Restricted Turing Machines and Language
Recognition

Giovanni Pighizzini

Dipartimento di Informatica
Universita degli Studi di Milano, ltaly

LATA 2016 — Prague
March 14-18, 2016

UNIVERSITA DEGLI STUDI
DI MILANO

General Contents

Part [:

Part Il:

Fast One-Tape Turing Machines
Hennie Machines & C

One-Tape Turing Machines
with Rewriting Restrictions
Limited Automata & C

The Chomsky Hierarchy

(One-tape) Turing Machines type 0
Linear Bounded Automata type 1
Pushdown Automata type 2

Finite Automata type 3

The Chomsky Hierarchy

(One-tape) Turing Machines

type O

Linear Bounded Automata

type 1

Pushdown Automata

type 2

“Hennie Machines”

type 3

Part Il: One-Tape TMs with Rewriting Restrictions

Outline

» Limited automata

Part Il: One-Tape TMs with Rewriting Restrictions

Outline

» Limited automata

» Equivalence with CFLs

Part Il: One-Tape TMs with Rewriting Restrictions

Outline

» Limited automata
» Equivalence with CFLs

» Determinism vs nondeterminism

Part Il: One-Tape TMs with Rewriting Restrictions

Outline

» Limited automata
» Equivalence with CFLs
» Determinism vs nondeterminism

» Descriptional complexity aspects

Part Il: One-Tape TMs with Rewriting Restrictions

Outline

» Limited automata

v

Equivalence with CFLs

Determinism vs nondeterminism

v

v

Descriptional complexity aspects

v

1-limited automata and regular languages

Part Il: One-Tape TMs with Rewriting Restrictions

Outline

» Limited automata

» Equivalence with CFLs

» Determinism vs nondeterminism

» Descriptional complexity aspects

» 1-limited automata and regular languages

» Related models

Limited Automata [Hibbard '67]

One-tape Turing machines with restricted rewritings

Limited Automata [Hibbard '67]

One-tape Turing machines with restricted rewritings
Definition
Fixed an integer d > 1, a d-limited automaton is

> a one-tape Turing machine

» which is allowed to rewrite the content of each tape cell
only in the first d visits

Example: Balanced Parentheses

(DA D]
f

Example: Balanced Parentheses

(O lclclchh]=
f

(i) Move to the right to search a closed parenthesis

Example: Balanced Parentheses

f'%\(ﬂ\(\)\)\)*

(i) Move to the right to search a closed parenthesis
(i) Rewrite it by x

Example: Balanced Parentheses

L DD
f

(i) Move to the right to search a closed parenthesis
(i) Rewrite it by x

Example: Balanced Parentheses

ji OO

(i) Move to the right to search a closed parenthesis
(ii) Rewrite it by x
(iii) Move to the left to search an open parenthesis

Example: Balanced Parentheses

><m<\>\>\>\<

Move to the right to search a closed parenthesis

(i)

(i) Rewrite it by x

(iii) Move to the left to search an open parenthesis
)

(iv) Rewrite it by x

Example: Balanced Parentheses

>F<\<\<\>\>\>\<

Move to the right to search a closed parenthesis

(i)

(ii) Rewrite it by x

(iii) Move to the left to search an open parenthesis
)

(iv) Rewrite it by x

Example: Balanced Parentheses

g nnnnng

(i
(ii

) Move to the right to search a closed parenthesis
)
(iii) Move to the left to search an open parenthesis
)
)

Rewrite it by x

(iv) Rewrite it by x
(v) Repeat from the beginning

Example: Balanced Parentheses

fFH(\(\)MW

(i
(ii

) Move to the right to search a closed parenthesis
)
(iii) Move to the left to search an open parenthesis
)
)

Rewrite it by x

(iv) Rewrite it by x
(v) Repeat from the beginning

Example: Balanced Parentheses

5q<\<+<\>w>\<

(i
(ii

) Move to the right to search a closed parenthesis
)
(iii) Move to the left to search an open parenthesis
)
)

Rewrite it by x

(iv) Rewrite it by x
(v) Repeat from the beginning

Example: Balanced Parentheses

5-%\(“\)\)\)%

(i
(ii

) Move to the right to search a closed parenthesis
)
(iii) Move to the left to search an open parenthesis
)
)

Rewrite it by x

(iv) Rewrite it by x
(v) Repeat from the beginning

Example: Balanced Parentheses

D%M)MW

>

(i
(ii

) Move to the right to search a closed parenthesis
)
(iii) Move to the left to search an open parenthesis
)
)

Rewrite it by x

(iv) Rewrite it by x
(v) Repeat from the beginning

Example: Balanced Parentheses

§-<|<\§\>M>\<

(i
(ii

) Move to the right to search a closed parenthesis
)
(iii) Move to the left to search an open parenthesis
)
)

Rewrite it by x

(iv) Rewrite it by x
(v) Repeat from the beginning

Example: Balanced Parentheses

§-<|<|<\;\>\>\<

(i
(ii

) Move to the right to search a closed parenthesis
)
(iii) Move to the left to search an open parenthesis
)
)

Rewrite it by x

(iv) Rewrite it by x
(v) Repeat from the beginning

Example: Balanced Parentheses

>-<|<|<|?\>M<

(i
(ii

) Move to the right to search a closed parenthesis
)
(iii) Move to the left to search an open parenthesis
)
)

Rewrite it by x

(iv) Rewrite it by x
(v) Repeat from the beginning

Example: Balanced Parentheses

>-<|<|<F>M1

(i
(ii

) Move to the right to search a closed parenthesis
)
(iii) Move to the left to search an open parenthesis
)
)

Rewrite it by x

(iv) Rewrite it by x
(v) Repeat from the beginning

Example: Balanced Parentheses

>-<|<|§l>\>\ﬁ

(i
(ii

) Move to the right to search a closed parenthesis
)
(iii) Move to the left to search an open parenthesis
)
)

Rewrite it by x

(iv) Rewrite it by x
(v) Repeat from the beginning

Example: Balanced Parentheses

> RIREE
<

(i
(ii

) Move to the right to search a closed parenthesis
)
(iii) Move to the left to search an open parenthesis
)
)

Rewrite it by x

(iv) Rewrite it by x
(v) Repeat from the beginning

Example: Balanced Parentheses

> RIREE
—

(i
(ii

) Move to the right to search a closed parenthesis
)
(iii) Move to the left to search an open parenthesis
)
)

Rewrite it by x

(iv) Rewrite it by x
(v) Repeat from the beginning

Example: Balanced Parentheses

> RIREE
—

(i
(ii

) Move to the right to search a closed parenthesis
)
(iii) Move to the left to search an open parenthesis
)
)

Rewrite it by x

(iv) Rewrite it by x
(v) Repeat from the beginning

Example: Balanced Parentheses

> BIREE
>

(i
(ii

) Move to the right to search a closed parenthesis
)
(iii) Move to the left to search an open parenthesis
)
)

Rewrite it by x

(iv) Rewrite it by x
(v) Repeat from the beginning

Example: Balanced Parentheses

> Pl) | <
—

(i
(ii

) Move to the right to search a closed parenthesis
)
(iii) Move to the left to search an open parenthesis
)
)

Rewrite it by x

(iv) Rewrite it by x
(v) Repeat from the beginning

Example: Balanced Parentheses

>) |-
-~

(i
(ii

) Move to the right to search a closed parenthesis
)
(iii) Move to the left to search an open parenthesis
)
)

Rewrite it by x

(iv) Rewrite it by x
(v) Repeat from the beginning

Example: Balanced Parentheses

>) |-
-~

(i
(ii

) Move to the right to search a closed parenthesis
)
(iii) Move to the left to search an open parenthesis
)
)

Rewrite it by x

(iv) Rewrite it by x
(v) Repeat from the beginning

Example: Balanced Parentheses

>) |-
-~

(i
(ii

) Move to the right to search a closed parenthesis
)
(iii) Move to the left to search an open parenthesis
)
)

Rewrite it by x

(iv) Rewrite it by x
(v) Repeat from the beginning

Example: Balanced Parentheses

>) |-
<

(i
(ii

) Move to the right to search a closed parenthesis
)
(iii) Move to the left to search an open parenthesis
)
)

Rewrite it by x

(iv) Rewrite it by x
(v) Repeat from the beginning

Example: Balanced Parentheses

><
.

(i
(ii

) Move to the right to search a closed parenthesis
)
(iii) Move to the left to search an open parenthesis
)
)

Rewrite it by x

(iv) Rewrite it by x
(v) Repeat from the beginning

Example: Balanced Parentheses

><
—

(i
(ii

) Move to the right to search a closed parenthesis
)
(iii) Move to the left to search an open parenthesis
)
)

Rewrite it by x

(iv) Rewrite it by x
(v) Repeat from the beginning

Example: Balanced Parentheses

><
—

(i
(ii

) Move to the right to search a closed parenthesis
)
(iii) Move to the left to search an open parenthesis
)
)

Rewrite it by x

(iv) Rewrite it by x
(v) Repeat from the beginning

Example: Balanced Parentheses

><
—

(i
(ii

) Move to the right to search a closed parenthesis
)
(iii) Move to the left to search an open parenthesis
)
)

Rewrite it by x

(iv) Rewrite it by x
(v) Repeat from the beginning

Example: Balanced Parentheses

><
—

(i
(ii

) Move to the right to search a closed parenthesis
)
(iii) Move to the left to search an open parenthesis
)
)

Rewrite it by x

(iv) Rewrite it by x
(v) Repeat from the beginning

Example: Balanced Parentheses

><
—

(i
(ii

) Move to the right to search a closed parenthesis
)
(iii) Move to the left to search an open parenthesis
)
)

Rewrite it by x

(iv) Rewrite it by x
(v) Repeat from the beginning

Example: Balanced Parentheses

><
—

(i
(ii

) Move to the right to search a closed parenthesis
)
(iii) Move to the left to search an open parenthesis
)
)

Rewrite it by x

(iv) Rewrite it by x
(v) Repeat from the beginning

Example: Balanced Parentheses

o6 o)
N

(i
(ii

) Move to the right to search a closed parenthesis
)
(iii) Move to the left to search an open parenthesis
)
)

Rewrite it by x

(iv) Rewrite it by x
(v) Repeat from the beginning

Example: Balanced Parentheses

joolonooong
N

(i
(ii

) Move to the right to search a closed parenthesis
)
(iii) Move to the left to search an open parenthesis
)
)

Rewrite it by x

(iv) Rewrite it by x
(v) Repeat from the beginning

Example: Balanced Parentheses

joolnonoong
N

(i
(ii

) Move to the right to search a closed parenthesis
)
(iii) Move to the left to search an open parenthesis
)
)

Rewrite it by x

(iv) Rewrite it by x
(v) Repeat from the beginning

Example: Balanced Parentheses

joolonooong
N

(i
(ii

) Move to the right to search a closed parenthesis
)
(iii) Move to the left to search an open parenthesis
)
)

Rewrite it by x

(iv) Rewrite it by x
(v) Repeat from the beginning

Example: Balanced Parentheses

jooinnnoong
N

(i
(ii

) Move to the right to search a closed parenthesis
)
(iii) Move to the left to search an open parenthesis
)
)

Rewrite it by x

(iv) Rewrite it by x
(v) Repeat from the beginning

Example: Balanced Parentheses

joofinnnoong
N

(i
(ii

) Move to the right to search a closed parenthesis
)
(iii) Move to the left to search an open parenthesis
)
)

Rewrite it by x

(iv) Rewrite it by x
(v) Repeat from the beginning

Example: Balanced Parentheses

joEonooooong
(i
(ii

) Move to the right to search a closed parenthesis
)
(iii) Move to the left to search an open parenthesis
)
)

Rewrite it by x

(iv) Rewrite it by x
(v) Repeat from the beginning

Example: Balanced Parentheses

> <

—
(i
(ii

) Move to the right to search a closed parenthesis
)
(iii) Move to the left to search an open parenthesis
)
)

Rewrite it by x

(iv) Rewrite it by x
(v) Repeat from the beginning

Example: Balanced Parentheses

> <

—
(i
(ii

) Move to the right to search a closed parenthesis
)
(iii) Move to the left to search an open parenthesis
)
)

Rewrite it by x

(iv) Rewrite it by x
(v) Repeat from the beginning

Example: Balanced Parentheses

> <

—
(i
(ii

) Move to the right to search a closed parenthesis
)
(iii) Move to the left to search an open parenthesis
)
)

Rewrite it by x

(iv) Rewrite it by x
(v) Repeat from the beginning

Example: Balanced Parentheses

> <

—
(i
(ii

) Move to the right to search a closed parenthesis
)
(iii) Move to the left to search an open parenthesis
)
)

Rewrite it by x

(iv) Rewrite it by x
(v) Repeat from the beginning

Example: Balanced Parentheses

> <

—
(i
(ii

) Move to the right to search a closed parenthesis
)
(iii) Move to the left to search an open parenthesis
)
)

Rewrite it by x

(iv) Rewrite it by x
(v) Repeat from the beginning

Example: Balanced Parentheses

el DDl

— !

(i
(ii

) Move to the right to search a closed parenthesis
)
(iii) Move to the left to search an open parenthesis
)
)

Rewrite it by x

(iv) Rewrite it by x
(v) Repeat from the beginning

Example: Balanced Parentheses

el DDl

fe—

(i
(ii

) Move to the right to search a closed parenthesis
)
(iii) Move to the left to search an open parenthesis
)
)

Rewrite it by x

(iv) Rewrite it by x
(v) Repeat from the beginning

Special cases:

(i') If in (i) the right end of the tape is reached then
scan all the tape and accept iff all tape cells contain x

Example: Balanced Parentheses

joooooooong
(i
(ii

) Move to the right to search a closed parenthesis
)
(iii) Move to the left to search an open parenthesis
)
)

Rewrite it by x

(iv) Rewrite it by x
(v) Repeat from the beginning

Special cases:

(i") If in (i) the right end of the tape is reached then
scan all the tape and accept iff all tape cells contain x

Example: Balanced Parentheses

jooooonoong
(i
(ii

) Move to the right to search a closed parenthesis
)
(iii) Move to the left to search an open parenthesis
)
)

Rewrite it by x

(iv) Rewrite it by x
(v) Repeat from the beginning

Special cases:

(i") If in (i) the right end of the tape is reached then
scan all the tape and accept iff all tape cells contain x

Example: Balanced Parentheses

jooooonoong
(i
(ii

) Move to the right to search a closed parenthesis
)
(iii) Move to the left to search an open parenthesis
)
)

Rewrite it by x

(iv) Rewrite it by x
(v) Repeat from the beginning

Special cases:

(i") If in (i) the right end of the tape is reached then
scan all the tape and accept iff all tape cells contain x

Example: Balanced Parentheses

joooooooong
(i
(ii

) Move to the right to search a closed parenthesis
)
(iii) Move to the left to search an open parenthesis
)
)

Rewrite it by x

(iv) Rewrite it by x
(v) Repeat from the beginning

Special cases:

(i") If in (i) the right end of the tape is reached then
scan all the tape and accept iff all tape cells contain x

Example: Balanced Parentheses

jooooonoong
(i
(ii

) Move to the right to search a closed parenthesis
)
(iii) Move to the left to search an open parenthesis
)
)

Rewrite it by x

(iv) Rewrite it by x
(v) Repeat from the beginning

Special cases:

(i") If in (i) the right end of the tape is reached then
scan all the tape and accept iff all tape cells contain x

Example: Balanced Parentheses

joEonooooong
(i
(ii

) Move to the right to search a closed parenthesis
)
(iii) Move to the left to search an open parenthesis
)
)

Rewrite it by x

(iv) Rewrite it by x
(v) Repeat from the beginning

Special cases:

(i") If in (i) the right end of the tape is reached then
scan all the tape and accept iff all tape cells contain x

Example: Balanced Parentheses

jonoooooong
(i
(ii

) Move to the right to search a closed parenthesis
)
(iii) Move to the left to search an open parenthesis
)
)

Rewrite it by x

(iv) Rewrite it by x
(v) Repeat from the beginning

Special cases:

(i") If in (i) the right end of the tape is reached then
scan all the tape and accept iff all tape cells contain x

Example: Balanced Parentheses

joooooooong
(i
(ii

) Move to the right to search a closed parenthesis
)
(iii) Move to the left to search an open parenthesis
)
)

Rewrite it by x

(iv) Rewrite it by x
(v) Repeat from the beginning

Special cases:

(i") If in (i) the right end of the tape is reached then
scan all the tape and accept iff all tape cells contain x

Example: Balanced Parentheses

DDl]

f yes!

(i
(ii

) Move to the right to search a closed parenthesis
)
(iii) Move to the left to search an open parenthesis
)
)

Rewrite it by x

(iv) Rewrite it by x
(v) Repeat from the beginning

Special cases:

(i") If in (i) the right end of the tape is reached then
scan all the tape and accept iff all tape cells contain x

Example: Balanced Parentheses
nnRRnaEn)

(i
(ii

) Move to the right to search a closed parenthesis
)
(iii) Move to the left to search an open parenthesis
)
)

Rewrite it by x

(iv) Rewrite it by x
(v) Repeat from the beginning

Special cases:
(i") If in (i) the right end of the tape is reached then
scan all the tape and accept iff all tape cells contain x
(iii") If in (iii) the left end of the tape is reached then reject

Example: Balanced Parentheses
nnRRnaEn)

(i
(ii

) Move to the right to search a closed parenthesis
)
(iii) Move to the left to search an open parenthesis
)
)

Rewrite it by x

(iv) Rewrite it by x
(v) Repeat from the beginning

Special cases:

(i") If in (i) the right end of the tape is reached then
scan all the tape and accept iff all tape cells contain x
(iii") If in (iii) the left end of the tape is reached then reject

Each cell is rewritten only in the first 2 visits!

Limited Automata [Hibbard '67]

One-tape Turing machines with restricted rewritings
Definition
Fixed an integer d > 1, a d-limited automaton is

> a one-tape Turing machine

» which is allowed to rewrite the content of each tape cell
only in the first d visits

Limited Automata [Hibbard '67]

One-tape Turing machines with restricted rewritings
Definition
Fixed an integer d > 1, a d-limited automaton is

> a one-tape Turing machine

» which is allowed to rewrite the content of each tape cell
only in the first d visits

Computational power

» For each d > 2, d-limited automata characterize
context-free languages [Hibbard '67]

» 1-limited automata characterize regular languages
[Wagner&Wechsung '86]

The Chomsky Hierarchy

(One-tape) Turing Machines type 0
Linear Bounded Automata type 1
Pushdown Automata type 2

Finite Automata type 3

The Chomsky Hierarchy

(One-tape) Turing Machines type 0
Linear Bounded Automata type 1
d-Limited Automata (d > 2) type 2

Finite Automata type 3

The Chomsky Hierarchy

(One-tape) Turing Machines type 0
Linear Bounded Automata type 1
d-Limited Automata (d > 2) type 2

1-Limited Automata type 3

Why Each CFL is Accepted by a 2-LA [P.&Pisoni'14]

Main tool:

Theorem ([Chomsky&Schiitzenberger '63])

Every context-free language L C ¥* can be expressed as
L= h(DxNR)

Where, for Qk = {(1,)1, (2,)2, 000y (k,)k}
» Dy C Qj is a Dyck language
» R C Qj is a regular language
> h:Qu — X* is an homomorphism

Why Each CFL is Accepted by a 2-LA [P.&Pisoni'14]

Main tool:

Theorem ([Chomsky&Schiitzenberger '63])

Every context-free language L C ¥* can be expressed as
L= h(DxNR)

Where, for Qk = {(1,)1, (2,)2, 000y (k,)k}
» Dy C Qj is a Dyck language
» R C Qj is a regular language
> h:Qu — X* is an homomorphism

Furthermore, it is possible to restrict to non-erasing
homomorphisms [Okhotin "12]

Why Each CFL is Accepted by a 2-LA

L context-free language, with L = h(Dyx N R)

Why Each CFL is Accepted by a 2-LA

w z € h~Yw)

L context-free language, with L = h(Dyx N R)

» T nondeterministic transducer computing h~!

Why Each CFL is Accepted by a 2-LA

Ap

w z€ h™Yw)_

L context-free language, with L = h(Dyx N R)

» T nondeterministic transducer computing h™1
» Ap 2-LA accepting the Dyck language Dy

Why Each CFL is Accepted by a 2-LA

Ap

w z€ h~Yw)

AR

L context-free language, with L = h(Dyx N R)

» T nondeterministic transducer computing h™1
» Ap 2-LA accepting the Dyck language Dy

» Ag finite automaton accepting R

Why Each CFL is Accepted by a 2-LA

Ap

w T z€ h~Yw) /
AN

AR

z€eR?

L context-free language, with L = h(Dyx N R)

» T nondeterministic transducer computing h™1

» Ap 2-LA accepting the Dyck language Dy

» Apg finite automaton accepting R

we L?
 EE—]

Why Each CFL is Accepted by a 2-LA

AD ijD/(?
w P zehl(w)< }w:U
AR z € R?
w Z:UlUg---UkGh_l(W)

input of T

Why Each CFL is Accepted by a 2-LA

z c D/(?

w e L?
R —

w T zeh’l(w)/
.

z€E€R?

input of T

[#HAA o H#itoo | - - [#H# 0]

Z=0102 0 € h_l(W)

h(o;) = u;

Non erasing homomorphism!

Why Each CFL is Accepted by a 2-LA

AD z c D/(?
w T lzehn(w) < };
AR z€ R?
’ u ‘ up ‘ ‘ U ‘ Z=0102""0k € h_l(W)
input of T h(oi) = ui

[H#H#HH# o | #H# oo |- [#H#H#0k] Non erasing homomorphism!
(padded) input of Ap and Ag

Why Each CFL is Accepted by a 2-LA

z c D/(?

Ap

w e L?
R —

w T zeh’l(w)/
.

z€E€R?

input of T

[FHAA o[H#itoo | - - [#H# 0]

(padded) input of Ap and Ag
Not stored into the tape!

Z=0102 0 € h_l(W)

h(o;) = u;

Non erasing homomorphism!

Each o; is produced “on the fly"

Why Each CFL is Accepted by a 2-LA

A
w z€ h~Yw) / .
T A
&

Why Each CFL is Accepted by a 2-LA

A
w z€ h~Yw) / .
T A
&

Why Each CFL is Accepted by a 2-LA

A
w ze hY(w) / - lwelL?
T A
&

| ###Hoi h(o;) = u;

Why Each CFL is Accepted by a 2-LA

ADZka?
w T lze h~(w) / }vv\L?
\AR z€ R?
]::::::\ u; | ‘ W=l
#H#HH#oi h(o}) = u;
J U

| #HH#H ~;: first rewriting by Ap

Why Each CFL is Accepted by a 2-LA

A

w ze h Hw) / .
T A >——

\\ ™

[t] ‘ W=t
Py y
h(o7) = uj
\ 4
% ~;: first rewriting by Ap

» On the tape, u; is replaced directly by ####;

Why Each CFL is Accepted by a 2-LA

A
w ze hY(w) / - lwelL?
T A
&

[t] ‘ W=t
Py y
h(o7) = uj
\ 4
% ~;: first rewriting by Ap

» On the tape, u; is replaced directly by ####;
» One move of Ag on input o; is also simulated

Why Each CFL is Accepted by a 2-LA

AD z € D,?
w T Z e hfl(W) / } weL?
\\
Ar zeR?
[] u; | ‘ W=l
Fy]
#H#HH#oi h(oi) = u;
U N2
| #H#HHi 7;: first rewriting by Ap

» On the tape, u; is replaced directly by ###4#;
» One move of Agr on input o} is also simulated

The resulting machine is a 2-LA recognizing the given CEL

Why Each CFL is Accepted by a 2-LA

AD z € D,?
w T Z e hfl(W) / } weL?
\\
Ar zeR?
[] u; | ‘ W=l
Fy]
#H#HH#oi h(oi) = u;
U N2
| #H#HHi 7;: first rewriting by Ap

» On the tape, u; is replaced directly by ###4#;
» One move of Agr on input o} is also simulated

The resulting machine is a 2-LA recognizing the given CEL

PDAs vs Limited Automata

Simulation of Pushdown Automata by 2-Limited Automata

[alblc[d[e[flg[h]i]

X|X[<IN

PDA

Simulation of Pushdown Automata by 2-Limited Automata

[alblc[d[e[flg[h]i]

X|X<|=<IN

PDA

Normal form for (D)PDAs:
> at each step, the stack height increases at most by 1

» e-moves cannot push on the stack

Simulation of Pushdown Automata by 2-Limited Automata

[2[blc[dTe[TglATi]-
v
X
PDA X 2ta | 6,72

Normal form for (D)PDAs:
> at each step, the stack height increases at most by 1

» e-moves cannot push on the stack

Simulation of Pushdown Automata by 2-Limited Automata

[alblc[d[e[F[g[h]i] ?
v
X |
PDA X 2-LA ll,zj

Normal form for (D)PDAs:
> at each step, the stack height increases at most by 1

» e-moves cannot push on the stack

Simulation of Pushdown Automata by 2-Limited Automata

TS elael el 7] -

XX (<IN

PDA

Normal form for (D)PDAs:
> at each step, the stack height increases at most by 1

» e-moves cannot push on the stack

Simulation of Pushdown Automata by 2-Limited Automata

[a]b[c[d[e[f]g[h]i] 1

XX (<IN

PDA

Normal form for (D)PDAs:
> at each step, the stack height increases at most by 1

» e-moves cannot push on the stack

Each PDA can be simulated by an equivalent 2-LA

Simulation of Pushdown Automata by 2-Limited Automata

[a[b[c[d[e[f[g[h]i] >.../\1

XX (<IN

PDA

Normal form for (D)PDAs:
> at each step, the stack height increases at most by 1

» e-moves cannot push on the stack

Each PDA can be simulated by an equivalent 2-LA
» Polynomial size

» Determinism is preserved

Simulation of 2-Limited Automata by Pushdown Automata

Problem

What about the converse simulation,
namely that of 2-LAs by PDAs?

Simulation of 2-Limited Automata by Pushdown Automata

Problem

What about the converse simulation,
namely that of 2-LAs by PDAs? [Hibbard '67]

Original simulation

Simulation of 2-Limited Automata by Pushdown Automata

Problem

What about the converse simulation,
namely that of 2-LAs by PDAs? [Hibbard '67]

Original simulation

[P.&Pisoni '15]
Reformulation
» Exponential cost

» Determinism is preserved (extra costs)

Transition Tables of 2-LAs

» Fixed a 2-limited automaton
» Transition table 7, w is a “frozen” string

Tw € Q x {—1,+1} x Q x {-1,+1}

(g,d,p,d") € 7, iff M on a tape segment containing w has
a computation path:

m entering the segment in g from d’
m exiting the segment in p to d”
m left = —1, right = +1

Transition Tables of 2-LAs

» Fixed a 2-limited automaton
» Transition table 7, w is a “frozen” string

Tw € Q x {—1,+1} x Q x {-1,+1}

— | o |

? (q*ilap7_1) € Tw

p

(g,d,p,d") € 7, iff M on a tape segment containing w has
a computation path:

m entering the segment in g from d’
m exiting the segment in p to d”
m left = —1, right = +1

Transition Tables of 2-LAs

» Fixed a 2-limited automaton
» Transition table 7, w is a “frozen” string

Tw € Q x {—1,+1} x Q x {-1,+1}

— | o |

q
v; (q7_1ap771)€7—w

(g,d,p,d") € 7, iff M on a tape segment containing w has
a computation path:

m entering the segment in g from d’
m exiting the segment in p to d”
m left = —1, right = +1

Transition Tables of 2-LAs

» Fixed a 2-limited automaton
» Transition table 7, w is a “frozen” string

Tw € Q x {—1,+1} x Q x {-1,+1}

[E | \ v | <~

(q _17p7_]-) € Tw (q+1ap7_l) € Tw

p ?

(g,d,p,d") € 7, iff M on a tape segment containing w has
a computation path:

m entering the segment in g from d’
m exiting the segment in p to d”
m left = —1, right = +1

Transition Tables of 2-LAs

» Fixed a 2-limited automaton
» Transition table 7, w is a “frozen” string

Tw € Q x {—1,+1} x Q x {-1,+1}

\ E | v

QE
(q _17p7_]-) € Tw (q7+lap71) € Tw

p ?

(g,d,p,d") € 7, iff M on a tape segment containing w has
a computation path:

m entering the segment in g from d’
m exiting the segment in p to d”
m left = —1, right = +1

Simulation of 2-LAs by PDAs

Initial configuration

Simulation of 2-LAs by PDAs

Initial configuration

Simulation of 2-LAs by PDAs

Initial configuration

Simulation of 2-LAs by PDAs

Initial configuration

Simulation of 2-LAs by PDAs

Initial configuration

Simulation of 2-LAs by PDAs

Initial configuration

Simulation of 2-LAs by PDAs

Initial configuration

Some computation steps...

~HBIBlclde[flg[h]i] <
L

2 LA

Simulation of 2-LAs by PDAs

Initial configuration

Some computation steps...

> PABIX[d[e[flg[h]i] =

2-LA

Simulation of 2-LAs by PDAs

Initial configuration

Some computation steps...

- BIBIX]Y]e[flg[h]i] <

2-LA

Simulation of 2-LAs by PDAs

Initial configuration

[
||
By
o]
o |
=
log |
=

2-LA do PDA Wﬂ—y

Some computation steps...

- ABIXTYIZI fg]h]i] <

2-LA

Simulation of 2-LAs by PDAs

Initial configuration

~lalb]cld]e[flg[h]i] = [alblc]d]e[f]g[h]i]

2-LA do PDA mﬂ—y

Some computation steps...

> BBIXTYIZ/s[h]7] <

Simulation of 2-LAs by PDAs

Initial configuration

~lalb]cld]e[flg[h]i] = [alblc]d]e[f]g[h]i]

2-LA do PDA mﬂ—y

Some computation steps...

- BIEXIVER]~

Simulation of 2-LAs by PDAs

Initial configuration

~lalb]cld]e[flg[h]i] = [alblc]d]e[f]g[h]i]

2-LA do PDA mﬂ—y

Some computation steps...

- BIEXIYIER 7] -

Simulation of 2-LAs by PDAs

Initial configuration

~lalb]cld]e[flg[h]i] = [alblc]d]e[f]g[h]i]

2-LA do PDA mﬁ—y

After some steps...

DEXW-g[h[ilmq la]b[c|d]e|f]g]h]i]--

Simulation of 2-LAs by PDAs

Initial configuration

~lalb]cld]e[flg[h]i] = [alblc]d]e[f]g[h]i]

. L

After some steps...

2-LA

D#X YHglhlfl'“< [alblc|d]e[flg|h]i]

Simulation of 2-LAs by PDAs

Initial configuration

~lalb]cld]e[flg[h]i] = [alblc]d]e[f]g[h]i]

. L

After some steps...

D#X Yﬁg[h[ilmﬁ

2-LA

Simulation of 2-LAs by PDAs

Initial configuration

~lalb]cld]e[flg[h]i] = [alblc]d]e[f]g[h]i]

L L
N or [80—

After some steps...
. #x YH

g[h[i‘~~~<} il
i] 2
[0 S Qg R

Simulation of 2-LAs by PDAs

Initial configuration

~[a[b]c]d]e[flg[h]i] =

2-LA do

After some steps...

Simulation of 2-LAs by PDAs

Initial configuration

~lalb]cld]e[flg[h]i] = [alblc]d]e[f]g[h]i]

. L

After some steps...

> X

ngmw
2LA|£ PDA “

Simulation of 2-LAs by PDAs

- EEXYEREET -

%

lalb[c|d]e[flg[h]i]

<

Simulation of 2-LAs by PDAs

- BBIXTYER g [h[7]---< [a]b[c[d[e[f]g[h]i]

%

i(q,8) > (p, Z,+1)

move to the right

4

<

Simulation of 2-LAs by PDAs

- BBIXTYER g [h[7]---< [a]b[c[d[e[f]g[h]i]

%

i(q,8) > (p, Z,+1)

move to the right

U
- EEXVERZ 7] -

<

2-LA p

Simulation of 2-LAs by PDAs

> BIBIXTYEM g [h[7]---< [a[b[c[d[e[f[g[h]i]
%
5(q.8) > (p, Z,+1) normal mode
move to the right push and direct simulation
4 4
< la]blcld[e[flg[h[i]

- BIBIXTYIERZ] 7]

2-LA p PDA

Simulation of 2-LAs by PDAs

- BIBIXTYE g [h[7]---< [a[b[c[d[e[f[g[h]i]
—]
5(q.8) > (p, Z,+1) normal mode
move to the right push and direct simulation
4 4
L
-BEBXYEEZ < [a]b[c[de[Flg[A]T]

N
2 LA P PDA

Simulation of 2-LAs by PDAs

- EEXYEEZF -

2-LA p

Simulation of 2-LAs by PDAs

> BABIXY BRI Z] h]i]« la|blc|d]e|f|g|h]i] -

2-LA P PDA

5(p,h) > (r,H,-1)

move to the left

Simulation of 2-LAs by PDAs

> BABIXY BRI Z] h]i]« la|blc|d]e|f|g|h]i] -

2-LA P PDA

5(p,h) > (r,H,-1)

move to the left

Simulation of 2-LAs by PDAs

> BABIXY BRI Z] h]i]« la|blc|d]e|f|g|h]i] -

2-LA P PDA

3(p, h) > (r, H, 1)

move to the left

back mode

4

< lalb[c|d]e[flg[h]i]

Simulation of 2-LAs by PDAs

> BABIXY BRI Z] h]i]« la|blc|d]e|f|g|h]i] -

2-LA P PDA

3(p, h) > (r, H, 1)

move to the left

back mode

4

< lalb[c|d]e[flg[h]i]

Simulation of 2-LAs by PDAs

Simulation of 2-LAs by PDAs

é(r,2) > (q,G,-1)

move to the left

Simulation of 2-LAs by PDAs

é(r,2) > (q,G,-1)

move to the left

Simulation of 2-LAs by PDAs

5(r.Z2) > (q.G,-1) back mode
move to the left
U
o la]b[c[d[e[f]g[n]i]

PDA

Simulation of 2-LAs by PDAs

6(r,Z2)>(q,G,-1) back mode
move to the left
U
4 lal|blc|d]e|flg|h]|i] -

Simulation of 2-LAs by PDAs

PDA

Simulation of 2-LAs by PDAs

PDA

(q7 +1’ S, _1) S
exit to the left

Simulation of 2-LAs by PDAs

< [alb[cld[e[flg[n]i]

1

PDA

(q7 +1,s, _1) € %
exit to the left

Simulation of 2-LAs by PDAs

PDA

(q7 +17 S, _1) S 71:‘F

. back mode
exit to the left

4

< lalb[c|d]e[f]g[h

]
Y
PDA | S0 Eom ‘

-.

Simulation of 2-LAs by PDAs

PDA

(q7 +17 S, _1) S 71:‘F
exit to the left

Y
X

Simulation of 2-LAs by PDAs

Simulation of 2-LAs by PDAs

o(s,Y)> (p,D,+1)
move to the right

4

PDA

m
T

Simulation of 2-LAs by PDAs

0(s,Y) > (p,D,41)

move to the right

Simulation of 2-LAs by PDAs

.« [alb[c[d]e :lfl
Y
X
poA | 5 Eonm -
(s, Y) > (p.D,+1) back mode

move to the right

4 4

[alb[c]d]e \f\g\h\l\

A

Simulation of 2-LAs by PDAs

- abcde;g/fi...
Y
X
poA | S Eon -
(s, Y) > (p,D,+1)
move to the right back mode
U

A

Simulation of 2-LAs by PDAs

- abcde;g/fi...
Y
X
poA | S Eon -
6(s,Y) > (p, D, +1)
move to the right back mode
b U
< la[b|c|d

Simulation of 2-LAs by PDAs

]

| lalblcld[e[f[g|h]i]

Simulation of 2-LAs by PDAs

< [alb[cld[e[flg[n]i]

]

(pa _17 r, +1) S 71:’H
exit to the right

4

Simulation of 2-LAs by PDAs

< [alb[cld[e[flg[n]i]

1

PDA P& .u

(pa _17 r, +1) S 71:’H
exit to the right

4

Simulation of 2-LAs by PDAs

< [alb[cld[e[flg[n]i]

1

poA | P Bk

(p,=1,r,+1) €., resume normal mode
exit to the right move to the right

4 4

la]blc[d]e[f|g|h[i]

v

X

[~
A

2-LA r PDA r

Simulation of 2-LAs by PDAs

< [a]B[cldTe]FIglATT] -

1

PDA p77EMH

(p,=1,r,+1) €., resume normal mode
exit to the right move to the right
\
< la[blc|d]e|f[g[h]i]

PDA r ’7

Simulation of 2-LAs by PDAs

< [a]B[cldTe]FIglATT] -

1

PDA p77EMH

(p,=1,r,+1) €., resume normal mode
exit to the right move to the right
\
< la[blc|d]e|f[g[h]i]

Simulation of 2-LAs by PDAs

< [a]B[cldTe]FIglATT] -

1

PDA p77EMH

(p,=1,r,+1) €., resume normal mode
exit to the right move to the right
\
< la[blc|d]e|f[g[h]i]

PDA

Simulation of 2-LAs by PDAs

Summing up...

Given a 2-LA M with:
> n states

» m symbol working alphabet

Simulation of 2-LAs by PDAs

Summing up...

Given a 2-LA M with:
> n states At most 247 many different tables!

» m symbol working alphabet

Simulation of 2-LAs by PDAs

Summing up...

Given a 2-LA M with:
> n states At most 247 many different tables!
» m symbol working alphabet

Resulting PDA:

» States S
Normal mode: states of M 5 tates
Back mode: (q,) 2n(2*" +1) +1
q state of M, 7 transition table

Simulation of 2-LAs by PDAs

Summing up...

Given a 2-LA M with:
> n states At most 247 many different tables!

» m symbol working alphabet
Resulting PDA:

> States States
Normal mode: states of M 5
2n(2%" +1) +1

Back mode: (g, 7)
q state of M, 7 transition table

» Pushdown symbols Pushdown symbols
m Tape symbols of M

. 4 2
m Transition tables m + 2"

Simulation of 2-LAs by PDAs

Summing up...

Given a 2-LA M with:
> n states At most 247 many different tables!
» m symbol working alphabet
Resulting PDA:
» States
Normal mode: states of M

Back mode: (g, 7)
q state of M, 7 transition table

> Pushdown symbols Pushdown symbols
m Tape symbols of M
m Transition tables

States
2n(2*"° +1) + 1

m + 24n2

» Each move can increase the
stack height at most by 1

Simulation of 2-LAs by PDAs

Summing up...

Given a 2-LA M with:
> n states At most 247 many different tables!

» m symbol working alphabet

Resulting PDA:

» States
Normal mode: states of M
Back mode: (g, 7)
q state of M, 7 transition table

> Pushdown symbols Pushdown symbols
m Tape symbols of M
m Transition tables

States
2n(2*"° +1) + 1

m + 24”2

» Each move can increase the

stack height at most by 1 2-LAs — PDAs

Exponential cost

Optimality: the Witness Languages K,

Given n > 1:

Optimality: the Witness Languages K,

Given n > 1:

ai @ .- @ .- any1dnt2 --- A2, by by -+ b,

X1 Xk X

Kn ={xix2---xkx| k>0, xi,x2,...,xc,x € {0,1}"

Optimality: the Witness Languages K,

Given n > 1:

ai @ .- 3 .- any1dnt2 --- A9 by by -+ b,

X1 Xk X

At least n of these blocks are equal
to the last block x
Kn ={xixo---xkx| k>0, xi,x2,...,x¢,x € {0,1}",
< <---<ipe{l,... k},

Xi1:Xl'2:"':Xin:X}

Optimality: the Witness Languages K,

Given n > 1:

ai @ .- 3 .- any1dnt2 --- A9 by by -+ b,

X1 Xk X

At least n of these blocks are equal
to the last block x

Kn ={xixo---xkx| k>0, xi,x2,...,x¢,x € {0,1}",
< <---<ipe{l,... k},

Xi1:Xl'2:"':Xin:X}

Example (n=3): 001110011110110111110

Optimality: the Witness Languages K,

Given n > 1:

ai @ .- 3 .- any1dnt2 --- A9 by by -+ b,

X1 Xk X

At least n of these blocks are equal
to the last block x

Kn ={xixo---xkx| k>0, xi,x2,...,x¢,x € {0,1}",
< <---<ipe{l,... k},

Xi1:Xl'2:"':Xin:X}

Example (n=3): 001/110/011/110/110111/110

Optimality: the Witness Languages K,

Given n > 1:

ai @ .- 3 .- any1dnt2 --- A9 by by -+ b,

X1 Xk X

At least n of these blocks are equal
to the last block x

Kn ={xixo---xkx| k>0, xi,x2,...,x¢,x € {0,1}",
< <---<ipe{l,... k},

Xi1:Xl'2:"':Xin:X}

Example (n=3): 001/110/011/110/110111/110

How to Recognize K,

001110011110110111110

1. Scan all the tape from left to right

How to Recognize K,

001110011110110111110 (n=

1. Scan all the tape from left to right
2. Start to move to the left and mark the rightmost n symbols

How to Recognize K,

001110011110110xxx110 (n=3)

1. Scan all the tape from left to right
2. Start to move to the left and mark the rightmost n symbols

3. Compare each block of length n (from the right),
symbol by symbol, with the last block

How to Recognize K,

001110011110110xxx110 (n=3)

1. Scan all the tape from left to right
2. Start to move to the left and mark the rightmost n symbols

3. Compare each block of length n (from the right),
symbol by symbol, with the last block

4. When the left end of the tape is reached accept if and only if
the number of block equal to the last one is > n

How to Recognize K,

001110011110110xxx110 (n=3)

1. Scan all the tape from left to right
2. Start to move to the left and mark the rightmost n symbols

3. Compare each block of length n (from the right),
symbol by symbol, with the last block

4. When the left end of the tape is reached accept if and only if
the number of block equal to the last one is > n

Complexity:
» K, is accepted by a deterministic 2-LA with O(n?) states
and a fixed working alphabet

How to Recognize K,

001110011110110xxx110 (n=13)

1. Scan all the tape from left to right
2. Start to move to the left and mark the rightmost n symbols

3. Compare each block of length n (from the right),
symbol by symbol, with the last block

4. When the left end of the tape is reached accept if and only if
the number of block equal to the last one is > n

Complexity:
» K, is accepted by a deterministic 2-LA with O(n?) states
and a fixed working alphabet

» Each PDA accepting K, has size at least exponential in n
(Proof based on the interchange lemma for CFLs)

Simulation of 2-LAs by PDAs

Cost of the simulation
» Exponential size for the simulation of 2-LAs by PDAs

» Optimal

Computational Power of Limited Automata

From the simulations:

» 2-Limited Automata = CFLs

Computational Power of Limited Automata

From the simulations:

» 2-Limited Automata = CFLs

What about d-Limited Automata, with d > 27

Computational Power of Limited Automata

From the simulations:

» 2-Limited Automata = CFLs

What about d-Limited Automata, with d > 27

» They are still characterize CFLs

[Hibbard '67]

Computational Power of Limited Automata

From the simulations:

» 2-Limited Automata = CFLs

What about d-Limited Automata, with d > 27
» They are still characterize CFLs [Hibbard '67]

» They can be simulated by exponentially larger PDAs
[Kutrib&P.&Wendlandt subm.]

Computational Power of Limited Automata

From the simulations:
» 2-Limited Automata = CFLs
What about d-Limited Automata, with d > 27

» They are still characterize CFLs [Hibbard '67]

» They can be simulated by exponentially larger PDAs
[Kutrib&P.&Wendlandt subm.]

What about 1-Limited Automata?

Computational Power of Limited Automata

From the simulations:

» 2-Limited Automata = CFLs

What about d-Limited Automata, with d > 27
» They are still characterize CFLs [Hibbard '67]
» They can be simulated by exponentially larger PDAs
[Kutrib&P.&Wendlandt subm.]
What about 1-Limited Automata?
» Regular languages [Wagner&Wechsung '86]

Determinism vs Nondeterminism

» Determinism is preserved by the exponential simulation
of 2-limited automata by PDAs
provided that the input of the PDA is right end-marked

Determinism vs Nondeterminism

» Determinism is preserved by the exponential simulation
of 2-limited automata by PDAs
provided that the input of the PDA is right end-marked

» Without end-marker: double exponential simulation

Determinism vs Nondeterminism

» Determinism is preserved by the exponential simulation
of 2-limited automata by PDAs
provided that the input of the PDA is right end-marked

» Without end-marker: double exponential simulation

» Conjecture: this cost cannot be reduced

Determinism vs Nondeterminism

» Determinism is preserved by the exponential simulation
of 2-limited automata by PDAs
provided that the input of the PDA is right end-marked

» Without end-marker: double exponential simulation
» Conjecture: this cost cannot be reduced

» The converse simulation also preserve determinsm

Determinism vs Nondeterminism

» Determinism is preserved by the exponential simulation
of 2-limited automata by PDAs
provided that the input of the PDA is right end-marked

» Without end-marker: double exponential simulation
» Conjecture: this cost cannot be reduced

» The converse simulation also preserve determinsm

Deterministic 2-Limited Automata = DCFLs
[P.&Pisoni '15]

Determinism vs Nondeterminism

What about deterministic d-Limited Automata, d > 27

Determinism vs Nondeterminism

What about deterministic d-Limited Automata, d > 27

» L=1{a"b"c|n>0}U{a"b?>"d|n>0}
is accepted by a deterministic 3-LA, but is not a DCFL

Determinism vs Nondeterminism

What about deterministic d-Limited Automata, d > 27

» L=1{a"b"c| n>0}uU{a"b?>"d | n>0}
is accepted by a deterministic 3-LA, but is not a DCFL

» Infinite hierarchy [Hibbard '67]

Determinism vs Nondeterminism

What about deterministic d-Limited Automata, d > 27

» L=1{a"b"c| n>0}uU{a"b?>"d | n>0}
is accepted by a deterministic 3-LA, but is not a DCFL

> Infinite hierarchy [Hibbard '67]

For each d > 2 there is a language which is accepted by a
deterministic d-limited automaton and that cannot be
accepted by any deterministic (d — 1)-limited automaton

1-Limited Automata

Simulation of 1-Limited Automata by Finite Automata

Main idea: transformation of two-way NFAs into one-way DFAs
[Shepherdson '59]

Simulation of 1-Limited Automata by Finite Automata

Main idea: transformation of two-way NFAs into one-way DFAs
[Shepherdson '59]

» First visit to a cell: direct simulation

Simulation of 1-Limited Automata by Finite Automata

Main idea: transformation of two-way NFAs into one-way DFAs
[Shepherdson '59]

» First visit to a cell: direct simulation

» Further visits: transition tables

forxeX* 7, CQxQ: (p,q) € 7xiff g

Simulation of 1-Limited Automata by Finite Automata

Main idea: transformation of two-way NFAs into one-way DFAs
[Shepherdson '59]

» First visit to a cell: direct simulation

» Further visits: transition tables

forxeX*, 7, C Qx Q: (p,q) € 7x iff Z

» Finite control of the DFA which simulates the two-way NFA:

[~ Y |

TX
m transition table of the already scanned input prefix
m set of possible current states

Simulation of 1-Limited Automata by Finite Automata

Simulation of 1-LAs: [Wagner&Wechsung '86]

Simulation of 1-Limited Automata by Finite Automata

Simulation of 1-LAs: [Wagner&Wechsung '86]

» The transition table depends on the string used to rewrite the
input prefix x

Simulation of 1-Limited Automata by Finite Automata

Simulation of 1-LAs: [Wagner&Wechsung '86]

[| y |

Tw

» The transition table depends on the string used to rewrite the
input prefix x

Simulation of 1-Limited Automata by Finite Automata

Simulation of 1-LAs: [Wagner&Wechsung '86]

[| Y |

Tw

» The transition table depends on the string used to rewrite the
input prefix x

» This string was nondeterministically chosen by the 1-LA

Simulation of 1-Limited Automata by Finite Automata

Simulation of 1-LAs: [Wagner&Wechsung '86]

[| Y |

Tw

» The transition table depends on the string used to rewrite the
input prefix x

» This string was nondeterministically chosen by the 1-LA

The simulating DFA keeps in its finite control a
sets of transition tables

1-Limited Automata — Finite Automata: Upper Bounds

Theorem
Let M be a 1-LA with n states.

DFA NFA

nondet. 1-LA

det. 1-LA

1-Limited Automata — Finite Automata: Upper Bounds

Theorem
Let M be a 1-LA with n states.

2
» There exists an equivalent DFA with 272" states.

DFA NFA

2
nondet. 1-LA on2"

det. 1-LA

1-Limited Automata — Finite Automata: Upper Bounds

Theorem
Let M be a 1-LA with n states.

n2
» There exists an equivalent DFA with 272" states.

» There exists an equivalent NFA with n - 2™ states.

DFA NFA

2
nondet. 1-LA on2" n-2"

det. 1-LA

1-Limited Automata — Finite Automata: Upper Bounds

Theorem
Let M be a 1-LA with n states.

n2
» There exists an equivalent DFA with 272" states.

» There exists an equivalent NFA with n - 2™ states.

If M is deterministic then there exists an equivalent DFA with no
more than n- (n+ 1)" states.

DFA NFA

n2
nondet. 1-LA 2n-2 n-2"
det. I-LA | n-(n+1)" | n-(n+1)"

1-Limited Automata — Finite Automata: Upper Bounds

Theorem
Let M be a 1-LA with n states.

n2
» There exists an equivalent DFA with 272" states.

» There exists an equivalent NFA with n - 2™ states.

If M is deterministic then there exists an equivalent DFA with no
more than n- (n+ 1)" states.

DFA NFA

2

n2
nondet. 1-LA 2n-2 n-2"
det. I-LA | n-(n+1)" | n-(n+1)"

These upper bounds do not depend on the alphabet size of M!

1-Limited Automata — Finite Automata: Upper Bounds

Theorem
Let M be a 1-LA with n states.

n2
» There exists an equivalent DFA with 272" states.

» There exists an equivalent NFA with n - 2™ states.

If M is deterministic then there exists an equivalent DFA with no
more than n- (n+ 1)" states.

DFA NFA

2

n2
nondet. 1-LA 2n-2 n-2"
det. I-LA | n-(n+1)" | n-(n+1)"

These upper bounds do not depend on the alphabet size of M!
The gaps are optimal!

Optimality: the Witness Languages [P.&Pisoni '14]

Fixed n > 1:

Optimality: the Witness Languages

[P.&Pisoni '14]

Fixed n > 1:
ap a2 --- ap dp+1dp42 --- a2p --- 4. 4@ 3kn
X1 X2 Xk
n
L, ={xax2 x| k>0, x1,x2,...,xx € {0,1}",

Optimality: the Witness Languages [P.&Pisoni '14]
Fixed n > 1:
ap a2 --- ap dpt1dp42 --- A2p --- A, A, --- akn

Xl\XZ\ /Xk

At least n of these blocks are equal

L, ={xax2 x| k>0, x1,x2,...,xx € {0,1}",
d << ---<ipe{l,... k},

Xiy = Xy =+ = Xi, }

Optimality: the Witness Languages [P.&Pisoni '14]
Fixed n > 1:
ap a2 --- ap dpt1dp42 --- A2p --- A, A, --- akn

Xl\XZ\ /Xk

At least n of these blocks are equal

L, ={xax2 x| k>0, x1,x2,...,xx € {0,1}",
d << ---<ipe{l,... k},

Xiy = Xy =+ = Xi, }

Example (n=3): 001110011110110111011

Optimality: the Witness Languages [P.&Pisoni '14]
Fixed n > 1:
ap a2 --- ap dpt1dp42 --- A2p --- A, A, --- akn

Xl\XZ\ /Xk

At least n of these blocks are equal

L, ={xax2 x| k>0, x1,x2,...,xx € {0,1}",
d << ---<ipe{l,... k},

Xiy = Xy =+ = Xi, }

Example (n=3): 001/110/011/110/110/111/011

Optimality: the Witness Languages [P.&Pisoni '14]
Fixed n > 1:
ap a2 --- ap dpt1dp42 --- A2p --- A, A, --- akn

Xl\XZ\ /Xk

At least n of these blocks are equal

L, ={xax2 x| k>0, x1,x2,...,xx € {0,1}",
d << ---<ipe{l,... k},

Xiy = Xy =+ = Xi, }

Example (n=3): 001/110011/110/110/111/011

How to Recognize L,: 1-Limited Automata

» Nondeterministic strategy:
Guess the leftmost positions of n input blocks
containing the same factor and Verify

How to Recognize L,: 1-Limited Automata

001110011110110111011

» Nondeterministic strategy:
Guess the leftmost positions of n input blocks
containing the same factor and Verify

» Implementation (3 tape scans):
p p

How to Recognize L,: 1-Limited Automata

001110011110110111011
—

» Nondeterministic strategy:
Guess the leftmost positions of n input blocks
containing the same factor and Verify

> Implementation (3 tape scans):
1. Mark n tape cells

How to Recognize L,: 1-Limited Automata

oo1/iztoo11/i10/i10111/011 (n=3)
%

» Nondeterministic strategy:
Guess the leftmost positions of n input blocks
containing the same factor and Verify

> Implementation (3 tape scans):
1. Mark n tape cells
2. Count the tape modulo n to check whether or not:
> the input length is a multiple of n, and
> the marked cells correspond to the leftmost symbols of some
blocks of length n

How to Recognize L,: 1-Limited Automata

oo1/iztoo11/i10/i10111/011 (n=3)
—

» Nondeterministic strategy:
Guess the leftmost positions of n input blocks
containing the same factor and Verify

> Implementation (3 tape scans):

1. Mark n tape cells

2. Count the tape modulo n to check whether or not:
> the input length is a multiple of n, and
> the marked cells correspond to the leftmost symbols of some

blocks of length n
3. Compare, symbol by symbol, each two consecutive blocks of
length n that start from the marked positions

How to Recognize L,: 1-Limited Automata

oo1/izoo11/i10/i10111/011 (n=3)
—

» Nondeterministic strategy:
Guess the leftmost positions of n input blocks
containing the same factor and Verify

> Implementation (3 tape scans):

1. Mark n tape cells

2. Count the tape modulo n to check whether or not:
> the input length is a multiple of n, and
> the marked cells correspond to the leftmost symbols of some

blocks of length n
3. Compare, symbol by symbol, each two consecutive blocks of
length n that start from the marked positions

How to Recognize L,: 1-Limited Automata

oo1/itoo11/i10/i10111/011 (n=3)
—

» Nondeterministic strategy:
Guess the leftmost positions of n input blocks
containing the same factor and Verify

> Implementation (3 tape scans):

1. Mark n tape cells

2. Count the tape modulo n to check whether or not:
> the input length is a multiple of n, and
> the marked cells correspond to the leftmost symbols of some

blocks of length n
3. Compare, symbol by symbol, each two consecutive blocks of
length n that start from the marked positions

How to Recognize L,: 1-Limited Automata

oo1/itojo11/i10i10111/011 (n=3)

» Nondeterministic strategy:
Guess the leftmost positions of n input blocks
containing the same factor and Verify

> Implementation (3 tape scans):
1. Mark n tape cells
2. Count the tape modulo n to check whether or not:
> the input length is a multiple of n, and

> the marked cells correspond to the leftmost symbols of some
blocks of length n

3. Compare, symbol by symbol, each two consecutive blocks of
length n that start from the marked positions

» O(n) states

How to Recognize L,: Deterministic Finite Automata

> |dea:

How to Recognize L,: Deterministic Finite Automata

> ldea:
m For each x € {0,1}" count how many blocks coincide with x

How to Recognize L,: Deterministic Finite Automata

> |dea:

m For each x € {0,1}" count how many blocks coincide with x
m Accept if and only if one of the counters reaches the value n

How to Recognize L,: Deterministic Finite Automata

> |dea:

m For each x € {0,1}" count how many blocks coincide with x
m Accept if and only if one of the counters reaches the value n

» State upper bound:

How to Recognize L,: Deterministic Finite Automata

> |dea:

m For each x € {0,1}" count how many blocks coincide with x
m Accept if and only if one of the counters reaches the value n

» State upper bound:

m Finite control:
a counter (up to n) for each possible block of length n

How to Recognize L,: Deterministic Finite Automata

> |dea:

m For each x € {0,1}" count how many blocks coincide with x
m Accept if and only if one of the counters reaches the value n

» State upper bound:
m Finite control:
a counter (up to n) for each possible block of length n
m There are 2" possible different blocks of length n

How to Recognize L,: Deterministic Finite Automata

> |dea:

m For each x € {0,1}" count how many blocks coincide with x
m Accept if and only if one of the counters reaches the value n

» State upper bound:
m Finite control:
a counter (up to n) for each possible block of length n
m There are 2" possible different blocks of length n
m Number of states double exponential in n
more precisely (2" —1) - n*" +n

How to Recognize L,: Deterministic Finite Automata

> Idea:
m For each x € {0,1}" count how many blocks coincide with x
m Accept if and only if one of the counters reaches the value n

» State upper bound:

m Finite control:
a counter (up to n) for each possible block of length n

m There are 2" possible different blocks of length n
m Number of states double exponential in n
more precisely (2" —1) - n®" +n

» State lower bound:
m n?" (standard distinguishability arguments)

How to Recognize L,: Deterministic Finite Automata

> |dea:

m For each x € {0,1}" count how many blocks coincide with x
m Accept if and only if one of the counters reaches the value n

» State upper bound:

m Finite control:

a counter (up to n) for each possible block of length n
m There are 2" possible different blocks of length n
m Number of states double exponential in n

more precisely (2" —1) - n®" +n

» State lower bound:
m n?" (standard distinguishability arguments)

The state gap between 1-LAs and DFAs is double exponential!

How to Recognize L,: Nondeterministic Finite Automata

> |dea:

m Guess x € {0,1}"
m Verify whether or not n blocks in the input contains x

How to Recognize L,: Nondeterministic Finite Automata

> |dea:

m Guess x € {0,1}"
m Verify whether or not n blocks in the input contains x

» State upper bound:

m Finite control: a counter < n for the occurrences of x,
and a counter modulo n for input positions
m Number of states: O(n?-2")

How to Recognize L,: Nondeterministic Finite Automata

> |dea:

m Guess x € {0,1}"
m Verify whether or not n blocks in the input contains x

» State upper bound:

m Finite control: a counter < n for the occurrences of x,
and a counter modulo n for input positions
m Number of states: O(n?-2")

» State lower bound:
m n? - 2" (fooling set technique)

Nondetermism vs. Determinism in 1-LAs

. . 2"
L O(n) o OPEP | ppp Lo 2
states states

Nondetermism vs. Determinism in 1-LAs

Ln: O(n) 1 | A exp exp DEA Lot = n”
states states
exp

det-1-LA

Nondetermism vs. Determinism in 1-LAs

: exp ex . 2"
L O(n) g | PP ppp Ly =0
states states
exp
Lot 2 oP(n) - e 11 A

states

Nondetermism vs. Determinism in 1-LAs

: exp ex . 2"
L O(n) g | PP ppp Ly =0
states states
exp exp
Lor = ep(n) gor 11 A
states

Corollary

Removing nondeterminism from 1-LAs requires exponentially many
states

Nondetermism vs. Determinism in 1-LAs

Ly: O(n)l_LA exp exp DFA Ly: > n*
states states
exp exp
Loz exp(n) e 1A
states

Corollary

Removing nondeterminism from 1-LAs requires exponentially many
states

Cfr. Sakoda and Sipser question [Sakoda&Sipser '78]:

How much it costs in states to remove nondeterminism
from two-way finite automata?

Strongly Limited Automata

Different Restrictions

» Dyck languages are accepted without fully using capabilities
of 2-limited automata

Different Restrictions

» Dyck languages are accepted without fully using capabilities
of 2-limited automata

» Chomsky-Schiitzenberger Theorem: Recognition of CFLs can
be reduced to recognition of Dyck languages

Different Restrictions

» Dyck languages are accepted without fully using capabilities
of 2-limited automata

» Chomsky-Schiitzenberger Theorem: Recognition of CFLs can
be reduced to recognition of Dyck languages

Question

Is it possible to restrict 2-limited automata
without affecting their computational power?

Different Restrictions

» Dyck languages are accepted without fully using capabilities
of 2-limited automata

» Chomsky-Schiitzenberger Theorem: Recognition of CFLs can
be reduced to recognition of Dyck languages

Question

Is it possible to restrict 2-limited automata
without affecting their computational power?

Forgetting Automata
[Jancar&Mraz& Platek '96]
YES! » The content of any cell can be erased
in the 1st or 2nd visit (using a fixed symbol)

» No other changes of the tape are allowed

Strongly Limited Automata [P.'15]

» Model inspired by the algorithm used by 2-limited automata
to recognize Dyck languages

Strongly Limited Automata [P."15]

» Model inspired by the algorithm used by 2-limited automata
to recognize Dyck languages

> Restrictions on
m state changes
m head reversals
m rewriting operations

Dyck Language Recognition

LDl

» Moves to the right:
m to search a closed bracket

Dyck Language Recognition

LD LA i |

» Moves to the right:
m to search a closed bracket Only one state qo!

Dyck Language Recognition

LDl

» Moves to the right:
m to search a closed bracket Only one state qo!

» Moves to the left:

m to search an open bracket
m to check the tape content in the final scan from right to left

Dyck Language Recognition

SOOI ID

» Moves to the right:
m to search a closed bracket Only one state qo!

» Moves to the left:

m to search an open bracket One state for each type of bracket!
m to check the tape content in the final scan from right to left

Dyck Language Recognition

L rdffri -

» Moves to the right:
m to search a closed bracket Only one state qo!

» Moves to the left:

m to search an open bracket One state for each type of bracket!
m to check the tape content in the final scan from right to left

» Rewritings:
m each closed bracket is rewritten in the first visit
m each open bracket is rewritten in the second visit
m no rewritings in the final scan

Strongly Limited Automata

» Alphabet
> input
I working

Strongly Limited Automata

» Alphabet
> input
I working

» States and moves

Strongly Limited Automata

» Alphabet
> input
I working

» States and moves
go initial state, moving from left to right

Strongly Limited Automata

» Alphabet
> input
I working

» States and moves
go initial state, moving from left to right

--» move to the right

Strongly Limited Automata

» Alphabet
> input
I working

» States and moves
go initial state, moving from left to right

--» move to the right
q<—X> write X € T, enter state g € Q, turn to the left

Strongly Limited Automata

» Alphabet
> input
I working

» States and moves
qo initial state, moving from left to right
--» move to the right
q<—X> write X € I, enter state g € Q, turn to the left

Q. moving from right to left

Strongly Limited Automata

» Alphabet
> input
I working

» States and moves
qo initial state, moving from left to right
--» move to the right
q<—X> write X € I, enter state g € Q, turn to the left
Q. moving from right to left
«-- move to the left

Strongly Limited Automata

» Alphabet
> input
I working

» States and moves
qo initial state, moving from left to right
--» move to the right
q<—X> write X € I, enter state g € Q, turn to the left
Q. moving from right to left

«-- move to the left
<& write X, do not change state, move to the left

Strongly Limited Automata

» Alphabet
> input
I working

» States and moves
qo initial state, moving from left to right
--» move to the right
q<—X> write X € I, enter state g € Q, turn to the left
Q. moving from right to left

«-- move to the left

<& write X, do not change state, move to the left

<X—>q0 write X, enters state qo, turn to the right

Strongly Limited Automata

» Alphabet
> input
I working

» States and moves
go initial state, moving from left to right

--» move to the right
q<—X> write X € I, enter state g € Q, turn to the left

Q. moving from right to left

«-- move to the left
<& write X, do not change state, move to the left
X5 Write X, enters state qo, turn to the right

Q@ final scan
when < is reached move from right to left and

test the membership of the tape content to a “local” language

Strongly Limited Automata: Palindromes

Y ={a b}, I ={X)Y,Z} ﬂﬂﬂﬂﬂ

qo0
QL = {qaa qb}

Strongly Limited Automata: Palindromes

Y ={a, b}, T ={X,Y,Z} -~ [aT6 55T =]
TClo

qo0
QL — {qaa qb}

Transitions:
go --» move to the right
other possibility in cell not yet rewritten:

qd%)g write X € T, enter state q, € @, turn to the left

Strongly Limited Automata: Palindromes

Y ={a, b}, T ={X,Y,Z} -~ [aT6 55T =]
qu

qo0
QL — {qaa qb}

Transitions:
go --» move to the right
other possibility in cell not yet rewritten:

qd%)g write X € T, enter state q, € @, turn to the left

Strongly Limited Automata: Palindromes

Y ={a, b}, T ={X,Y,Z} -~ [aT6 55T =]
TQO

qo0
QL — {qaa qb}

Transitions:
go --» move to the right
other possibility in cell not yet rewritten:

qd%)g write X € T, enter state q, € @, turn to the left

Strongly Limited Automata: Palindromes

E={ab). 1= XY.2) SBnnook
fao

qo0
QL — {qaa qb}

Transitions:
go --» move to the right
other possibility in cell not yet rewritten:

qd%x> write X € T, enter state g, € Qy, turn to the left

Strongly Limited Automata: Palindromes

¥ ={ab}, I ={X,Y,Z} ~[alp[b]~
TClb

qo0
QL — {qaa qb}

Transitions:

g, moving from right to left

cells containing v € {a, b}, nondeterministically select between:
£ \write Z, do not change state, move to the left

Y write Y, enters state qo, turn to the right (only if v = o)

Strongly Limited Automata: Palindromes

r={abh T=1XY.2} >l 0 2 |-
TClb

qo0
QL — {qaa qb}

Transitions:

g, moving from right to left

cells containing v € {a, b}, nondeterministically select between:
£ \write Z, do not change state, move to the left

L>qowrite Y, enters state qo, turn to the right (only if v = o)

Strongly Limited Automata
Y ={ab}, [={X,Y,Z}

qo0
QL — {qa7 qb}

Transitions:

go --» move to the right

- Palindromes

> 1 -] -

Strongly Limited Automata
Y ={ab}, [={X,Y,Z}

qo0
QL — {qa7 qb}

Transitions:

go --» move to the right

- Palindromes

> 1 -]~

Strongly Limited Automata: Palindromes

e - [- -

qo T
QL — {qa7 qb} o
Transitions:
go --» move to the right

other possibility in cell not yet rewritten:

qd<—x> write X € T, enter state q, € @, turn to the left

Strongly Limited Automata: Palindromes

e - (= A -

qo T
QL = {CIa7 qb} aa

Transitions:

g, moving from right to left

cells already rewritten: «-- move to the left

Strongly Limited Automata: Palindromes

e - [A -

qo T
QL = {CIa7 qb} da

Transitions:

g, moving from right to left

cells already rewritten: «-- move to the left

Strongly Limited Automata: Palindromes

e - (= -

qo T
QL = {CIa7 qb} da

Transitions:

g, moving from right to left

cells already rewritten: «-- move to the left

Strongly Limited Automata: Palindromes

e - [A -

qo0 T
QL =1{9a,q»} 9

Transitions:

g, moving from right to left

cells containing v € {a, b}, nondeterministically select between:
£ \write Z, do not change state, move to the left

L>qowrite Y, enters state qo, turn to the right (only if v = o)

Strongly Limited Automata

¥ ={a b}, T ={X,Y,Z}

qo
QL = {CIa7 qb}
Transitions:

go --» move to the right

- Palindromes

- I -

fao

Strongly Limited Automata

¥ ={a b}, T ={X,Y,Z}

qo
QL = {CIa7 qb}
Transitions:

go --» move to the right

- Palindromes

- I -

fao

Strongly Limited Automata

¥ ={a b}, T ={X,Y,Z}

qo
QL = {CIa7 qb}
Transitions:

go --» move to the right

- Palindromes

- I -

fao

Strongly Limited Automata

¥ ={a b}, T ={X,Y,Z}

qo
QL = {CIa7 qb}
Transitions:

go --» move to the right

- Palindromes

- I -

fao

Strongly Limited Automata

¥ ={a b}, T ={X,Y,Z}

q0
QL =1{9a,q»}

Transitions:

- Palindromes

- I -

oo

Strongly Limited Automata: Palindromes
z:{a7b}’ r:{X’Y7Z} [>
: IZIRIX
QL — {qaa qb}

Final phase:

» The string between the end-markers should belong to
Y*ZX* + Y*X*
with the exceptions of inputs of length <1

» The following two-letter factors are allowed:
>Y YY YZ ZX YX XX X«
>a Db ad b D>

Strongly Limited Automata: Palindromes
SRR S TR
QL — {qaa qb}

Final phase:

» The string between the end-markers should belong to
Y*ZX* + Y*X*
with the exceptions of inputs of length <1

» The following two-letter factors are allowed:
>Y YY YZ ZX YX XX X«
>a Db ad b D>

Strongly Limited Automata: Palindromes
z:{a7b}’ r:{X’Y7Z} [> (J
: TIVZIXIX
QL — {qaa qb}

Final phase:

» The string between the end-markers should belong to
Y*ZX* + Y*X*
with the exceptions of inputs of length <1

» The following two-letter factors are allowed:
>Y YY YZ ZX YX XX X«
>a Db ad b D>

Strongly Limited Automata: Palindromes
z:{a7b}’ r:{X’Y7Z} [> (J
: MYz
QL — {qaa qb}

Final phase:

» The string between the end-markers should belong to
Y*ZX* + Y*X*
with the exceptions of inputs of length <1

» The following two-letter factors are allowed:
>Y YY YZ ZX YX XX X«
>a Db ad b D>

Strongly Limited Automata: Palindromes
§0: {a, b}, T ={X,Y,Z} D_ ~
QL — {qaa qb}

Final phase:

» The string between the end-markers should belong to
Y*ZX* + Y*X*
with the exceptions of inputs of length <1

» The following two-letter factors are allowed:
>Y YY YZ ZX YX XX X«
>a Db ad b D>

Strongly Limited Automata: Palindromes
z:{a7b}’ r:{X’Y7Z} <
: N
QL — {qaa qb}

Final phase:

» The string between the end-markers should belong to
Y*ZX* + Y*X*
with the exceptions of inputs of length <1

» The following two-letter factors are allowed:
>Y YY YZ ZX YX XX X«
>a Db ad b D>

Strongly Limited Automata

» Computational power: same as 2-limited automata (CFLs)

Strongly Limited Automata

» Computational power: same as 2-limited automata (CFLs)

» Descriptional power: the sizes of equivalent

m CFGs
m PDAs
m strongly limited automata

are polynomially related

Strongly Limited Automata

» Computational power: same as 2-limited automata (CFLs)

» Descriptional power: the sizes of equivalent

m CFGs
m PDAs
m strongly limited automata

are polynomially related

m 2-limited automata can be exponentially smaller

Strongly Limited Automata

» Computational power: same as 2-limited automata (CFLs)

» Descriptional power: the sizes of equivalent

m CFGs
m PDAs
m strongly limited automata

are polynomially related

m 2-limited automata can be exponentially smaller

» CFLs — strongly limited automata:

conversion from CFGs which heavily uses nondeterminism

Determinism vs Nondeterminism

What is the power of deterministic strongly limited automata?

Determinism vs Nondeterminism

What is the power of deterministic strongly limited automata?

» Each deterministic strongly limited automaton can be
simulated by a deterministic 2-LA

Determinism vs Nondeterminism

What is the power of deterministic strongly limited automata?

» Each deterministic strongly limited automaton can be
simulated by a deterministic 2-LA

» Deterministic languages as
Ly ={ca"b" | n >0} U {da®>"b" | n > 0}
Ly = {a"b?*" | n > 0}
are not accepted by deterministic strongly limited automata

Determinism vs Nondeterminism

What is the power of deterministic strongly limited automata?

» Each deterministic strongly limited automaton can be
simulated by a deterministic 2-LA

» Deterministic languages as
Ly ={ca"b" | n>0}U{da®>"b" | n > 0}
Ly = {a"b?*" | n > 0}
are not accepted by deterministic strongly limited automata

Proper subclass of deterministic context-free languages

Determinism vs Nondeterminism: a Small Change

» Moving to the right, a strongly limited automaton can use
only qo

Determinism vs Nondeterminism: a Small Change

» Moving to the right, a strongly limited automaton can use
only qo

» A possible modification:
a set of states Qg used while moving to the right

Determinism vs Nondeterminism: a Small Change

» Moving to the right, a strongly limited automaton can use
only qo

» A possible modification:
a set of states Qg used while moving to the right

m the simulation by PDAs remains polynomial

Determinism vs Nondeterminism: a Small Change

» Moving to the right, a strongly limited automaton can use
only qo

» A possible modification:
a set of states Qg used while moving to the right

m the simulation by PDAs remains polynomial
m Ly ={ca"h" | n>0}U{da®"b" | n>0}
Ly ={a"b*" | n >0}

are accepted by deterministic devices

Determinism vs Nondeterminism: a Small Change

» Moving to the right, a strongly limited automaton can use
only qo

» A possible modification:
a set of states Qg used while moving to the right

m the simulation by PDAs remains polynomial
m Ly ={ca"h" | n>0}U{da®>"b" | n >0}
Ly = {a"p?>" | n >0}

are accepted by deterministic devices

Problem

What is the class of languages accepted
by the deterministic version of devices so obtained?

Final Remarks

Active Visits ad Return Complexity

Active visit of a tape cell: any visit changing the content

Active Visits ad Return Complexity

Active visit of a tape cell: any visit changing the content

Return Complexity
Maximum number of visits to a tape cell counted
starting from the first active visit [Wechsung '75]

Active Visits ad Return Complexity

Active visit of a tape cell: any visit changing the content

Return Complexity
Maximum number of visits to a tape cell counted
starting from the first active visit [Wechsung '75]

Dual Return Complexity
Maximum number of visits to a tape cell

counted up to the /ast active visit dret-c(d) = d-limited automata

Active Visits ad Return Complexity

Active visit of a tape cell: any visit changing the content

Return Complexity

Maximum number of visits to a tape cell counted

starting from the first active visit [Wechsung '75]
ret-c(1): regular languages
ret-c(d), d > 2: context-free languages

ret-c(2) deterministic: not comparable with DCFLs

Dual Return Complexity
Maximum number of visits to a tape cell

counted up to the /ast active visit dret-c(d) = d-limited automata

Active Visits ad Return Complexity

Active visit of a tape cell: any visit changing the content

Return Complexity

Maximum number of visits to a tape cell counted

starting from the first active visit [Wechsung '75]
ret-c(1): regular languages
ret-c(d), d > 2: context-free languages

ret-c(2) deterministic: not comparable with DCFLs

Dual Return Complexity
Maximum number of visits to a tape cell

counted up to the /ast active visit dret-c(d) = d-limited automata

ret-c(f(n))=dret-c(f(n)) =1AuxPDA(f(n))
[Wechsung& Brandstadt '79]

Thank you for your attention!

	Second Part
	PDAs vs Limited Automata
	1-Limited Automata
	Strongly Limited Automata
	Final Remarks
	Thank you for your attention!

