Limited Automata and Unary Languages

Giovanni Pighizzini and Luca Prigioniero

Dipartimento di Informatica
Universita degli Studi di Milano, Italy

DLT 2017 — Liege
August 7-11, 2017

UNIVERSITA DEGLI STUDI
DI MILANO

Limited Automata [Hibbard '67]

One-tape Turing machines with restricted rewritings
Definition
Fixed an integer d > 1, a d-limited automaton is

> a one-tape Turing machine

» which is allowed to rewrite the content of each tape cell
only in the first d visits

Example: 2-LA for the Dyck Language over {[], ()}

Idea:
» Move to the right to search a closed bracket and rewrite it
» Then move to the left, to search an open bracket.

If it is of the same type, then rewrite it and repeat

e
f

Example: 2-LA for the Dyck Language over {[], ()}

Idea:
» Move to the right to search a closed bracket and rewrite it
» Then move to the left, to search an open bracket.

If it is of the same type, then rewrite it and repeat

e
f

Example: 2-LA for the Dyck Language over {[], ()}

Idea:
» Move to the right to search a closed bracket and rewrite it
» Then move to the left, to search an open bracket.

If it is of the same type, then rewrite it and repeat

EITM(M)M]\

Example: 2-LA for the Dyck Language over {[], ()}

Idea:
» Move to the right to search a closed bracket and rewrite it
» Then move to the left, to search an open bracket.

If it is of the same type, then rewrite it and repeat

L e]
f

Example: 2-LA for the Dyck Language over {[], ()}

Idea:
» Move to the right to search a closed bracket and rewrite it
» Then move to the left, to search an open bracket.

If it is of the same type, then rewrite it and repeat

>EFH<\<\>\>\1\<*

Example: 2-LA for the Dyck Language over {[], ()}

Idea:
» Move to the right to search a closed bracket and rewrite it
» Then move to the left, to search an open bracket.

If it is of the same type, then rewrite it and repeat

\/l\<\<\>\>\l\ﬂ

Example: 2-LA for the Dyck Language over {[], ()}

Idea:
» Move to the right to search a closed bracket and rewrite it
» Then move to the left, to search an open bracket.

If it is of the same type, then rewrite it and repeat

>F[\<M>Ml\<

Example: 2-LA for the Dyck Language over {[], ()}

Idea:
» Move to the right to search a closed bracket and rewrite it
» Then move to the left, to search an open bracket.

If it is of the same type, then rewrite it and repeat

>F[\<M>Ml\<

Example: 2-LA for the Dyck Language over {[], ()}

Idea:
» Move to the right to search a closed bracket and rewrite it
» Then move to the left, to search an open bracket.

If it is of the same type, then rewrite it and repeat

>F[\<M>Ml\<

Example: 2-LA for the Dyck Language over {[], ()}

Idea:
» Move to the right to search a closed bracket and rewrite it
» Then move to the left, to search an open bracket.

If it is of the same type, then rewrite it and repeat

>q[\<\<\>\>\l\<

Example: 2-LA for the Dyck Language over {[], ()}

Idea:
» Move to the right to search a closed bracket and rewrite it
» Then move to the left, to search an open bracket.

If it is of the same type, then rewrite it and repeat

>-%M(M>\l\<

Example: 2-LA for the Dyck Language over {[], ()}

Idea:
» Move to the right to search a closed bracket and rewrite it
» Then move to the left, to search an open bracket.

If it is of the same type, then rewrite it and repeat

g nnnnig

Example: 2-LA for the Dyck Language over {[], ()}

Idea:
» Move to the right to search a closed bracket and rewrite it
» Then move to the left, to search an open bracket.

If it is of the same type, then rewrite it and repeat

>-[|<\§\>\>\l\<

Example: 2-LA for the Dyck Language over {[], ()}

Idea:
» Move to the right to search a closed bracket and rewrite it
» Then move to the left, to search an open bracket.

If it is of the same type, then rewrite it and repeat

>-[|<|<\;\>\1\<

Example: 2-LA for the Dyck Language over {[], ()}

Idea:
» Move to the right to search a closed bracket and rewrite it
» Then move to the left, to search an open bracket.

If it is of the same type, then rewrite it and repeat

>-[|<|<|?\>\l\d

Example: 2-LA for the Dyck Language over {[], ()}

Idea:
» Move to the right to search a closed bracket and rewrite it
» Then move to the left, to search an open bracket.

If it is of the same type, then rewrite it and repeat

>-[|(|(F)M1

Example: 2-LA for the Dyck Language over {[], ()}

Idea:
» Move to the right to search a closed bracket and rewrite it
» Then move to the left, to search an open bracket.

If it is of the same type, then rewrite it and repeat

>-[|<|§I>M<

A

Example: 2-LA for the Dyck Language over {[], ()}

Idea:
» Move to the right to search a closed bracket and rewrite it
» Then move to the left, to search an open bracket.

If it is of the same type, then rewrite it and repeat

>-[|(F)\1\<%

Example: 2-LA for the Dyck Language over {[], ()}

Idea:
» Move to the right to search a closed bracket and rewrite it
» Then move to the left, to search an open bracket.

If it is of the same type, then rewrite it and repeat

;-[|(F)M<

Example: 2-LA for the Dyck Language over {[], ()}

Idea:
» Move to the right to search a closed bracket and rewrite it
» Then move to the left, to search an open bracket.

If it is of the same type, then rewrite it and repeat

ﬂ>-[|(q)\1\<

Example: 2-LA for the Dyck Language over {[], ()}

Idea:
» Move to the right to search a closed bracket and rewrite it
» Then move to the left, to search an open bracket.

If it is of the same type, then rewrite it and repeat

>-[|<-%\1\<

Example: 2-LA for the Dyck Language over {[], ()}

Idea:
» Move to the right to search a closed bracket and rewrite it
» Then move to the left, to search an open bracket.

If it is of the same type, then rewrite it and repeat

NN DOig

Example: 2-LA for the Dyck Language over {[], ()}

Idea:
» Move to the right to search a closed bracket and rewrite it
» Then move to the left, to search an open bracket.

If it is of the same type, then rewrite it and repeat

g nn B
—

Example: 2-LA for the Dyck Language over {[], ()}

Idea:
» Move to the right to search a closed bracket and rewrite it
» Then move to the left, to search an open bracket.

If it is of the same type, then rewrite it and repeat

I] .|
—

Example: 2-LA for the Dyck Language over {[], ()}

Idea:
» Move to the right to search a closed bracket and rewrite it
» Then move to the left, to search an open bracket.

If it is of the same type, then rewrite it and repeat

I .|
—

Example: 2-LA for the Dyck Language over {[], ()}

Idea:
» Move to the right to search a closed bracket and rewrite it
» Then move to the left, to search an open bracket.

If it is of the same type, then rewrite it and repeat

g B
—

Example: 2-LA for the Dyck Language over {[], ()}

Idea:
» Move to the right to search a closed bracket and rewrite it
» Then move to the left, to search an open bracket.

If it is of the same type, then rewrite it and repeat

> <
%

Example: 2-LA for the Dyck Language over {[], ()}

Idea:
» Move to the right to search a closed bracket and rewrite it
» Then move to the left, to search an open bracket.

If it is of the same type, then rewrite it and repeat

> <
—

Example: 2-LA for the Dyck Language over {[], ()}

Idea:
» Move to the right to search a closed bracket and rewrite it
» Then move to the left, to search an open bracket.

If it is of the same type, then rewrite it and repeat

> <
—

Example: 2-LA for the Dyck Language over {[], ()}

Idea:
» Move to the right to search a closed bracket and rewrite it
» Then move to the left, to search an open bracket.

If it is of the same type, then rewrite it and repeat

> <
—

Example: 2-LA for the Dyck Language over {[], ()}

Idea:
» Move to the right to search a closed bracket and rewrite it
» Then move to the left, to search an open bracket.

If it is of the same type, then rewrite it and repeat

> <
—

Example: 2-LA for the Dyck Language over {[], ()}

Idea:
» Move to the right to search a closed bracket and rewrite it
» Then move to the left, to search an open bracket.

If it is of the same type, then rewrite it and repeat

> <
—

Example: 2-LA for the Dyck Language over {[], ()}

Idea:
» Move to the right to search a closed bracket and rewrite it
» Then move to the left, to search an open bracket.

If it is of the same type, then rewrite it and repeat

R
H

Example: 2-LA for the Dyck Language over {[], ()}

Idea:
» Move to the right to search a closed bracket and rewrite it
» Then move to the left, to search an open bracket.

If it is of the same type, then rewrite it and repeat

N 5 -
%

Example: 2-LA for the Dyck Language over {[], ()}

Idea:
» Move to the right to search a closed bracket and rewrite it
» Then move to the left, to search an open bracket.

If it is of the same type, then rewrite it and repeat

> <
%

Example: 2-LA for the Dyck Language over {[], ()}

Idea:
» Move to the right to search a closed bracket and rewrite it
» Then move to the left, to search an open bracket.

If it is of the same type, then rewrite it and repeat

> <
%

Example: 2-LA for the Dyck Language over {[], ()}

Idea:
» Move to the right to search a closed bracket and rewrite it
» Then move to the left, to search an open bracket.

If it is of the same type, then rewrite it and repeat

> <
%

Example: 2-LA for the Dyck Language over {[], ()}

Idea:
» Move to the right to search a closed bracket and rewrite it
» Then move to the left, to search an open bracket.

If it is of the same type, then rewrite it and repeat

> <
%

Example: 2-LA for the Dyck Language over {[], ()}

Idea:
» Move to the right to search a closed bracket and rewrite it
» Then move to the left, to search an open bracket.

If it is of the same type, then rewrite it and repeat

> <
%

Example: 2-LA for the Dyck Language over {[], ()}

Idea:
» Move to the right to search a closed bracket and rewrite it
» Then move to the left, to search an open bracket.

If it is of the same type, then rewrite it and repeat

> <
<7

Example: 2-LA for the Dyck Language over {[], ()}

Idea:
» Move to the right to search a closed bracket and rewrite it
» Then move to the left, to search an open bracket.

If it is of the same type, then rewrite it and repeat

> <
—

Example: 2-LA for the Dyck Language over {[], ()}

Idea:
» Move to the right to search a closed bracket and rewrite it
» Then move to the left, to search an open bracket.

If it is of the same type, then rewrite it and repeat

> <
—

Example: 2-LA for the Dyck Language over {[], ()}

Idea:
» Move to the right to search a closed bracket and rewrite it
» Then move to the left, to search an open bracket.

If it is of the same type, then rewrite it and repeat

> <
—

Example: 2-LA for the Dyck Language over {[], ()}

Idea:
» Move to the right to search a closed bracket and rewrite it
» Then move to the left, to search an open bracket.

If it is of the same type, then rewrite it and repeat

> <
—

Example: 2-LA for the Dyck Language over {[], ()}

Idea:
» Move to the right to search a closed bracket and rewrite it
» Then move to the left, to search an open bracket.

If it is of the same type, then rewrite it and repeat

> <
—

Example: 2-LA for the Dyck Language over {[], ()}

Idea:
» Move to the right to search a closed bracket and rewrite it
» Then move to the left, to search an open bracket.

If it is of the same type, then rewrite it and repeat

nnnRnnany

— f

Example: 2-LA for the Dyck Language over {[], ()}

Idea:
» Move to the right to search a closed bracket and rewrite it
» Then move to the left, to search an open bracket.

If it is of the same type, then rewrite it and repeat

nnnRnnany

fe—

Example: 2-LA for the Dyck Language over {[], ()}

Idea:
» Move to the right to search a closed bracket and rewrite it
» Then move to the left, to search an open bracket.

If it is of the same type, then rewrite it and repeat

> <
<7

Example: 2-LA for the Dyck Language over {[], ()}

Idea:
» Move to the right to search a closed bracket and rewrite it
» Then move to the left, to search an open bracket.

If it is of the same type, then rewrite it and repeat

> <
<7

Example: 2-LA for the Dyck Language over {[], ()}

Idea:
» Move to the right to search a closed bracket and rewrite it
» Then move to the left, to search an open bracket.

If it is of the same type, then rewrite it and repeat

> <
<7

Example: 2-LA for the Dyck Language over {[], ()}

Idea:
» Move to the right to search a closed bracket and rewrite it
» Then move to the left, to search an open bracket.

If it is of the same type, then rewrite it and repeat

> <
<7

Example: 2-LA for the Dyck Language over {[], ()}

Idea:
» Move to the right to search a closed bracket and rewrite it
» Then move to the left, to search an open bracket.

If it is of the same type, then rewrite it and repeat

> <
<7

Example: 2-LA for the Dyck Language over {[], ()}

Idea:
» Move to the right to search a closed bracket and rewrite it
» Then move to the left, to search an open bracket.

If it is of the same type, then rewrite it and repeat

> <
<7

Example: 2-LA for the Dyck Language over {[], ()}

Idea:
» Move to the right to search a closed bracket and rewrite it
» Then move to the left, to search an open bracket.

If it is of the same type, then rewrite it and repeat

> <
<7

Example: 2-LA for the Dyck Language over {[], ()}

Idea:
» Move to the right to search a closed bracket and rewrite it
» Then move to the left, to search an open bracket.

If it is of the same type, then rewrite it and repeat

> <
<7

Example: 2-LA for the Dyck Language over {[], ()}

Idea:
» Move to the right to search a closed bracket and rewrite it
» Then move to the left, to search an open bracket.

If it is of the same type, then rewrite it and repeat

nnnRnnan

t yes!

Each cell is rewritten only in the first 2 visits!

Limited Automata [Hibbard '67]

One-tape Turing machines with restricted rewritings
Definition
Fixed an integer d > 1, a d-limited automaton is

> a one-tape Turing machine

» which is allowed to rewrite the content of each tape cell
only in the first d visits

Limited Automata [Hibbard '67]

One-tape Turing machines with restricted rewritings
Definition
Fixed an integer d > 1, a d-limited automaton is

> a one-tape Turing machine

» which is allowed to rewrite the content of each tape cell
only in the first d visits

Computational power

» For each d > 2, d-limited automata characterize
context-free languages [Hibbard '67]

» 1-limited automata characterize regular languages
[Wagner&Wechsung '86]

Descriptional Complexity: Limited Automata vs PDAs

» d =2 [P.&Pisoni'15]

Descriptional Complexity: Limited Automata vs PDAs

» d =2 [P.&Pisoni'15]

2-LAs — PDAs
Exponential gap

Descriptional Complexity: Limited Automata vs PDAs

» d =2 [P.&Pisoni'15]

2-LAs — PDAs
Exponential gap

PDAs — 2-LAs

Polynomial upper bound

Descriptional Complexity: Limited Automata vs PDAs

» d =2 [P.&Pisoni'15]

2-LAs — PDAs

PDAs — 2-LAs
Exponential gap

Polynomial upper bound

» d > 2 [Kutrib&P.&Wendlandt to app.]
d-LAs — PDAs

Still exponential!

Descriptional Complexity: Limited vs Finite Automata

» d=1 [P.&Pisoni 14]

n-state 1-LAs — finite automata
DFA NFA

nondet. 1-LA
det. 1-LA

Descriptional Complexity: Limited vs Finite Automata

» d=1 [P.&Pisoni 14]

n-state 1-LAs — finite automata
DFA NFA

nondet. 1-LA n2"
det. 1-LA

Descriptional Complexity: Limited vs Finite Automata

» d=1 [P.&Pisoni 14]

n-state 1-LAs — finite automata
DFA NFA

2
nondet. 1-LA on-2" n-2"
det. 1-LA

2

Descriptional Complexity: Limited vs Finite Automata

» d=1 [P.&Pisoni 14]

n-state 1-LAs — finite automata
DFA NFA

2
nondet. 1-LA s n-2"
det. I-LA | n-(n+1)" | n-(n+1)"

2

Descriptional Complexity: Limited vs Finite Automata

» d=1 [P.&Pisoni 14]

n-state 1-LAs — finite automata
DFA NFA

2
nondet. 1-LA s n-2"
det. I-LA | n-(n+1)" | n-(n+1)"

2

» The gaps are optimal! (binary witness)

Descriptional Complexity: Limited vs Finite Automata

» d=1 [P.&Pisoni 14]

n-state 1-LAs — finite automata
DFA NFA

2
nondet. 1-LA s n-2"
det. I-LA | n-(n+1)" | n-(n+1)"

2

» The gaps are optimal! (binary witness)

What about the unary case?

The Unary Case, d =1

Theorem ([P.&Pisoni '14])
For n prime, the language {a™ }*:
> s accepted by a 1-LA with n+ 1 states and a constant size

tape alphabet

2

> requires n° many states to be accepted be a 2NFA

= Quadratic lower bound for the simulation
of unary 1-LAs by finite automata

The Unary Case, d =1

Theorem ([Kutrib&Wendlandt '15])
For n prime, the language {a™"("}:
> js accepted by a 1-LA with 4n states and a tape alphabet
with n + 1 symbols

> requires n - F(n) many states to be accepted be a 2NFA
where F(n) = eV ™" (mA+o() (] andau function)

= Superpolynomial lower bound for the simulation
of unary 1-LAs by finite automata

The Unary Case, d =1

Theorem ([Kutrib&Wendlandt '15])
For n prime, the language {a™"("}:
> js accepted by a 1-LA with 4n states and a tape alphabet
with n + 1 symbols

> requires n - F(n) many states to be accepted be a 2NFA
where F(n) = eV ™" (mA+o() (] andau function)

= Superpolynomial lower bound for the simulation
of unary 1-LAs by finite automata

This paper: Exponential lower bound

The Unary Case, d > 1

> d-LA = CFLs (d > 1)
» Each unary CFL is regular [Ginsburg&Rice '62]
= unary d-LA = unary REG

The Unary Case, d > 1

> d-LA = CFLs (d > 1)
» Each unary CFL is regular [Ginsburg&Rice '62]
= unary d-LA = unary REG

Theorem ([P.&Pisoni '15])
For n > 0, the language {a*"}*:
> is accepted by a deterministic 2-LA of size O(n)
> requires 2" many states to be accepted by a 2NFA

=- Exponential lower bound for the simulation
of unary 2-LAs by finite automata

The Unary Case, d > 1

> d-LA = CFLs (d > 1)
» Each unary CFL is regular [Ginsburg&Rice '62]
= unary d-LA = unary REG

Theorem ([P.&Pisoni '15])
For n > 0, the language {a*"}*:
> is accepted by a deterministic 2-LA of size O(n)
> requires 2" many states to be accepted by a 2NFA

=- Exponential lower bound for the simulation
of unary 2-LAs by finite automata

This paper: Same lower bound for the simulation of unary 1-LAs

Unary 1-LA vs Finite Automata
The Exponential Separation

The Witness Language

» Fixed n > 0: L, = {a*"}
» The smallest NFA accepting L, has 2" + 1 many states

» We show the existence of a deterministic 1-LA of O(n) size

accepting L,

A Linear Bounded Automaton for L, = {a*'}

Idea: “divide” the input n times by 2

c[ale el =[]]-]e]]=]]]]]7]-

A Linear Bounded Automaton for L, = {a*'}

Idea: “divide” the input n times by 2

Gl [e oo oo e [e[e[s]+ [[[-[s]-

» Make n sweeps of the tape

» At each sweep overwrite each “odd” a

A Linear Bounded Automaton for L, = {a*'}

Idea: “divide” the input n times by 2

s x|alx]a]x]a]x]a|x]a|x]a]|x]a]|x]a]-

» Make n sweeps of the tape

» At each sweep overwrite each “odd” a

A Linear Bounded Automaton for L, = {a*'}

Idea: “divide” the input n times by 2

sxxxa x| xx]a x| x|x]a|x]|x][x]a]-

» Make n sweeps of the tape

» At each sweep overwrite each “odd” a

A Linear Bounded Automaton for L, = {a*'}

Idea: “divide” the input n times by 2

s xxx I xxxxa [xx x xx x| x] a |

» Make n sweeps of the tape

» At each sweep overwrite each “odd” a

A Linear Bounded Automaton for L, = {a*'}

Idea: “divide” the input n times by 2

s xx I xxxxxd x x x x x x x| <

» Make n sweeps of the tape
» At each sweep overwrite each “odd” a

» Accept if only one a is left on the tape

A Linear Bounded Automaton for L, = {a*'}

Idea: “divide” the input n times by 2

s xxxxxxxx x x x x x x x| <

» Make n sweeps of the tape
» At each sweep overwrite each “odd” a
» Accept if only one a is left on the tape

» O(n) states

A Linear Bounded Automaton for L, = {a*'}

Idea: “divide” the input n times by 2

Gl [e ool [o[- [s[:][]

Possible variation:

» Rewrite input symbols with the number of current sweep

A Linear Bounded Automaton for L, = {a*'}

Idea: “divide” the input n times by 2

~lofafofafofafo]alolajo|afo]a]o]a]-

Possible variation:

» Rewrite input symbols with the number of current sweep

A Linear Bounded Automaton for L, = {a*'}

Idea: “divide” the input n times by 2

~loft]ofafof1]o]alof1]o|afo]1]0]a]-

Possible variation:

» Rewrite input symbols with the number of current sweep

A Linear Bounded Automaton for L, = {a*'}

Idea: “divide” the input n times by 2

~loft]of2]of1]o]alof1]o]2]0]1]0]a]

Possible variation:

» Rewrite input symbols with the number of current sweep

A Linear Bounded Automaton for L, = {a*'}

Idea: “divide” the input n times by 2

~loft]of2]of1]o]3]of1]o]2]0]1]0]a]

Possible variation:

» Rewrite input symbols with the number of current sweep

A Linear Bounded Automaton for L, = {a*'}

Idea: “divide” the input n times by 2

~[of1fo]2fofr]ofsfo]r]of2]of1]o]4]

Possible variation:

» Rewrite input symbols with the number of current sweep

A Linear Bounded Automaton for L, = {a*'}

Idea: “divide” the input n times by 2

>]0\1\0\2\0\1\0\3\0\1\0\2\0\1\0\4\Z

Possible variation:

» Rewrite input symbols with the number of current sweep

We can build a 1-LA that, for each tape cell,
guesses the number of the sweep
in which this linear bounded automaton rewrites the cell

A 1-Limited Automaton for L, = {azn}

Lofolafefa]a]e]a]a o o] 2 a]2]¢]

> Ist sweep:
For each cell, guess and write a symbol in {0,1,..., n}

A 1-Limited Automaton for L, = {azn}

[ofr]of2fo]r]ofs]ofr]o]2]ofr]o]4]

> Ist sweep:
For each cell, guess and write a symbol in {0,1,..., n}

A 1-Limited Automaton for L, = {azn}

[ofr]of2fo]r]ofs]ofr]o]2]ofr]o]4]

> Ist sweep:
For each cell, guess and write a symbol in {0,1,..., n}

> (i + 2)th sweep, i =0,...,n:
Verify that the symbol i occurs in all odd positions,
where positions are counted ignoring cells containing j < i

A 1-Limited Automaton for L, = {azn}

[ofr]of2fo]r]ofs]ofr]o]2]ofr]o]4]

> Ist sweep:
For each cell, guess and write a symbol in {0,1,..., n}

> (i + 2)th sweep, i =0,...,n:
Verify that the symbol i occurs in all odd positions,
where positions are counted ignoring cells containing j < i

A 1-Limited Automaton for L, = {a2"}

> 1st sweep:
For each cell, guess and write a symbol in {0,1,...,n}

> (i + 2)th sweep, i =0,...,n:
Verify that the symbol i occurs in all odd positions,
where positions are counted ignoring cells containing j < i

A 1-Limited Automaton for L, = {a2"}

- of

n =

> 1st sweep:
For each cell, guess and write a symbol in {0,1,...,n}

» (i +2)th sweep, i =0,...,n:
Verify that the symbol i occurs in all odd positions,
where positions are counted ignoring cells containing j < i

A 1-Limited Automaton for L, = {a2"}

> 4| <

n=24

> 1st sweep:
For each cell, guess and write a symbol in {0,1,...,n}

» (i +2)th sweep, i =0,...,n:
Verify that the symbol i occurs in all odd positions,
where positions are counted ignoring cells containing j < i

A 1-Limited Automaton for L, = {a2"}

n=24

> 1st sweep:
For each cell, guess and write a symbol in {0,1,...,n}

» (i +2)th sweep, i =0,...,n:
Verify that the symbol i occurs in all odd positions,
where positions are counted ignoring cells containing j < i

A 1-Limited Automaton for L, = {a2"}

n=24
> 1st sweep:

For each cell, guess and write a symbol in {0,1,...,n}

» (i +2)th sweep, i =0,...,n:
Verify that the symbol i occurs in all odd positions,
where positions are counted ignoring cells containing j < i

» Size O(n)

A 1-Limited Automaton for L, = {a2"}

n=24

> 1st sweep:
For each cell, guess and write a symbol in {0,1,...,n}

» (i +2)th sweep, i =0,...,n:
Verify that the symbol i occurs in all odd positions,
where positions are counted ignoring cells containing j < i

» Size O(n)
We can do better!

Size O(n), only deterministic transitions

The Binary Carry Sequence

The string written by the above linear bounded automaton is a
prefix of the binary carry sequence:

» First two elements: 0 1

The Binary Carry Sequence

The string written by the above linear bounded automaton is a
prefix of the binary carry sequence:

» First two elements: 0 1

> Next elements: w — ww’

m w part already constructed,
m w’ copy of w, with the last symbol replaced by its successor

The Binary Carry Sequence

The string written by the above linear bounded automaton is a
prefix of the binary carry sequence:

» First two elements: 0 1

> Next elements: w — ww’

m w part already constructed,
m w’ copy of w, with the last symbol replaced by its successor

0o 10 2 0 1 0 3

The Binary Carry Sequence

The string written by the above linear bounded automaton is a
prefix of the binary carry sequence:

» First two elements: 0 1

> Next elements: w — ww’

m w part already constructed,
m w’ copy of w, with the last symbol replaced by its successor

o1 0 2 01 0 3 01 0 2 0 1 0 4

The Binary Carry Sequence: Properties

» w; = prefix of length j of the binary carry sequence

» BIS(w;j) := Backward Increasing Sequence of w;

longest increasing sequence obtained with the greedy method
by inspecting w; from the end

wip= 0 1 0 2 0 1 0 3 0 1 O

The Binary Carry Sequence: Properties

» w; = prefix of length j of the binary carry sequence

» BIS(w;j) := Backward Increasing Sequence of w;

longest increasing sequence obtained with the greedy method
by inspecting w; from the end

wip= 0 1 0 2 0 1 0 3 0 1 O

BIS(WH) = 0

The Binary Carry Sequence: Properties

» w; = prefix of length j of the binary carry sequence

» BIS(w;j) := Backward Increasing Sequence of w;

longest increasing sequence obtained with the greedy method
by inspecting w; from the end

wipi= 0 1 0 2 0 1 0 3 0 1 O

BIS(WH) = 0 1

The Binary Carry Sequence: Properties

» w; = prefix of length j of the binary carry sequence

» BIS(w;j) := Backward Increasing Sequence of w;

longest increasing sequence obtained with the greedy method
by inspecting w; from the end

wip= 0 1 0 2 0 1 0 3 0 1 O

BIS(WH) = 0 1 3

The Binary Carry Sequence: Properties

» w; = prefix of length j of the binary carry sequence

» BIS(w;j) := Backward Increasing Sequence of w;

longest increasing sequence obtained with the greedy method
by inspecting w; from the end

wip= 0 1 0 2 0 1 0 3 0 1 O
BIS(WH):O 1 3

1= 20+20+2° Property 1

BIS(wj) = positions of 1s in
the binary representation of j

The Binary Carry Sequence: Properties

wiz= 0 1 0 2 0 1 0 3 0 1 0
BIS(wi1)= 0 1 3

11 = 20 + 21 + 23

The Binary Carry Sequence: Properties
wiz= 0 1 0 2 0 1 0 3 0 1 0
BIS(wi)= 0 1 3

11= 20+ 20 + 23

12 = 22 + 28

The Binary Carry Sequence: Properties

wii= 0 1 0 2 0 1 0 3 0 1 0
BIS(w;1)= 0 1 3

11 = 20 + 2t 4 23

12 = 22 + 28

BIS(wi2) = 2 3

The Binary Carry Sequence: Properties

wii= 0 1 0 2 0 1 0 3 0 1 0
BIS(wi1)= 0 1 3

11 = 20 + 2t 4 23

12 = 22 + 28
BIS(wi2) = 2 3

wi2= 0 1 0 2 0 1 0 3 0 1 0 2

The Binary Carry Sequence: Properties

wii= 0 1 0 2 0 1 0 3 0 1 0
BIS(wi1)= 0 1 3
11 = 20 + 2t 4 23
12 = 22 + 28
BIS(wi2) = 2 3
wp= 0 1 0 2 0 1 0 3 0 1 0 2

Property 2

The symbol of the binary carry sequence in
position j 4 1 is the smallest nonnegative
integer that does not occur in BIS(w;)

A Deterministic 1-LA for L, = {a*"}

Idea: Write on the tape prefixes of the binary carry sequence

A Deterministic 1-LA for L, = {a*"}

Idea: Write on the tape prefixes of the binary carry sequence

n==4

c[o]a]e]]=[e]]-]e]]=]]]]]7]-

» 0 is written on the first cell

A Deterministic 1-LA for L, = {a*"}

Idea: Write on the tape prefixes of the binary carry sequence

~loft]of2]of1]o]3]o]1]o|ala]a]a]a]=

0
» 0 is written on the first cell

» For j > 0, with w; on the first j cells, head on cell j:

A Deterministic 1-LA for L, = {a*"}

Idea: Write on the tape prefixes of the binary carry sequence

» 0 is written on the first cell

» For j > 0, with w; on the first j cells, head on cell j:

m Compute the smallest i ¢ BIS(w;),
inspecting the left part of the tape

A Deterministic 1-LA for L, = {a*"}

Idea: Write on the tape prefixes of the binary carry sequence

>

<
<

o[1]of2]o|1]|o]3]of1]o]a]alala]a
f

» 0 is written on the first cell

» For j > 0, with w; on the first j cells, head on cell j:
m Compute the smallest i ¢ BIS(w;),
inspecting the left part of the tape

m Move to the right to search the first cell containing a
m Write / on that cell

A Deterministic 1-LA for L, = {a*"}

Idea: Write on the tape prefixes of the binary carry sequence

~lo|1]of2]of1]o]3]0]1]0]

[[-]+]7]-

2
» 0 is written on the first cell

» For j > 0, with w; on the first j cells, head on cell j:

m Compute the smallest i ¢ BIS(w;),

inspecting the left part of the tape
m Move to the right to search the first cell containing a
m Write i on that cell

A Deterministic 1-LA for L, = {a*"}

Idea: Write on the tape prefixes of the binary carry sequence

~lo|t]of2]of1]o]3]o]1]0]2]

|a]a]a]-<

0
» 0 is written on the first cell

» For j > 0, with w; on the first j cells, head on cell j:

m Compute the smallest i ¢ BIS(w;),

inspecting the left part of the tape
m Move to the right to search the first cell containing a
m Write i on that cell

A Deterministic 1-LA for L, = {a*"}

Idea: Write on the tape prefixes of the binary carry sequence

~loft]of2]of1]o]3]o]1]0][2]0]

5] -

1
» 0 is written on the first cell

» For j > 0, with w; on the first j cells, head on cell j:

m Compute the smallest i ¢ BIS(w;),

inspecting the left part of the tape
m Move to the right to search the first cell containing a
m Write i on that cell

A Deterministic 1-LA for L, = {a*"}

Idea: Write on the tape prefixes of the binary carry sequence

BE

~loft]of2]of1]o]3]o]1]o2]0]1]

0
» 0 is written on the first cell

» For j > 0, with w; on the first j cells, head on cell j:

m Compute the smallest i ¢ BIS(w;),

inspecting the left part of the tape
m Move to the right to search the first cell containing a
m Write i on that cell

A Deterministic 1-LA for L, = {a*"}

Idea: Write on the tape prefixes of the binary carry sequence

<
<

~lof1]of2][of1]o]3]o]1]o][2][0]1]0]

4
» 0 is written on the first cell

» For j > 0, with w; on the first j cells, head on cell j:

m Compute the smallest i ¢ BIS(w;),

inspecting the left part of the tape
m Move to the right to search the first cell containing a
m Write i on that cell

» When n is written on a cell:

m Move one position to the right
m Accept iff the current cell contains the right endmarker

A Deterministic 1-LA for L, = {a*"}

Idea: Write on the tape prefixes of the binary carry sequence

<
<

~loft]of2]of1]o]3]o]1]o[2][0][1]0]4

» 0 is written on the first cell

» For j > 0, with w; on the first j cells, head on cell j:

m Compute the smallest i ¢ BIS(w;),

inspecting the left part of the tape
m Move to the right to search the first cell containing a
m Write i on that cell

» When n is written on a cell:

m Move one position to the right
m Accept iff the current cell contains the right endmarker

A Deterministic 1-LA for L, = {a*"}

Idea: Write on the tape prefixes of the binary carry sequence

~loft]of2]of1]o]3]of1]o|2]o0]1]0]4]~

» Each cell is rewritten only in the first visit

A Deterministic 1-LA for L, = {a*"}

Idea: Write on the tape prefixes of the binary carry sequence

~loft]of2]of1]o]3]of1]o|2]o0]1]0]4]~

» Each cell is rewritten only in the first visit
» Tape alphabet {0,..., n}

A Deterministic 1-LA for L, = {a*"}

Idea: Write on the tape prefixes of the binary carry sequence

~loftfof2]of1]o]3]of1]o|2]0]1]0]4]-

» Each cell is rewritten only in the first visit
» Tape alphabet {0, ..., n}
» Finite state control with O(n) states

A Deterministic 1-LA for L, = {a*"}

Idea: Write on the tape prefixes of the binary carry sequence

~loftfof2]of1]o]3]of1]o|2]0]1]0]4]-

» Each cell is rewritten only in the first visit
» Tape alphabet {0, ..., n}
» Finite state control with O(n) states

» Total size of the description O(n)

Unary 1-LA vs Finite Automata: Upper and Lower Bounds

det-1-LAs — NFAs/DFAs
ndet-1-LAs — NFAs
Exponential gap

[.b. our result

u.b. general case

Unary 1-LA vs Finite Automata: Upper and Lower Bounds

det-1-LAs — NFAs/DFAs
ndet-1-LAs — NFAs
Exponential gap

[.b. our result

u.b. general case

The gap does not change

in the conversion into
two-way automata

Unary 1-LA vs Finite Automata: Upper and Lower Bounds

det-1-LAs — NFAs/DFAs
ndet-1-LAs — NFAs
Exponential gap

[.b. our result

u.b. general case ndet-1-LAs — DFAs
The gap does not change

in the conversion into
two-way automata

l.b. exp (our result)
u.b. exp exp (general case)

Unary 1-LA vs Finite Automata: Upper and Lower Bounds

det-1-LAs — NFAS/DFAS
ndet-1-LAs — NFAs

Exponential gap
[.b. our result
u.b. general case ndet-1-LAs — DFAs

The gap does not change
in the conversion into
two-way automata

l.b. exp (our result)
u.b. exp exp (general case)

Problem
Can we reduce the distance
between I.b. and u.b.?

From Unary Finite Automata to 1-LAs

An exponential reduction is not always achievable:

Theorem

There is a constant c s.t. for each sufficiently large n
there is a unary n-state DFA s.t. all equivalent d-LAs have
descriptions of size > ¢ - n*/2, for each d > 0

Unary CFGs vs Limited Automata

Unary Context-Free Languages

Theorem ([Ginsburg&Rice '62])

Each unary context-free language is regular

Unary Context-Free Languages

Theorem ([Ginsburg&Rice '62])

Each unary context-free language is regular

Theorem ([P.&Shallit&Wang '02])

Each unary context-free grammar can be converted into equivalent
DFAs/NFAs of exponential size. These costs cannot be reduced

Unary Context-Free Languages

Theorem ([Ginsburg&Rice '62])
Each unary context-free language is regular

Theorem ([P.&Shallit&Wang '02])

Each unary context-free grammar can be converted into equivalent
DFAs/NFAs of exponential size. These costs cannot be reduced

Problem

Study the size relationships
between unary CFGs and
limited automata

Unary Context-Free Languages

Theorem ([Ginsburg&Rice '62])
Each unary context-free language is regular

Theorem ([P.&Shallit&Wang '02])

Each unary context-free grammar can be converted into equivalent
DFAs/NFAs of exponential size. These costs cannot be reduced

Problem :

: . [This work]
Study the size relationships _
between unary CFGs and The conversion
limited automata unary CFGs — 1-LAs

is polynomial in size

A Variant of the Chomsky-Schiitzenberger Theorem

Extended Dyck Language Dq

» Balanced brackets padded with neutral symbols

> Bx. Q@ =A{(), [11} strings [[(]). ((LIDTIDIODI -+

A Variant of the Chomsky-Schiitzenberger Theorem

Extended Dyck Language Dq

» Balanced brackets padded with neutral symbols

> Bx. Q@ =A{(), [11} strings [[(]). ((LIDTIDIODI -+

Theorem ([Okhotin '12])

L C ¥* is context-free iff L = h(BQ N R), where
» Q is an extended bracket alphabet
» R C Q* is regular

> h:Q — X is a letter-to-letter homomorphism

A Variant of the Chomsky-Schiitzenberger Theorem

Extended Dyck Language Dq

» Balanced brackets padded with neutral symbols

> Bx. Q@ =A{(), [11} strings [[(]). ((LIDTIDIODI -+

Theorem ([Okhotin '12])

L C ¥* is context-free iff L = h(BQ N R), where
» Q is an extended bracket alphabet
» R C Q* is regular

> h:Q — X is a letter-to-letter homomorphism

Remarks

» The size of Q is polynomial wrt the size of a given CFG G
specifying L
» The language R is local

» Strings in 59 N R encode derivation trees of G

Chomsky-Schiitzenberger Theorem in the Unary Case

» G =(V,{a},P,S) unary CFG generating L(G)

Chomsky-Schiitzenberger Theorem in the Unary Case

» G =(V,{a},P,S) unary CFG generating L(G)
» The membership to L(G) can be witnessed by a sequence of
trees each one of height < #V

Chomsky-Schiitzenberger Theorem in the Unary Case

» G =(V,{a},P,S) unary CFG generating L(G)
» The membership to L(G) can be witnessed by a sequence of
trees each one of height < #V

Chomsky-Schiitzenberger Theorem in the Unary Case

» G =(V,{a},P,S) unary CFG generating L(G)
» The membership to L(G) can be witnessed by a sequence of
trees each one of height < #V

Chomsky-Schiitzenberger Theorem in the Unary Case

» G =(V,{a},P,S) unary CFG generating L(G)
» The membership to L(G) can be witnessed by a sequence of
trees each one of height < #V

DN A A

Chomsky-Schiitzenberger Theorem in the Unary Case

» G =(V,{a},P,S) unary CFG generating L(G)
» The membership to L(G) can be witnessed by a sequence of
trees each one of height < #V

\\A

Then) = h(D #V NR)

Chomsky-Schiitzenberger Theorem in the Unary Case

» G =(V,{a},P,S) unary CFG generating L(G)
» The membership to L(G) can be witnessed by a sequence of
trees each one of height < #V

DN AN A

Then LthD#VﬂR

The “restricted extended” Dyck Language 5§(;iv) C 5QG
» contains only the strings with bracket nesting depth < #V

» is recognized by a 2DFA of size polynomial wrt the size of G

A 1-LA Accepting L(G) = h(b\g()iv) N R)

1. Input @™

A 1-LA Accepting L(G) = h(b\éﬁv) N R)

1. Input a™
2. Guess w € h~1(a™)

» Scan the tape from left to right
» Rewrite each input cell with a symbol from Q¢

A 1-LA Accepting L(G) = h([/)\g(ziv) N R)

1. Input a™
2. Guess w € h=1(a™)

» Scan the tape from left to right
» Rewrite each input cell with a symbol from Q¢

3. Check if w e DY)
» 2DFA of polynomial size

A 1-LA Accepting L(G) = h([/)\g(ziv) N R)

—_

. Input 8™
. Guess w € h=1(a™)

» Scan the tape from left to right
» Rewrite each input cell with a symbol from Q¢

3. Check if w € DY")
» 2DFA of polynomial size

4. Check if w € R
» DFA of polynomial size

N

A 1-LA Accepting L(G) = h([/)\g(ziv) N R)

—_

. Input 8™
. Guess w € h=1(a™)

» Scan the tape from left to right
» Rewrite each input cell with a symbol from Q¢

3. Check if w € DY")
» 2DFA of polynomial size

4. Check if w € R
» DFA of polynomial size

N

Summing up:
» Each cell is rewritten only in the first visit

» The total size of the resulting 1-LA is polynomial

Unary CFGs vs Limited Automata

We proved that

Theorem

The conversion of unary CFGs into 1-LAs is polynomial in size

Unary CFGs vs Limited Automata

We proved that

Theorem

The conversion of unary CFGs into 1-LAs is polynomial in size

Problems

» Cost of the converse conversion, i.e., (unary) 1-LAs — CFGs
General alphabets: 2-LAs — CFGs is exponential in size

Unary CFGs vs Limited Automata

We proved that

Theorem

The conversion of unary CFGs into 1-LAs is polynomial in size

Problems

» Cost of the converse conversion, i.e., (unary) 1-LAs — CFGs
General alphabets: 2-LAs — CFGs is exponential in size

» Conversion of unary CFGs into deterministic limited automata

Thank you for your attention!

	 Unary 1-LA vs Finite AutomataThe Exponential Separation
	Unary CFGs vs Limited Automata
	Thank you for your attention!

