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One-tape Turing machines with restricted rewritings
Definition
Fixed an integer d > 1, a d-limited automaton is

> a one-tape Turing machine

» which is allowed to rewrite the content of each tape cell
only in the first d visits
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One-tape Turing machines with restricted rewritings
Definition
Fixed an integer d > 1, a d-limited automaton is

> a one-tape Turing machine

» which is allowed to rewrite the content of each tape cell
only in the first d visits

Computational power

» For each d > 2, d-limited automata characterize
context-free languages [Hibbard '67]

» 1-limited automata characterize regular languages
[Wagner&Wechsung '86]
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Every context-free language L C ¥* can be expressed as
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Where, for Qk = {(1, )1, (2, )2, 000y (k, )k}
» Dy C Qj is a Dyck language
» R C Qj is a regular language
> h:Qu — X* is an homomorphism

Furthermore, it is possible to restrict to non-erasing
homomorphisms [Okhotin "12]
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.
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input of T

[FHAA o[ H#itoo | - - [#H# 0]

(padded) input of Ap and Ag
Not stored into the tape!

Z=0102 0 € h_l(W)

h(o;) = u;

Non erasing homomorphism!

Each o; is produced “on the fly"
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XX (<IN

PDA

Normal form for (D)PDAs:
> at each step, the stack height increases at most by 1

» e-moves cannot push on the stack

Each PDA can be simulated by an equivalent 2-LA
» Polynomial size

» Determinism is preserved
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Problem

What about the converse simulation,
namely that of 2-LAs by PDAs? [Hibbard '67]

Original simulation

[P.&Pisoni '15]
Reformulation
» Exponential cost

» Determinism is preserved (extra costs)



Transition Tables of 2-LAs

» Fixed a 2-limited automaton
» Transition table 7, w is a “frozen” string

Tw € Q x {—1,+1} x Q x {-1,+1}

(g,d,p,d") € 7, iff M on a tape segment containing w has
a computation path:

m entering the segment in g from d’
m exiting the segment in p to d”
m left = —1, right = +1



Transition Tables of 2-LAs

» Fixed a 2-limited automaton
» Transition table 7, w is a “frozen” string

Tw € Q x {—1,+1} x Q x {-1,+1}

— | o |

? (q*ilap7_1) € Tw

p

(g,d,p,d") € 7, iff M on a tape segment containing w has
a computation path:

m entering the segment in g from d’
m exiting the segment in p to d”
m left = —1, right = +1



Transition Tables of 2-LAs

» Fixed a 2-limited automaton
» Transition table 7, w is a “frozen” string

Tw € Q x {—1,+1} x Q x {-1,+1}

— | o |

q
v; (q7_1ap771)€7—w

(g,d,p,d") € 7, iff M on a tape segment containing w has
a computation path:

m entering the segment in g from d’
m exiting the segment in p to d”
m left = —1, right = +1



Transition Tables of 2-LAs

» Fixed a 2-limited automaton
» Transition table 7, w is a “frozen” string

Tw € Q x {—1,+1} x Q x {-1,+1}

[ E | \ v | <~

(q _17p7_]-) € Tw (q+1ap7_l) € Tw

p ?

(g,d,p,d") € 7, iff M on a tape segment containing w has
a computation path:

m entering the segment in g from d’
m exiting the segment in p to d”
m left = —1, right = +1



Transition Tables of 2-LAs

» Fixed a 2-limited automaton
» Transition table 7, w is a “frozen” string

Tw € Q x {—1,+1} x Q x {-1,+1}

\ E | v

QE
(q _17p7_]-) € Tw (q7+lap71) € Tw

p ?

(g,d,p,d") € 7, iff M on a tape segment containing w has
a computation path:

m entering the segment in g from d’
m exiting the segment in p to d”
m left = —1, right = +1



Simulation of 2-LAs by PDAs

Initial configuration




Simulation of 2-LAs by PDAs

Initial configuration




Simulation of 2-LAs by PDAs

Initial configuration




Simulation of 2-LAs by PDAs

Initial configuration




Simulation of 2-LAs by PDAs

Initial configuration




Simulation of 2-LAs by PDAs

Initial configuration




Simulation of 2-LAs by PDAs

Initial configuration

Some computation steps...

~HBIBlclde[flg[h]i] <
L

2 LA



Simulation of 2-LAs by PDAs

Initial configuration

Some computation steps...

> PABIX[d[e[flg[h]i] =

2-LA



Simulation of 2-LAs by PDAs

Initial configuration

Some computation steps...

- BIBIX]Y]e[flg[h]i] <

2-LA



Simulation of 2-LAs by PDAs

Initial configuration

[
||
By
o]
o |
=
log |
=

2-LA do PDA Wﬂ—y

Some computation steps...

- ABIXTYIZI fg]h]i] <

2-LA



Simulation of 2-LAs by PDAs

Initial configuration

~lalb]cld]e[flg[h]i] = [alblc]d]e[f]g[h]i]

2-LA do PDA mﬂ—y

Some computation steps...

> BBIXTYIZ/s[h]7] <




Simulation of 2-LAs by PDAs

Initial configuration

~lalb]cld]e[flg[h]i] = [alblc]d]e[f]g[h]i]

2-LA do PDA mﬂ—y

Some computation steps...

- BIEXIVER ]~




Simulation of 2-LAs by PDAs

Initial configuration

~lalb]cld]e[flg[h]i] = [alblc]d]e[f]g[h]i]

2-LA do PDA mﬂ—y

Some computation steps...

- BIEXIYIER 7] -




Simulation of 2-LAs by PDAs

Initial configuration

~lalb]cld]e[flg[h]i] = [alblc]d]e[f]g[h]i]

2-LA do PDA mﬁ—y

After some steps...

DEXW-g[h[ilmq la]b[c|d]e|f]g]h]i]--




Simulation of 2-LAs by PDAs

Initial configuration

~lalb]cld]e[flg[h]i] = [alblc]d]e[f]g[h]i]

. L

After some steps...

2-LA

D#X YHglhlfl'“< [alblc|d]e[flg|h]i]



Simulation of 2-LAs by PDAs

Initial configuration

~lalb]cld]e[flg[h]i] = [alblc]d]e[f]g[h]i]

. L

After some steps...

D#X Yﬁg[h[ilmﬁ

2-LA




Simulation of 2-LAs by PDAs

Initial configuration

~lalb]cld]e[flg[h]i] = [alblc]d]e[f]g[h]i]

L L
N or [ 80—

After some steps...
. #x YH

g[h[i‘~~~<} il
i ] 2
[0 S Qg R




Simulation of 2-LAs by PDAs

Initial configuration

~[a[b]c]d]e[flg[h]i] =

2-LA do

After some steps...




Simulation of 2-LAs by PDAs

Initial configuration

~lalb]cld]e[flg[h]i] = [alblc]d]e[f]g[h]i]

. L

After some steps...

> X

ngmw
2LA|£ PDA “




Simulation of 2-LAs by PDAs

- EEXYEREET -

%

lalb[c|d]e[flg[h]i]

<



Simulation of 2-LAs by PDAs

- BBIXTYER g [h[7]---<  [a]b[c[d[e[f]g[h]i]

%

i(q,8) > (p, Z,+1)

move to the right

4

<



Simulation of 2-LAs by PDAs

- BBIXTYER g [h[7]---<  [a]b[c[d[e[f]g[h]i]

%

i(q,8) > (p, Z,+1)

move to the right

U
- EEXVERZ 7] -

<

2-LA p



Simulation of 2-LAs by PDAs

> BIBIXTYEM g [h[7]---<  [a[b[c[d[e[f[g[h]i]
%
5(q.8) > (p, Z,+1) normal mode
move to the right push and direct simulation
4 4
< la]blcld[e[flg[h[i]

- BIBIXTYIERZ] 7]

2-LA p PDA



Simulation of 2-LAs by PDAs

- BIBIXTYE g [h[7]---<  [a[b[c[d[e[f[g[h]i]
_—_ ]
5(q.8) > (p, Z,+1) normal mode
move to the right push and direct simulation
4 4
L
-BEBXYEEZ < [a]b[c[de[Flg[A]T]

N
2 LA P PDA




Simulation of 2-LAs by PDAs

- EEXYEEZF -

2-LA p



Simulation of 2-LAs by PDAs

> BABIXY BRI Z] h]i ]« la|blc|d]e|f|g|h]i] -

2-LA P PDA

5(p,h) > (r,H,-1)

move to the left



Simulation of 2-LAs by PDAs

> BABIXY BRI Z] h]i ]« la|blc|d]e|f|g|h]i] -

2-LA P PDA

5(p,h) > (r,H,-1)

move to the left




Simulation of 2-LAs by PDAs

> BABIXY BRI Z] h]i ]« la|blc|d]e|f|g|h]i] -

2-LA P PDA

3(p, h) > (r, H, 1)

move to the left

back mode

4

< lalb[c|d]e[flg[h]i]




Simulation of 2-LAs by PDAs

> BABIXY BRI Z] h]i ]« la|blc|d]e|f|g|h]i] -

2-LA P PDA

3(p, h) > (r, H, 1)

move to the left

back mode

4

< lalb[c|d]e[flg[h]i]




Simulation of 2-LAs by PDAs




Simulation of 2-LAs by PDAs

é(r,2) > (q,G,-1)

move to the left



Simulation of 2-LAs by PDAs

é(r,2) > (q,G,-1)

move to the left




Simulation of 2-LAs by PDAs

5(r.Z2) > (q.G,-1) back mode
move to the left
U
o la]b[c[d[e[f]g[n]i]

PDA



Simulation of 2-LAs by PDAs

6(r,Z2)>(q,G,-1) back mode
move to the left
U
4 lal|blc|d]e|flg|h]|i] -




Simulation of 2-LAs by PDAs

PDA



Simulation of 2-LAs by PDAs

PDA

(q7 +1’ S, _1) S
exit to the left



Simulation of 2-LAs by PDAs

< [alb[cld[e[flg[n]i]

1

PDA

(q7 +1,s, _1) € %
exit to the left




Simulation of 2-LAs by PDAs

PDA

(q7 +17 S, _1) S 71:‘F

. back mode
exit to the left

4

< lalb[c|d]e[f]g[h

]
Y
PDA | S0 Eom ‘

-.




Simulation of 2-LAs by PDAs

PDA

(q7 +17 S, _1) S 71:‘F
exit to the left

Y
X




Simulation of 2-LAs by PDAs




Simulation of 2-LAs by PDAs

o(s,Y)> (p,D,+1)
move to the right

4

PDA

m
T




Simulation of 2-LAs by PDAs

0(s,Y) > (p,D,41)

move to the right




Simulation of 2-LAs by PDAs

.« [alb[c[d]e :lfl
Y
X
poA | 5 Eonm -
(s, Y) > (p.D,+1) back mode

move to the right

4 4

[alb[c]d]e \f\g\h\l\

A




Simulation of 2-LAs by PDAs

- abcde;g/fi...
Y
X
poA | S Eon -
(s, Y) > (p,D,+1)
move to the right back mode
U

A




Simulation of 2-LAs by PDAs

- abcde;g/fi...
Y
X
poA | S Eon -
6(s,Y) > (p, D, +1)
move to the right back mode
b U
< la[b|c|d




Simulation of 2-LAs by PDAs

]

| lalblcld[e[f[g|h]i]



Simulation of 2-LAs by PDAs

< [alb[cld[e[flg[n]i]

]

(pa _17 r, +1) S 71:’H
exit to the right

4



Simulation of 2-LAs by PDAs

< [alb[cld[e[flg[n]i]

1

PDA P& .u

(pa _17 r, +1) S 71:’H
exit to the right

4




Simulation of 2-LAs by PDAs

< [alb[cld[e[flg[n]i]

1

poA | P Bk

(p,=1,r,+1) €., resume normal mode
exit to the right move to the right

4 4

la]blc[d]e[f|g|h[i]

v

X

[~
A

2-LA r PDA r



Simulation of 2-LAs by PDAs

< [a]B[cldTe]FIglATT] -

1

PDA p77EMH

(p,=1,r,+1) €., resume normal mode
exit to the right move to the right
\
< la[blc|d]e|f[g[h]i]

PDA r ’7



Simulation of 2-LAs by PDAs

< [a]B[cldTe]FIglATT] -

1

PDA p77EMH

(p,=1,r,+1) €., resume normal mode
exit to the right move to the right
\
< la[blc|d]e|f[g[h]i]




Simulation of 2-LAs by PDAs

< [a]B[cldTe]FIglATT] -

1

PDA p77EMH

(p,=1,r,+1) €., resume normal mode
exit to the right move to the right
\
< la[blc|d]e|f[g[h]i]

PDA




Simulation of 2-LAs by PDAs

Summing up...

Given a 2-LA M with:
> n states

» m symbol working alphabet



Simulation of 2-LAs by PDAs

Summing up...

Given a 2-LA M with:
> n states At most 247 many different tables!

» m symbol working alphabet



Simulation of 2-LAs by PDAs

Summing up...

Given a 2-LA M with:
> n states At most 247 many different tables!
» m symbol working alphabet

Resulting PDA:

» States S
Normal mode: states of M 5 tates
Back mode: (q, ) 2n(2*" +1) +1
q state of M, 7 transition table



Simulation of 2-LAs by PDAs

Summing up...

Given a 2-LA M with:
> n states At most 247 many different tables!

» m symbol working alphabet
Resulting PDA:

> States States
Normal mode: states of M 5
2n(2%" +1) +1

Back mode: (g, 7)
q state of M, 7 transition table

» Pushdown symbols Pushdown symbols
m Tape symbols of M

. 4 2
m Transition tables m + 2"



Simulation of 2-LAs by PDAs

Summing up...

Given a 2-LA M with:
> n states At most 247 many different tables!
» m symbol working alphabet
Resulting PDA:
» States
Normal mode: states of M

Back mode: (g, 7)
q state of M, 7 transition table

> Pushdown symbols Pushdown symbols
m Tape symbols of M
m Transition tables

States
2n(2*"° +1) + 1

m + 24n2

» Each move can increase the
stack height at most by 1



Simulation of 2-LAs by PDAs

Summing up...

Given a 2-LA M with:
> n states At most 247 many different tables!

» m symbol working alphabet

Resulting PDA:

» States
Normal mode: states of M
Back mode: (g, 7)
q state of M, 7 transition table

> Pushdown symbols Pushdown symbols
m Tape symbols of M
m Transition tables

States
2n(2*"° +1) + 1

m + 24”2

» Each move can increase the

stack height at most by 1 2-LAs — PDAs

Exponential cost
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How to Recognize K,

001110011110110xxx110 (n=13)

1. Scan all the tape from left to right
2. Start to move to the left and mark the rightmost n symbols

3. Compare each block of length n (from the right),
symbol by symbol, with the last block

4. When the left end of the tape is reached accept if and only if
the number of block equal to the last one is > n

Complexity:
» K, is accepted by a deterministic 2-LA with O(n?) states
and a fixed working alphabet

» Each PDA accepting K, has size at least exponential in n
(Proof based on the interchange lemma for CFLs)



Simulation of 2-LAs by PDAs

Cost of the simulation
» Exponential size for the simulation of 2-LAs by PDAs

» Optimal
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Computational Power of Limited Automata

From the simulations:

» 2-Limited Automata = CFLs

What about d-Limited Automata, with d > 27
» They are still characterize CFLs [Hibbard '67]
» They can be simulated by exponentially larger PDAs
[Kutrib&P.&Wendlandt subm.]
What about 1-Limited Automata?
» Regular languages [Wagner&Wechsung '86]
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» Determinism is preserved by the exponential simulation
of 2-limited automata by PDAs
provided that the input of the PDA is right end-marked

» Without end-marker: double exponential simulation
» Conjecture: this cost cannot be reduced

» The converse simulation also preserve determinsm

Deterministic 2-Limited Automata = DCFLs
[P.&Pisoni '15]



Determinism vs Nondeterminism

What about deterministic d-Limited Automata, d > 27



Determinism vs Nondeterminism

What about deterministic d-Limited Automata, d > 27

» L=1{a"b"c|n>0}U{a"b?>"d|n>0}
is accepted by a deterministic 3-LA, but is not a DCFL



Determinism vs Nondeterminism

What about deterministic d-Limited Automata, d > 27

» L=1{a"b"c| n>0}uU{a"b?>"d | n>0}
is accepted by a deterministic 3-LA, but is not a DCFL

» Infinite hierarchy [Hibbard '67]



Determinism vs Nondeterminism

What about deterministic d-Limited Automata, d > 27

» L=1{a"b"c| n>0}uU{a"b?>"d | n>0}
is accepted by a deterministic 3-LA, but is not a DCFL

> Infinite hierarchy [Hibbard '67]

For each d > 2 there is a language which is accepted by a
deterministic d-limited automaton and that cannot be
accepted by any deterministic (d — 1)-limited automaton
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Simulation of 1-Limited Automata by Finite Automata

Main idea: transformation of two-way NFAs into one-way DFAs
[Shepherdson '59]

» First visit to a cell: direct simulation

» Further visits: transition tables

forxeX*, 7, C Qx Q: (p,q) € 7x iff Z

» Finite control of the DFA which simulates the two-way NFA:

[~ Y |

TX
m transition table of the already scanned input prefix
m set of possible current states
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Simulation of 1-LAs: [Wagner&Wechsung '86]

[ | Y |

Tw

» The transition table depends on the string used to rewrite the
input prefix x

» This string was nondeterministically chosen by the 1-LA

The simulating DFA keeps in its finite control a
sets of transition tables
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1-Limited Automata — Finite Automata: Upper Bounds

Theorem
Let M be a 1-LA with n states.

n2
» There exists an equivalent DFA with 272" states.

» There exists an equivalent NFA with n - 2™ states.

If M is deterministic then there exists an equivalent DFA with no
more than n- (n+ 1)" states.

DFA NFA

2

n2
nondet. 1-LA 2n-2 n-2"
det. I-LA | n-(n+1)" | n-(n+1)"

These upper bounds do not depend on the alphabet size of M!
The gaps are optimal!
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Optimality: the Witness Languages [P.&Pisoni '14]
Fixed n > 1:
ap a2 --- ap dpt1dp42 --- A2p --- A, A, --- akn

Xl\XZ\ /Xk

At least n of these blocks are equal

L, ={xax2 x| k>0, x1,x2,...,xx € {0,1}",
d << ---<ipe{l,... k},

Xiy = Xy =+ = Xi, }

Example (n=3): 001/110011/110/110/111/011
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How to Recognize L,: 1-Limited Automata

oo1/itojo11/i10i10111/011 (n=3)

» Nondeterministic strategy:
Guess the leftmost positions of n input blocks
containing the same factor and Verify

> Implementation (3 tape scans):
1. Mark n tape cells
2. Count the tape modulo n to check whether or not:
> the input length is a multiple of n, and

> the marked cells correspond to the leftmost symbols of some
blocks of length n

3. Compare, symbol by symbol, each two consecutive blocks of
length n that start from the marked positions

» O(n) states
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How to Recognize L,: Deterministic Finite Automata

> |dea:

m For each x € {0,1}" count how many blocks coincide with x
m Accept if and only if one of the counters reaches the value n

» State upper bound:

m Finite control:

a counter (up to n) for each possible block of length n
m There are 2" possible different blocks of length n
m Number of states double exponential in n

more precisely (2" —1) - n®" +n

» State lower bound:
m n?" (standard distinguishability arguments)

The state gap between 1-LAs and DFAs is double exponential!
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How to Recognize L,: Nondeterministic Finite Automata

> |dea:

m Guess x € {0,1}"
m Verify whether or not n blocks in the input contains x

» State upper bound:

m Finite control: a counter < n for the occurrences of x,
and a counter modulo n for input positions
m Number of states: O(n?-2")

» State lower bound:
m n? - 2" (fooling set technique)
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Nondetermism vs. Determinism in 1-LAs

Ly: O(n)l_LA exp exp DFA Ly: > n*
states states
exp exp
Loz exp(n) e 1A
states

Corollary

Removing nondeterminism from 1-LAs requires exponentially many
states

Cfr. Sakoda and Sipser question [Sakoda&Sipser '78]:

How much it costs in states to remove nondeterminism
from two-way finite automata?
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Different Restrictions

» Dyck languages are accepted without fully using capabilities
of 2-limited automata

» Chomsky-Schiitzenberger Theorem: Recognition of CFLs can
be reduced to recognition of Dyck languages

Question

Is it possible to restrict 2-limited automata
without affecting their computational power?

Forgetting Automata
[Jancar&Mraz& Platek '96]
YES! » The content of any cell can be erased
in the 1st or 2nd visit (using a fixed symbol)

» No other changes of the tape are allowed
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Strongly Limited Automata [P."15]

» Model inspired by the algorithm used by 2-limited automata
to recognize Dyck languages

> Restrictions on
m state changes
m head reversals
m rewriting operations
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Dyck Language Recognition

L rdffri -

» Moves to the right:
m to search a closed bracket Only one state qo!

» Moves to the left:

m to search an open bracket One state for each type of bracket!
m to check the tape content in the final scan from right to left

» Rewritings:
m each closed bracket is rewritten in the first visit
m each open bracket is rewritten in the second visit
m no rewritings in the final scan
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Strongly Limited Automata

» Alphabet
> input
I working

» States and moves
go initial state, moving from left to right

--» move to the right
q<—X> write X € I, enter state g € Q, turn to the left

Q. moving from right to left

«--  move to the left
<& write X, do not change state, move to the left
X5 Write X, enters state qo, turn to the right

Q@ final scan
when < is reached move from right to left and

test the membership of the tape content to a “local” language
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¥ ={a b}, T ={X,Y,Z}

q0
QL =1{9a,q»}

Transitions:

- Palindromes

- I -

oo
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Strongly Limited Automata

» Computational power: same as 2-limited automata (CFLs)

» Descriptional power: the sizes of equivalent

m CFGs
m PDAs
m strongly limited automata

are polynomially related

m 2-limited automata can be exponentially smaller

» CFLs — strongly limited automata:

conversion from CFGs which heavily uses nondeterminism
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What is the power of deterministic strongly limited automata?

» Each deterministic strongly limited automaton can be
simulated by a deterministic 2-LA

» Deterministic languages as
Ly ={ca"b" | n>0}U{da®>"b" | n > 0}
Ly = {a"b?*" | n > 0}
are not accepted by deterministic strongly limited automata

Proper subclass of deterministic context-free languages
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Determinism vs Nondeterminism: a Small Change

» Moving to the right, a strongly limited automaton can use
only qo

» A possible modification:
a set of states Qg used while moving to the right

m the simulation by PDAs remains polynomial
m Ly ={ca"h" | n>0}U{da®>"b" | n >0}
Ly = {a"p?>" | n >0}

are accepted by deterministic devices

Problem

What is the class of languages accepted
by the deterministic version of devices so obtained?
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Active Visits ad Return Complexity

Active visit of a tape cell: any visit changing the content

Return Complexity

Maximum number of visits to a tape cell counted

starting from the first active visit [Wechsung '75]
ret-c(1): regular languages
ret-c(d), d > 2: context-free languages

ret-c(2) deterministic: not comparable with DCFLs

Dual Return Complexity
Maximum number of visits to a tape cell

counted up to the /ast active visit dret-c(d) = d-limited automata

ret-c(f(n))=dret-c(f(n)) =1AuxPDA(f(n))
[Wechsung& Brandstadt '79]



Thank you for your attention!
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