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Limited Automata [Hibbard '67]

One-tape Turing machines with restricted rewritings
Definition
Fixed an integer d > 1, a d-limited automaton is

> a one-tape Turing machine

» which is allowed to rewrite the content of each tape cell
only in the first d visits



Example: 2-LA for the Dyck Language over {[], ()}

Idea:
» Move to the right to search a closed bracket and rewrite it
» Then move to the left, to search an open bracket.

If it is of the same type, then rewrite it and repeat
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Each cell is rewritten only in the first 2 visits!
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Limited Automata [Hibbard '67]

One-tape Turing machines with restricted rewritings
Definition
Fixed an integer d > 1, a d-limited automaton is

> a one-tape Turing machine

» which is allowed to rewrite the content of each tape cell
only in the first d visits

Computational power

» For each d > 2, d-limited automata characterize
context-free languages [Hibbard '67]

» 1-limited automata characterize regular languages
[Wagner&Wechsung '86]
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» d =2 [P.&Pisoni'15]

2-LAs — PDAs

PDAs — 2-LAs
Exponential gap

Polynomial upper bound

» d > 2 [Kutrib&P.&Wendlandt to app.]
d-LAs — PDAs

Still exponential!
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Descriptional Complexity: Limited vs Finite Automata

» d=1 [P.&Pisoni 14]

n-state 1-LAs — finite automata
DFA NFA

2
nondet. 1-LA s n-2"
det. I-LA | n-(n+1)" | n-(n+1)"

2

» The gaps are optimal! (binary witness)

What about the unary case?



The Unary Case, d =1

Theorem ([P.&Pisoni '14])
For n prime, the language {a™ }*:
> s accepted by a 1-LA with n+ 1 states and a constant size

tape alphabet

2

> requires n° many states to be accepted be a 2NFA

= Quadratic lower bound for the simulation
of unary 1-LAs by finite automata
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> js accepted by a 1-LA with 4n states and a tape alphabet
with n + 1 symbols

> requires n - F(n) many states to be accepted be a 2NFA
where F(n) = eV ™" (mA+o() (] andau function)

= Superpolynomial lower bound for the simulation
of unary 1-LAs by finite automata

This paper: Exponential lower bound
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The Unary Case, d > 1

> d-LA = CFLs (d > 1)
» Each unary CFL is regular [Ginsburg&Rice '62]
= unary d-LA = unary REG

Theorem ([P.&Pisoni '15])
For n > 0, the language {a*"}*:
> is accepted by a deterministic 2-LA of size O(n)
> requires 2" many states to be accepted by a 2NFA

=- Exponential lower bound for the simulation
of unary 2-LAs by finite automata

This paper: Same lower bound for the simulation of unary 1-LAs



Unary 1-LA vs Finite Automata
The Exponential Separation



The Witness Language

» Fixed n > 0: L, = {a*"}
» The smallest NFA accepting L, has 2" + 1 many states

» We show the existence of a deterministic 1-LA of O(n) size

accepting L,



A Linear Bounded Automaton for L, = {a*'}

Idea: “divide” the input n times by 2
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A Linear Bounded Automaton for L, = {a*'}

Idea: “divide” the input n times by 2

s xxxxxxxx x x x x x x x| <

» Make n sweeps of the tape
» At each sweep overwrite each “odd” a
» Accept if only one a is left on the tape

» O(n) states
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A Linear Bounded Automaton for L, = {a*'}

Idea: “divide” the input n times by 2

>]0\1\0\2\0\1\0\3\0\1\0\2\0\1\0\4\Z

Possible variation:

» Rewrite input symbols with the number of current sweep

We can build a 1-LA that, for each tape cell,
guesses the number of the sweep
in which this linear bounded automaton rewrites the cell
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A 1-Limited Automaton for L, = {a2"}

n=24

> 1st sweep:
For each cell, guess and write a symbol in {0,1,...,n}

» (i +2)th sweep, i =0,...,n:
Verify that the symbol i occurs in all odd positions,
where positions are counted ignoring cells containing j < i

» Size O(n)
We can do better!

Size O(n), only deterministic transitions
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prefix of the binary carry sequence:
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The Binary Carry Sequence

The string written by the above linear bounded automaton is a
prefix of the binary carry sequence:

» First two elements: 0 1

> Next elements: w — ww’

m w part already constructed,
m w’ copy of w, with the last symbol replaced by its successor

o1 0 2 01 0 3 01 0 2 0 1 0 4
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The Binary Carry Sequence: Properties

» w; = prefix of length j of the binary carry sequence

» BIS(w;j) := Backward Increasing Sequence of w;

longest increasing sequence obtained with the greedy method
by inspecting w; from the end

wip= 0 1 0 2 0 1 0 3 0 1 O
BIS(WH):O 1 3

1= 20+20+2° Property 1

BIS(wj) = positions of 1s in
the binary representation of j
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The Binary Carry Sequence: Properties

wii= 0 1 0 2 0 1 0 3 0 1 0
BIS(wi1)= 0 1 3
11 = 20 + 2t 4 23
12 = 22 + 28
BIS(wi2) = 2 3
wp= 0 1 0 2 0 1 0 3 0 1 0 2

Property 2

The symbol of the binary carry sequence in
position j 4 1 is the smallest nonnegative
integer that does not occur in BIS(w;)
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Idea: Write on the tape prefixes of the binary carry sequence

n==4
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» 0 is written on the first cell
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A Deterministic 1-LA for L, = {a*"}

Idea: Write on the tape prefixes of the binary carry sequence

~lo|t]of2]of1]o]3]o]1]0]2]
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0
» 0 is written on the first cell

» For j > 0, with w; on the first j cells, head on cell j:

m Compute the smallest i ¢ BIS(w;),

inspecting the left part of the tape
m Move to the right to search the first cell containing a
m Write i on that cell
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Idea: Write on the tape prefixes of the binary carry sequence
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0
» 0 is written on the first cell

» For j > 0, with w; on the first j cells, head on cell j:
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Idea: Write on the tape prefixes of the binary carry sequence

<
<

~lof1]of2][of1]o]3]o]1]o][2][0]1]0]

4
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» For j > 0, with w; on the first j cells, head on cell j:

m Compute the smallest i ¢ BIS(w;),
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m Move to the right to search the first cell containing a
m Write i on that cell

» When n is written on a cell:

m Move one position to the right
m Accept iff the current cell contains the right endmarker



A Deterministic 1-LA for L, = {a*"}

Idea: Write on the tape prefixes of the binary carry sequence

<
<

~loft]of2]of1]o]3]o]1]o[2][0][1]0]4

» 0 is written on the first cell

» For j > 0, with w; on the first j cells, head on cell j:

m Compute the smallest i ¢ BIS(w;),

inspecting the left part of the tape
m Move to the right to search the first cell containing a
m Write i on that cell

» When n is written on a cell:

m Move one position to the right
m Accept iff the current cell contains the right endmarker
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A Deterministic 1-LA for L, = {a*"}

Idea: Write on the tape prefixes of the binary carry sequence

~loftfof2]of1]o]3]of1]o|2]0]1]0]4]-

» Each cell is rewritten only in the first visit
» Tape alphabet {0, ..., n}
» Finite state control with O(n) states

» Total size of the description O(n)
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Unary 1-LA vs Finite Automata: Upper and Lower Bounds

det-1-LAs — NFAS/DFAS
ndet-1-LAs — NFAs

Exponential gap
[.b. our result
u.b. general case ndet-1-LAs — DFAs

The gap does not change
in the conversion into
two-way automata

l.b. exp (our result)
u.b. exp exp (general case)

Problem
Can we reduce the distance
between I.b. and u.b.?



From Unary Finite Automata to 1-LAs

An exponential reduction is not always achievable:

Theorem

There is a constant c s.t. for each sufficiently large n
there is a unary n-state DFA s.t. all equivalent d-LAs have
descriptions of size > ¢ - n*/2, for each d > 0



Unary CFGs vs Limited Automata



Unary Context-Free Languages
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Each unary context-free language is regular
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Unary Context-Free Languages

Theorem ([Ginsburg&Rice '62])
Each unary context-free language is regular

Theorem ([P.&Shallit&Wang '02])

Each unary context-free grammar can be converted into equivalent
DFAs/NFAs of exponential size. These costs cannot be reduced

Problem :

: . [This work]
Study the size relationships _
between unary CFGs and The conversion
limited automata unary CFGs — 1-LAs

is polynomial in size
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Extended Dyck Language Dq

» Balanced brackets padded with neutral symbols
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Theorem ([Okhotin '12])

L C ¥* is context-free iff L = h(BQ N R), where
» Q is an extended bracket alphabet
» R C Q* is regular

> h:Q — X is a letter-to-letter homomorphism



A Variant of the Chomsky-Schiitzenberger Theorem

Extended Dyck Language Dq

» Balanced brackets padded with neutral symbols

> Bx. Q@ =A{(), [ 11} strings [[(]). ((LIDTIDIODI -+

Theorem ([Okhotin '12])

L C ¥* is context-free iff L = h(BQ N R), where
» Q is an extended bracket alphabet
» R C Q* is regular

> h:Q — X is a letter-to-letter homomorphism

Remarks

» The size of Q is polynomial wrt the size of a given CFG G
specifying L
» The language R is local

» Strings in 59 N R encode derivation trees of G
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Chomsky-Schiitzenberger Theorem in the Unary Case

» G =(V,{a},P,S) unary CFG generating L(G)
» The membership to L(G) can be witnessed by a sequence of
trees each one of height < #V

DN AN A

Then LthD#VﬂR

The “restricted extended” Dyck Language 5§(;iv) C 5QG
» contains only the strings with bracket nesting depth < #V

» is recognized by a 2DFA of size polynomial wrt the size of G
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A 1-LA Accepting L(G) = h([/)\g(ziv) N R)

—_

. Input 8™
. Guess w € h=1(a™)

» Scan the tape from left to right
» Rewrite each input cell with a symbol from Q¢

3. Check if w € DY")
» 2DFA of polynomial size

4. Check if w € R
» DFA of polynomial size

N

Summing up:
» Each cell is rewritten only in the first visit

» The total size of the resulting 1-LA is polynomial
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Unary CFGs vs Limited Automata

We proved that

Theorem

The conversion of unary CFGs into 1-LAs is polynomial in size

Problems

» Cost of the converse conversion, i.e., (unary) 1-LAs — CFGs
General alphabets: 2-LAs — CFGs is exponential in size

» Conversion of unary CFGs into deterministic limited automata



Thank you for your attention!
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