . . . , n:
Verify that the symbol i occurs in all odd positions,
where positions are counted ignoring cells containing j < i

I Size O(n)
We can do better!

Size O(n), only deterministic transitions



A 1-Limited Automaton for Ln = {a2
n}

B C

n = 4

a0

0

a1

1

a0

0

a2

2

a0

0

a1

1

a0

0

a3

3

a0

0

a1

1

a0

0

a2

2

a0

0

a1

1

a0

0

a

4

I 1st sweep:
For each cell, guess and write a symbol in {0, 1, . . . , n}

I (i + 2)th sweep, i = 0, . . . , n:
Verify that the symbol i occurs in all odd positions,
where positions are counted ignoring cells containing j < i

I Size O(n)
We can do better!

Size O(n), only deterministic transitions



A 1-Limited Automaton for Ln = {a2
n}

B C

n = 4

a0

0

a1

1

a0

0

a2

2

a0

0

a1

1

a0

0

a3

3

a0

0

a1

1

a0

0

a2

2

a0

0

a1

1

a0

0

a

4

I 1st sweep:
For each cell, guess and write a symbol in {0, 1, . . . , n}

I (i + 2)th sweep, i = 0, . . . , n:
Verify that the symbol i occurs in all odd positions,
where positions are counted ignoring cells containing j < i

I Size O(n)

We can do better!
Size O(n), only deterministic transitions



A 1-Limited Automaton for Ln = {a2
n}

B C

n = 4

a0

0

a1

1

a0

0

a2

2

a0

0

a1

1

a0

0

a3

3

a0

0

a1

1

a0

0

a2

2

a0

0

a1

1

a0

0

a

4

I 1st sweep:
For each cell, guess and write a symbol in {0, 1, . . . , n}

I (i + 2)th sweep, i = 0, . . . , n:
Verify that the symbol i occurs in all odd positions,
where positions are counted ignoring cells containing j < i

I Size O(n)
We can do better!

Size O(n), only deterministic transitions



The Binary Carry Sequence

The string written by the above linear bounded automaton is a
prefix of the binary carry sequence:

I First two elements: 0 1

I Next elements: w → ww ′

w part already constructed,
w ′ copy of w , with the last symbol replaced by its successor

0 1

0 2 0 1 0 3 0 1 0 2 0 1 0 4



The Binary Carry Sequence

The string written by the above linear bounded automaton is a
prefix of the binary carry sequence:

I First two elements: 0 1

I Next elements: w → ww ′

w part already constructed,
w ′ copy of w , with the last symbol replaced by its successor

0 1 0 2

0 1 0 3 0 1 0 2 0 1 0 4



The Binary Carry Sequence

The string written by the above linear bounded automaton is a
prefix of the binary carry sequence:

I First two elements: 0 1

I Next elements: w → ww ′

w part already constructed,
w ′ copy of w , with the last symbol replaced by its successor

0 1 0 2 0 1 0 3

0 1 0 2 0 1 0 4



The Binary Carry Sequence

The string written by the above linear bounded automaton is a
prefix of the binary carry sequence:

I First two elements: 0 1

I Next elements: w → ww ′

w part already constructed,
w ′ copy of w , with the last symbol replaced by its successor

0 1 0 2 0 1 0 3 0 1 0 2 0 1 0 4



The Binary Carry Sequence: Properties

I wj := prefix of length j of the binary carry sequence

I BIS(wj) := Backward Increasing Sequence of wj

longest increasing sequence obtained with the greedy method
by inspecting wj from the end

w11 = 0 1 0 2 0 1 0 3 0 1 0

BIS(w11) = 0 1 3

11 = 20 + 21 + 23 Property 1

BIS(wj) = positions of 1s in
the binary representation of j



The Binary Carry Sequence: Properties

I wj := prefix of length j of the binary carry sequence

I BIS(wj) := Backward Increasing Sequence of wj

longest increasing sequence obtained with the greedy method
by inspecting wj from the end

w11 = 0 1 0 2 0 1 0 3 0 1 0

BIS(w11) = 0 . . .

1 3

11 = 20 + 21 + 23 Property 1

BIS(wj) = positions of 1s in
the binary representation of j



The Binary Carry Sequence: Properties

I wj := prefix of length j of the binary carry sequence

I BIS(wj) := Backward Increasing Sequence of wj

longest increasing sequence obtained with the greedy method
by inspecting wj from the end

w11 = 0 1 0 2 0 1 0 3 0 1 0

BIS(w11) = 0 1 . . .

3

11 = 20 + 21 + 23 Property 1

BIS(wj) = positions of 1s in
the binary representation of j



The Binary Carry Sequence: Properties

I wj := prefix of length j of the binary carry sequence

I BIS(wj) := Backward Increasing Sequence of wj

longest increasing sequence obtained with the greedy method
by inspecting wj from the end

w11 = 0 1 0 2 0 1 0 3 0 1 0

BIS(w11) = 0 1 3

11 = 20 + 21 + 23 Property 1

BIS(wj) = positions of 1s in
the binary representation of j



The Binary Carry Sequence: Properties

I wj := prefix of length j of the binary carry sequence

I BIS(wj) := Backward Increasing Sequence of wj

longest increasing sequence obtained with the greedy method
by inspecting wj from the end

w11 = 0 1 0 2 0 1 0 3 0 1 0

BIS(w11) = 0 1 3

11 = 20 + 21 + 23 Property 1

BIS(wj) = positions of 1s in
the binary representation of j



The Binary Carry Sequence: Properties

w11 = 0 1 0 2 0 1 0 3 0 1 0

BIS(w11) = 0 1 3

11 = 20 + 21 + 23

12 = 22 + 23

BIS(w12) = 2 3

w12 = 0 1 0 2 0 1 0 3 0 1 0 2

Property 2

The symbol of the binary carry sequence in
position j + 1 is the smallest nonnegative
integer that does not occur in BIS(wj)



The Binary Carry Sequence: Properties

w11 = 0 1 0 2 0 1 0 3 0 1 0

BIS(w11) = 0 1 3

11 = 20 + 21 + 23

12 = 22 + 23

BIS(w12) = 2 3

w12 = 0 1 0 2 0 1 0 3 0 1 0 2

Property 2

The symbol of the binary carry sequence in
position j + 1 is the smallest nonnegative
integer that does not occur in BIS(wj)



The Binary Carry Sequence: Properties

w11 = 0 1 0 2 0 1 0 3 0 1 0

BIS(w11) = 0 1 3

11 = 20 + 21 + 23

12 = 22 + 23

BIS(w12) = 2 3

w12 = 0 1 0 2 0 1 0 3 0 1 0 2

Property 2

The symbol of the binary carry sequence in
position j + 1 is the smallest nonnegative
integer that does not occur in BIS(wj)



The Binary Carry Sequence: Properties

w11 = 0 1 0 2 0 1 0 3 0 1 0

BIS(w11) = 0 1 3

11 = 20 + 21 + 23

12 = 22 + 23

BIS(w12) = 2 3

w12 = 0 1 0 2 0 1 0 3 0 1 0 2

Property 2

The symbol of the binary carry sequence in
position j + 1 is the smallest nonnegative
integer that does not occur in BIS(wj)



The Binary Carry Sequence: Properties

w11 = 0 1 0 2 0 1 0 3 0 1 0

BIS(w11) = 0 1 3

11 = 20 + 21 + 23

12 = 22 + 23

BIS(w12) = 2 3

w12 = 0 1 0 2 0 1 0 3 0 1 0 2

Property 2

The symbol of the binary carry sequence in
position j + 1 is the smallest nonnegative
integer that does not occur in BIS(wj)



A Deterministic 1-LA for Ln = {a2
n}

Idea: Write on the tape prefixes of the binary carry sequence

B C

6

n = 4

a

0

a

1

a

0

a

2

a

0

a

1

a

0

a

3

6

a

0

a

1

a

0

6

a

2

6

a

0

6

a

1

6

a

0

6

a

4

6



A Deterministic 1-LA for Ln = {a2
n}

Idea: Write on the tape prefixes of the binary carry sequence

B C

6

n = 4

a

0 a

1

a

0

a

2

a

0

a

1

a

0

a

3

6

a

0

a

1

a

0

6

a

2

6

a

0

6

a

1

6

a

0

6

a

4

6

I 0 is written on the first cell

I For j > 0, with wj on the first j cells, head on cell j :
Compute the smallest i /∈ BIS(wj),
inspecting the left part of the tape
Move to the right to search the first cell containing a
Write i on that cell

I When n is written on a cell:
Move one position to the right
Accept iff the current cell contains the right endmarker



A Deterministic 1-LA for Ln = {a2
n}

Idea: Write on the tape prefixes of the binary carry sequence

B C

6

n = 4

a

0

a

1

a

0

a

2

a

0

a

1

a

0

a

3

6

a

0

a

1

a

0

6

a

2

6

a

0

6

a

1

6

a

0

6

a

4

6

I 0 is written on the first cell

I For j > 0, with wj on the first j cells, head on cell j :
Compute the smallest i /∈ BIS(wj),
inspecting the left part of the tape
Move to the right to search the first cell containing a
Write i on that cell

I When n is written on a cell:
Move one position to the right
Accept iff the current cell contains the right endmarker



A Deterministic 1-LA for Ln = {a2
n}

Idea: Write on the tape prefixes of the binary carry sequence

B C

6

n = 4

a

0

a

1

a

0

a

2

a

0

a

1

a

0

a

3

6

a

0

a

1

a

0

6

a

2

6

a

0

6

a

1

6

a

0

6

a

4

6

I 0 is written on the first cell

I For j > 0, with wj on the first j cells, head on cell j :
Compute the smallest i /∈ BIS(wj),
inspecting the left part of the tape
Move to the right to search the first cell containing a
Write i on that cell

I When n is written on a cell:
Move one position to the right
Accept iff the current cell contains the right endmarker



A Deterministic 1-LA for Ln = {a2
n}

Idea: Write on the tape prefixes of the binary carry sequence

B C

6

n = 4

a

0

a

1

a

0

a

2

a

0

a

1

a

0

a

3

6

a

0

a

1

a

0

6

a

2

6

a

0

6

a

1

6

a

0

6

a

4

6

I 0 is written on the first cell

I For j > 0, with wj on the first j cells, head on cell j :
Compute the smallest i /∈ BIS(wj),
inspecting the left part of the tape
Move to the right to search the first cell containing a
Write i on that cell

I When n is written on a cell:
Move one position to the right
Accept iff the current cell contains the right endmarker



A Deterministic 1-LA for Ln = {a2
n}

Idea: Write on the tape prefixes of the binary carry sequence

B C

6

n = 4

a

0

a

1

a

0

a

2

a

0

a

1

a

0

a

3

6

a

0

a

1

a

0

6

a

2

6

a

0

6

a

1

6

a

0

6

a

4

6

I 0 is written on the first cell

I For j > 0, with wj on the first j cells, head on cell j :
Compute the smallest i /∈ BIS(wj),
inspecting the left part of the tape
Move to the right to search the first cell containing a
Write i on that cell

I When n is written on a cell:
Move one position to the right
Accept iff the current cell contains the right endmarker



A Deterministic 1-LA for Ln = {a2
n}

Idea: Write on the tape prefixes of the binary carry sequence

B C

6

n = 4

a

0

a

1

a

0

a

2

a

0

a

1

a

0

a

3

6

a

0

a

1

a

0

6

a

2

6

a

0

6

a

1

6

a

0

6

a

4

6

I 0 is written on the first cell

I For j > 0, with wj on the first j cells, head on cell j :
Compute the smallest i /∈ BIS(wj),
inspecting the left part of the tape
Move to the right to search the first cell containing a
Write i on that cell

I When n is written on a cell:
Move one position to the right
Accept iff the current cell contains the right endmarker



A Deterministic 1-LA for Ln = {a2
n}

Idea: Write on the tape prefixes of the binary carry sequence

B C

6

n = 4

a

0

a

1

a

0

a

2

a

0

a

1

a

0

a

3

6

a

0

a

1

a

0

6

a

2

6

a

0

6

a

1

6

a

0

6

a

4

6

I 0 is written on the first cell

I For j > 0, with wj on the first j cells, head on cell j :
Compute the smallest i /∈ BIS(wj),
inspecting the left part of the tape
Move to the right to search the first cell containing a
Write i on that cell

I When n is written on a cell:
Move one position to the right
Accept iff the current cell contains the right endmarker



A Deterministic 1-LA for Ln = {a2
n}

Idea: Write on the tape prefixes of the binary carry sequence

B C

6

n = 4

a

0

a

1

a

0

a

2

a

0

a

1

a

0

a

3

6

a

0

a

1

a

0

6

a

2

6

a

0

6

a

1

6

a

0

6

a

4

6

I 0 is written on the first cell

I For j > 0, with wj on the first j cells, head on cell j :
Compute the smallest i /∈ BIS(wj),
inspecting the left part of the tape
Move to the right to search the first cell containing a
Write i on that cell

I When n is written on a cell:
Move one position to the right
Accept iff the current cell contains the right endmarker



A Deterministic 1-LA for Ln = {a2
n}

Idea: Write on the tape prefixes of the binary carry sequence

B C

6

n = 4

a

0

a

1

a

0

a

2

a

0

a

1

a

0

a

3

6

a

0

a

1

a

0

6

a

2

6

a

0

6

a

1

6

a

0

6

a

4

6

I 0 is written on the first cell

I For j > 0, with wj on the first j cells, head on cell j :
Compute the smallest i /∈ BIS(wj),
inspecting the left part of the tape
Move to the right to search the first cell containing a
Write i on that cell

I When n is written on a cell:
Move one position to the right
Accept iff the current cell contains the right endmarker



A Deterministic 1-LA for Ln = {a2
n}

Idea: Write on the tape prefixes of the binary carry sequence

B C

6

n = 4

a

0

a

1

a

0

a

2

a

0

a

1

a

0

a

3

6

a

0

a

1

a

0

6

a

2

6

a

0

6

a

1

6

a

0

6

a

4

6

I 0 is written on the first cell

I For j > 0, with wj on the first j cells, head on cell j :
Compute the smallest i /∈ BIS(wj),
inspecting the left part of the tape
Move to the right to search the first cell containing a
Write i on that cell

I When n is written on a cell:
Move one position to the right
Accept iff the current cell contains the right endmarker



A Deterministic 1-LA for Ln = {a2
n}

Idea: Write on the tape prefixes of the binary carry sequence

B C

6

n = 4

a

0

a

1

a

0

a

2

a

0

a

1

a

0

a

3

6

a

0

a

1

a

0

6

a

2

6

a

0

6

a

1

6

a

0

6

a

4

6

I Each cell is rewritten only in the first visit
I Tape alphabet {0, . . . , n}
I Finite state control with O(n) states
I Total size of the description O(n)



A Deterministic 1-LA for Ln = {a2
n}

Idea: Write on the tape prefixes of the binary carry sequence

B C

6

n = 4

a

0

a

1

a

0

a

2

a

0

a

1

a

0

a

3

6

a

0

a

1

a

0

6

a

2

6

a

0

6

a

1

6

a

0

6

a

4

6

I Each cell is rewritten only in the first visit
I Tape alphabet {0, . . . , n}
I Finite state control with O(n) states
I Total size of the description O(n)



A Deterministic 1-LA for Ln = {a2
n}

Idea: Write on the tape prefixes of the binary carry sequence

B C

6

n = 4

a

0

a

1

a

0

a

2

a

0

a

1

a

0

a

3

6

a

0

a

1

a

0

6

a

2

6

a

0

6

a

1

6

a

0

6

a

4

6

I Each cell is rewritten only in the first visit
I Tape alphabet {0, . . . , n}
I Finite state control with O(n) states
I Total size of the description O(n)



A Deterministic 1-LA for Ln = {a2
n}

Idea: Write on the tape prefixes of the binary carry sequence

B C

6

n = 4

a

0

a

1

a

0

a

2

a

0

a

1

a

0

a

3

6

a

0

a

1

a

0

6

a

2

6

a

0

6

a

1

6

a

0

6

a

4

6

I Each cell is rewritten only in the first visit
I Tape alphabet {0, . . . , n}
I Finite state control with O(n) states
I Total size of the description O(n)



Unary 1-LA vs Finite Automata: Upper and Lower Bounds

det-1-LAs → NFAs/DFAs
ndet-1-LAs → NFAs
Exponential gap
l.b. our result
u.b. general case

The gap does not change
in the conversion into
two-way automata

ndet-1-LAs → DFAs

l.b. exp (our result)
u.b. exp exp (general case)

Problem
Can we reduce the distance
between l.b. and u.b.?



Unary 1-LA vs Finite Automata: Upper and Lower Bounds

det-1-LAs → NFAs/DFAs
ndet-1-LAs → NFAs
Exponential gap
l.b. our result
u.b. general case

The gap does not change
in the conversion into
two-way automata

ndet-1-LAs → DFAs

l.b. exp (our result)
u.b. exp exp (general case)

Problem
Can we reduce the distance
between l.b. and u.b.?



Unary 1-LA vs Finite Automata: Upper and Lower Bounds

det-1-LAs → NFAs/DFAs
ndet-1-LAs → NFAs
Exponential gap
l.b. our result
u.b. general case

The gap does not change
in the conversion into
two-way automata

ndet-1-LAs → DFAs

l.b. exp (our result)
u.b. exp exp (general case)

Problem
Can we reduce the distance
between l.b. and u.b.?



Unary 1-LA vs Finite Automata: Upper and Lower Bounds

det-1-LAs → NFAs/DFAs
ndet-1-LAs → NFAs
Exponential gap
l.b. our result
u.b. general case

The gap does not change
in the conversion into
two-way automata

ndet-1-LAs → DFAs

l.b. exp (our result)
u.b. exp exp (general case)

Problem
Can we reduce the distance
between l.b. and u.b.?



From Unary Finite Automata to 1-LAs

An exponential reduction is not always achievable:

Theorem
There is a constant c s.t. for each sufficiently large n
there is a unary n-state DFA s.t. all equivalent d-LAs have
descriptions of size > c · n1/2, for each d > 0



Unary CFGs vs Limited Automata



Unary Context-Free Languages

Theorem ([Ginsburg&Rice ’62])
Each unary context-free language is regular

Theorem ([P.&Shallit&Wang ’02])
Each unary context-free grammar can be converted into equivalent
DFAs/NFAs of exponential size. These costs cannot be reduced

Problem
Study the size relationships
between unary CFGs and
limited automata

[This work]

The conversion
unary CFGs → 1-LAs
is polynomial in size



Unary Context-Free Languages

Theorem ([Ginsburg&Rice ’62])
Each unary context-free language is regular

Theorem ([P.&Shallit&Wang ’02])
Each unary context-free grammar can be converted into equivalent
DFAs/NFAs of exponential size. These costs cannot be reduced

Problem
Study the size relationships
between unary CFGs and
limited automata

[This work]

The conversion
unary CFGs → 1-LAs
is polynomial in size



Unary Context-Free Languages

Theorem ([Ginsburg&Rice ’62])
Each unary context-free language is regular

Theorem ([P.&Shallit&Wang ’02])
Each unary context-free grammar can be converted into equivalent
DFAs/NFAs of exponential size. These costs cannot be reduced

Problem
Study the size relationships
between unary CFGs and
limited automata

[This work]

The conversion
unary CFGs → 1-LAs
is polynomial in size



Unary Context-Free Languages

Theorem ([Ginsburg&Rice ’62])
Each unary context-free language is regular

Theorem ([P.&Shallit&Wang ’02])
Each unary context-free grammar can be converted into equivalent
DFAs/NFAs of exponential size. These costs cannot be reduced

Problem
Study the size relationships
between unary CFGs and
limited automata

[This work]

The conversion
unary CFGs → 1-LAs
is polynomial in size



A Variant of the Chomsky-Schützenberger Theorem

Extended Dyck Language D̂Ω

I Balanced brackets padded with neutral symbols
I Ex. Ω = {(, ), [, ], |}, strings ||(|), (([|]|)[]||)|()[]|, . . .

Theorem ([Okhotin ’12])
L ⊆ Σ∗ is context-free iff L = h(D̂Ω ∩ R), where

I Ω is an extended bracket alphabet
I R ⊆ Ω∗ is regular
I h : Ω→ Σ is a letter-to-letter homomorphism

Remarks
I The size of Ω is polynomial wrt the size of a given CFG G

specifying L

I The language R is local
I Strings in D̂Ω ∩ R encode derivation trees of G



A Variant of the Chomsky-Schützenberger Theorem

Extended Dyck Language D̂Ω

I Balanced brackets padded with neutral symbols
I Ex. Ω = {(, ), [, ], |}, strings ||(|), (([|]|)[]||)|()[]|, . . .

Theorem ([Okhotin ’12])
L ⊆ Σ∗ is context-free iff L = h(D̂Ω ∩ R), where

I Ω is an extended bracket alphabet
I R ⊆ Ω∗ is regular
I h : Ω→ Σ is a letter-to-letter homomorphism

Remarks
I The size of Ω is polynomial wrt the size of a given CFG G

specifying L

I The language R is local
I Strings in D̂Ω ∩ R encode derivation trees of G



A Variant of the Chomsky-Schützenberger Theorem

Extended Dyck Language D̂Ω

I Balanced brackets padded with neutral symbols
I Ex. Ω = {(, ), [, ], |}, strings ||(|), (([|]|)[]||)|()[]|, . . .

Theorem ([Okhotin ’12])
L ⊆ Σ∗ is context-free iff L = h(D̂Ω ∩ R), where

I Ω is an extended bracket alphabet
I R ⊆ Ω∗ is regular
I h : Ω→ Σ is a letter-to-letter homomorphism

Remarks
I The size of Ω is polynomial wrt the size of a given CFG G

specifying L

I The language R is local
I Strings in D̂Ω ∩ R encode derivation trees of G



Chomsky-Schützenberger Theorem in the Unary Case

I G = (V , {a},P,S) unary CFG generating L(G )

I The membership to L(G ) can be witnessed by a sequence of
trees each one of height ≤ #V

�
�
�
�
��@

@
@
@
@@

�
�
�
�\
\
\
\

BB

�
�
�
�\
\
\
\�

�\
\

�
��

�
�\
\
D
D

A

A

⇒ +
�
�
�
�
��@

@
@
@
@@�

�
�
��

\
\
\
\\

�
�
A

�
�
�
�\
\
\
\�

�\
\

A

A

Then L(G ) = h(D̂
(#V )
ΩG

∩ R)

The “restricted extended” Dyck Language D̂
(#V )
ΩG

⊂ D̂ΩG

I contains only the strings with bracket nesting depth ≤ #V

I is recognized by a 2DFA of size polynomial wrt the size of G



Chomsky-Schützenberger Theorem in the Unary Case

I G = (V , {a},P,S) unary CFG generating L(G )

I The membership to L(G ) can be witnessed by a sequence of
trees each one of height ≤ #V

�
�
�
�
��@

@
@
@
@@

�
�
�
�\
\
\
\

BB

�
�
�
�\
\
\
\�

�\
\

�
��

�
�\
\
D
D

A

A

⇒ +
�
�
�
�
��@

@
@
@
@@�

�
�
��

\
\
\
\\

�
�
A

�
�
�
�\
\
\
\�

�\
\

A

A

Then L(G ) = h(D̂
(#V )
ΩG

∩ R)

The “restricted extended” Dyck Language D̂
(#V )
ΩG

⊂ D̂ΩG

I contains only the strings with bracket nesting depth ≤ #V

I is recognized by a 2DFA of size polynomial wrt the size of G



Chomsky-Schützenberger Theorem in the Unary Case

I G = (V , {a},P,S) unary CFG generating L(G )

I The membership to L(G ) can be witnessed by a sequence of
trees each one of height ≤ #V

�
�
�
�
��@

@
@
@
@@

�
�
�
�\
\
\
\

BB

�
�
�
�\
\
\
\�

�\
\

�
��

�
�\
\
D
D

A

A ⇒ +
�
�
�
�
��@

@
@
@
@@�

�
�
��

\
\
\
\\

�
�
A

�
�
�
�\
\
\
\�

�\
\

A

A

Then L(G ) = h(D̂
(#V )
ΩG

∩ R)

The “restricted extended” Dyck Language D̂
(#V )
ΩG

⊂ D̂ΩG

I contains only the strings with bracket nesting depth ≤ #V

I is recognized by a 2DFA of size polynomial wrt the size of G



Chomsky-Schützenberger Theorem in the Unary Case

I G = (V , {a},P,S) unary CFG generating L(G )

I The membership to L(G ) can be witnessed by a sequence of
trees each one of height ≤ #V

�
�
�
�
��@

@
@
@
@@

�
�
�
�\
\
\
\

BB

�
�
�
�\
\
\
\�

�\
\

�
��

�
�\
\

D
D

A

A

⇒ +
�
�
�
�
��@

@
@
@
@@�

�
�
��

\
\
\
\\

�
�
A

�
�
�
�\
\
\
\�

�\
\

A

A

Then L(G ) = h(D̂
(#V )
ΩG

∩ R)

The “restricted extended” Dyck Language D̂
(#V )
ΩG

⊂ D̂ΩG

I contains only the strings with bracket nesting depth ≤ #V

I is recognized by a 2DFA of size polynomial wrt the size of G



Chomsky-Schützenberger Theorem in the Unary Case

I G = (V , {a},P,S) unary CFG generating L(G )

I The membership to L(G ) can be witnessed by a sequence of
trees each one of height ≤ #V

�
�
�
�
��@

@
@
@
@@�

�
�
�\
\
\
\

BB

�
�
�
�\
\
\
\�

�\
\

�
��

�
�\
\
D
D

A

A ⇒ +
�
�
�
�
��@

@
@
@
@@�

�
�
��

\
\
\
\\

�
�
A

�
�
�
�\
\
\
\�

�\
\

A

A

Then L(G ) = h(D̂
(#V )
ΩG

∩ R)

The “restricted extended” Dyck Language D̂
(#V )
ΩG

⊂ D̂ΩG

I contains only the strings with bracket nesting depth ≤ #V

I is recognized by a 2DFA of size polynomial wrt the size of G



Chomsky-Schützenberger Theorem in the Unary Case

I G = (V , {a},P,S) unary CFG generating L(G )

I The membership to L(G ) can be witnessed by a sequence of
trees each one of height ≤ #V

�
�
�
�
��@

@
@
@
@@�

�
�
�\
\
\
\

BB

�
�
�
�\
\
\
\�

�\
\

�
��

�
�\
\
D
D

A

A ⇒ +
�
�
�
�
��@

@
@
@
@@�

�
�
��

\
\
\
\\

�
�
A

�
�
�
�\
\
\
\�

�\
\

A

A

Then L(G ) = h(D̂
(#V )
ΩG

∩ R)

The “restricted extended” Dyck Language D̂
(#V )
ΩG

⊂ D̂ΩG

I contains only the strings with bracket nesting depth ≤ #V

I is recognized by a 2DFA of size polynomial wrt the size of G



Chomsky-Schützenberger Theorem in the Unary Case

I G = (V , {a},P,S) unary CFG generating L(G )

I The membership to L(G ) can be witnessed by a sequence of
trees each one of height ≤ #V

�
�
�
�
��@

@
@
@
@@�

�
�
�\
\
\
\

BB

�
�
�
�\
\
\
\�

�\
\

�
��

�
�\
\
D
D

A

A ⇒ +
�
�
�
�
��@

@
@
@
@@�

�
�
��

\
\
\
\\

�
�
A

�
�
�
�\
\
\
\�

�\
\

A

A

Then L(G ) = h(D̂
(#V )
ΩG

∩ R)

The “restricted extended” Dyck Language D̂
(#V )
ΩG

⊂ D̂ΩG

I contains only the strings with bracket nesting depth ≤ #V

I is recognized by a 2DFA of size polynomial wrt the size of G



A 1-LA Accepting L(G ) = h(D̂
(#V )
ΩG

∩ R)

1. Input am

2. Guess w ∈ h−1(am)
I Scan the tape from left to right
I Rewrite each input cell with a symbol from ΩG

3. Check if w ∈ D̂
(#V )
ΩG

I 2DFA of polynomial size

4. Check if w ∈ R
I DFA of polynomial size

Summing up:
I Each cell is rewritten only in the first visit
I The total size of the resulting 1-LA is polynomial



A 1-LA Accepting L(G ) = h(D̂
(#V )
ΩG

∩ R)

1. Input am

2. Guess w ∈ h−1(am)
I Scan the tape from left to right
I Rewrite each input cell with a symbol from ΩG

3. Check if w ∈ D̂
(#V )
ΩG

I 2DFA of polynomial size

4. Check if w ∈ R
I DFA of polynomial size

Summing up:
I Each cell is rewritten only in the first visit
I The total size of the resulting 1-LA is polynomial



A 1-LA Accepting L(G ) = h(D̂
(#V )
ΩG

∩ R)

1. Input am

2. Guess w ∈ h−1(am)
I Scan the tape from left to right
I Rewrite each input cell with a symbol from ΩG

3. Check if w ∈ D̂
(#V )
ΩG

I 2DFA of polynomial size

4. Check if w ∈ R
I DFA of polynomial size

Summing up:
I Each cell is rewritten only in the first visit
I The total size of the resulting 1-LA is polynomial



A 1-LA Accepting L(G ) = h(D̂
(#V )
ΩG

∩ R)

1. Input am

2. Guess w ∈ h−1(am)
I Scan the tape from left to right
I Rewrite each input cell with a symbol from ΩG

3. Check if w ∈ D̂
(#V )
ΩG

I 2DFA of polynomial size

4. Check if w ∈ R
I DFA of polynomial size

Summing up:
I Each cell is rewritten only in the first visit
I The total size of the resulting 1-LA is polynomial



A 1-LA Accepting L(G ) = h(D̂
(#V )
ΩG

∩ R)

1. Input am

2. Guess w ∈ h−1(am)
I Scan the tape from left to right
I Rewrite each input cell with a symbol from ΩG

3. Check if w ∈ D̂
(#V )
ΩG

I 2DFA of polynomial size

4. Check if w ∈ R
I DFA of polynomial size

Summing up:
I Each cell is rewritten only in the first visit
I The total size of the resulting 1-LA is polynomial



Unary CFGs vs Limited Automata

We proved that

Theorem
The conversion of unary CFGs into 1-LAs is polynomial in size

Problems

I Cost of the converse conversion, i.e., (unary) 1-LAs → CFGs
General alphabets: 2-LAs → CFGs is exponential in size

I Conversion of unary CFGs into deterministic limited automata



Unary CFGs vs Limited Automata

We proved that

Theorem
The conversion of unary CFGs into 1-LAs is polynomial in size

Problems

I Cost of the converse conversion, i.e., (unary) 1-LAs → CFGs
General alphabets: 2-LAs → CFGs is exponential in size

I Conversion of unary CFGs into deterministic limited automata



Unary CFGs vs Limited Automata

We proved that

Theorem
The conversion of unary CFGs into 1-LAs is polynomial in size

Problems

I Cost of the converse conversion, i.e., (unary) 1-LAs → CFGs
General alphabets: 2-LAs → CFGs is exponential in size

I Conversion of unary CFGs into deterministic limited automata



Thank you for your attention!


	  Unary 1-LA vs Finite AutomataThe Exponential Separation  
	Unary CFGs vs Limited Automata
	Thank you for your attention!

