
Restricted Turing Machines and Language
Recognition

Giovanni Pighizzini

Dipartimento di Informatica
Università degli Studi di Milano, Italy

LATA 2016 – Prague
March 14-18, 2016

Introduction

The Chomsky Hierarchy

type 0Turing Machines

type 1Linear Bounded Automata

type 2Pushdown Automata

type 3Finite Automata

Limited Automata [Hibbard ’67]

One-tape Turing machines with restricted rewritings

Definition
Fixed an integer d ≥ 1, a d-limited automaton is

I a one-tape Turing machine
I which is allowed to rewrite the content of each tape cell

only in the first d visits

Computational power

I For each d ≥ 2, d-limited automata characterize
context-free languages [Hibbard ’67]

Limited Automata [Hibbard ’67]

One-tape Turing machines with restricted rewritings

Definition
Fixed an integer d ≥ 1, a d-limited automaton is

I a one-tape Turing machine
I which is allowed to rewrite the content of each tape cell

only in the first d visits

Computational power

I For each d ≥ 2, d-limited automata characterize
context-free languages [Hibbard ’67]

Limited Automata [Hibbard ’67]

One-tape Turing machines with restricted rewritings

Definition
Fixed an integer d ≥ 1, a d-limited automaton is

I a one-tape Turing machine
I which is allowed to rewrite the content of each tape cell

only in the first d visits

Computational power

I For each d ≥ 2, d-limited automata characterize
context-free languages [Hibbard ’67]

The Chomsky Hierarchy

type 0Turing Machines

type 1Linear Bounded Automata

type 2Pushdown Automata

type 3Finite Automata

The Chomsky Hierarchy

type 0Turing Machines

type 1Linear Bounded Automata

type 2d-Limited Automata (d ≥ 2)

type 3Finite Automata

The Chomsky Hierarchy

type 0One-tape Turing Machines

type 1Linear Bounded Automata

type 2d-Limited Automata (d ≥ 2)

type 3Finite Automata

The Chomsky Hierarchy

type 0One-tape Turing Machines

type 1Linear Bounded Automata

type 2d-Limited Automata (d ≥ 2)

type 3Finite Automata

One-tape deterministic machines
working in linear time can recognize
only regular languages [Hennie ’65]

The Chomsky Hierarchy

type 0One-tape Turing Machines

type 1Linear Bounded Automata

type 2d-Limited Automata (d ≥ 2)

type 3“Hennie Machines”

General Contents

Part I: Fast One-Tape Turing Machines
Hennie Machines & C

Part II: One-Tape Turing Machines
with Rewriting Restrictions
Limited Automata & C

Part I: Fast One-Tape Turing Machines

Outline

I One-Tape Turing machines

I Time complexity: different measures

I Crossing sequences

I Lower bounds for nonregular languages recognition

I Optimality

I Fast recognition of unary nonregular languages

I Final remarks: other complexity measures

Part I: Fast One-Tape Turing Machines

Outline

I One-Tape Turing machines

I Time complexity: different measures

I Crossing sequences

I Lower bounds for nonregular languages recognition

I Optimality

I Fast recognition of unary nonregular languages

I Final remarks: other complexity measures

Part I: Fast One-Tape Turing Machines

Outline

I One-Tape Turing machines

I Time complexity: different measures

I Crossing sequences

I Lower bounds for nonregular languages recognition

I Optimality

I Fast recognition of unary nonregular languages

I Final remarks: other complexity measures

Part I: Fast One-Tape Turing Machines

Outline

I One-Tape Turing machines

I Time complexity: different measures

I Crossing sequences

I Lower bounds for nonregular languages recognition

I Optimality

I Fast recognition of unary nonregular languages

I Final remarks: other complexity measures

Part I: Fast One-Tape Turing Machines

Outline

I One-Tape Turing machines

I Time complexity: different measures

I Crossing sequences

I Lower bounds for nonregular languages recognition

I Optimality

I Fast recognition of unary nonregular languages

I Final remarks: other complexity measures

Part I: Fast One-Tape Turing Machines

Outline

I One-Tape Turing machines

I Time complexity: different measures

I Crossing sequences

I Lower bounds for nonregular languages recognition

I Optimality

I Fast recognition of unary nonregular languages

I Final remarks: other complexity measures

Part I: Fast One-Tape Turing Machines

Outline

I One-Tape Turing machines

I Time complexity: different measures

I Crossing sequences

I Lower bounds for nonregular languages recognition

I Optimality

I Fast recognition of unary nonregular languages

I Final remarks: other complexity measures

One-Tape Turing Machines

i n p u t b̄ b̄.

6
� -

One-Tape Turing Machines

i n p u t b̄ b̄.

6
� -

I Finite state control
I Semi-infinite tape

at the beginning:
input string (leftmost part)
blank symbol (remaining squares)

I Computation step
change of state
nonblank symbol written in the scanned tape cell
head moved either to the left, or to the right,
or kept on the same cell

I Accepting and rejecting states: the computation stops

One-Tape Turing Machines

i n p u t b̄ b̄.

6
� -

I Finite state control
I Semi-infinite tape

at the beginning:
input string (leftmost part)
blank symbol (remaining squares)

I Computation step
change of state
nonblank symbol written in the scanned tape cell
head moved either to the left, or to the right,
or kept on the same cell

I Accepting and rejecting states: the computation stops

One-Tape Turing Machines

i n p u t b̄ b̄.

6
� -

I Finite state control
I Semi-infinite tape

at the beginning:
input string (leftmost part)
blank symbol (remaining squares)

I Computation step
change of state
nonblank symbol written in the scanned tape cell
head moved either to the left, or to the right,
or kept on the same cell

I Accepting and rejecting states: the computation stops

One-Tape Turing Machines

i n p u t b̄ b̄.

6
� -

I Finite state control
I Semi-infinite tape

at the beginning:
input string (leftmost part)
blank symbol (remaining squares)

I Computation step
change of state
nonblank symbol written in the scanned tape cell
head moved either to the left, or to the right,
or kept on the same cell

I Accepting and rejecting states: the computation stops

One-Tape Turing Machines

i n p u t b̄ b̄.

6
� -

I Deterministic version (dTM)

I Nondeterministic version (nTM)

One-Tape Turing Machines

i n p u t b̄ b̄.

6
� -

Time complexity:
I t(C) number of moves in the computation C

One-Tape Turing Machines

i n p u t b̄ b̄.

6
� -

Time complexity:
I t(C) number of moves in the computation C
I t(x) for an input x
I t(n) for inputs of length n

One-Tape Turing Machines

i n p u t b̄ b̄.

6
� -

Time complexity:
I t(C) number of moves in the computation C
I t(x) for an input x
I t(n) for inputs of length n

Nondeterministic case: several computations on a same input

How to define t(x) and t(n)?

Complexity Measures

strong measure: costs of all computations on x

t(x) = max{t(C) | C is a computation on x}
worst case!

weak measure: minimum cost of accepting x

t(x) =

{
min{t(C) | C is accepting on x} if x ∈ L
0 otherwise

best case for acceptance!

accept measure: costs of all accepting computations on x

t(x) =

{
max{t(C) | C is accepting on x} if x ∈ L
0 otherwise

worst case for acceptance!

t(n) = max{t(x) | x ∈ Σ∗, |x | = n}

Complexity Measures

strong measure: costs of all computations on x

t(x) = max{t(C) | C is a computation on x}
worst case!

weak measure: minimum cost of accepting x

t(x) =

{
min{t(C) | C is accepting on x} if x ∈ L
0 otherwise

best case for acceptance!

accept measure: costs of all accepting computations on x

t(x) =

{
max{t(C) | C is accepting on x} if x ∈ L
0 otherwise

worst case for acceptance!

t(n) = max{t(x) | x ∈ Σ∗, |x | = n}

Complexity Measures

strong measure: costs of all computations on x

t(x) = max{t(C) | C is a computation on x}
worst case!

weak measure: minimum cost of accepting x

t(x) =

{
min{t(C) | C is accepting on x} if x ∈ L
0 otherwise

best case for acceptance!

accept measure: costs of all accepting computations on x

t(x) =

{
max{t(C) | C is accepting on x} if x ∈ L
0 otherwise

worst case for acceptance!

t(n) = max{t(x) | x ∈ Σ∗, |x | = n}

Complexity Measures

strong measure: costs of all computations on x

t(x) = max{t(C) | C is a computation on x}
worst case!

weak measure: minimum cost of accepting x

t(x) =

{
min{t(C) | C is accepting on x} if x ∈ L
0 otherwise

best case for acceptance!

accept measure: costs of all accepting computations on x

t(x) =

{
max{t(C) | C is accepting on x} if x ∈ L
0 otherwise

worst case for acceptance!

t(n) = max{t(x) | x ∈ Σ∗, |x | = n}

Crossing Sequences

a a b a b b�	�
 �	�
 computation C

boundary b

q1

q2

q3

q4

q5

Crossing sequence of a computation C
at a boundary b between two tape squares:

I (q1, . . . , qk)

I qi is the state when b is crossed for the ith time

Crossing Sequences: Compatibility

a�	�
 �	�

q1

q2

q3

q4

q5

p1

p2

p3

I (q1, . . . , qk), (p1, . . . , ph): finite crossing sequence

I it is possible to verify whether or not they are compatible with
respect to an input symbol a,
i.e., (q1, . . . , qk) and (p1, . . . , ph) could be at the left
boundary and at the right boundary of a tape square which
initially contains the symbol a

Lower Bounds

One-Tape Machines

Problem:

Find tight lower bounds for

I the minimum amount of time t(n)

I the length of crossing sequences c(n)

for nonregular language recognition

One-Tape Machines: Simple Bounds
Length of the crossing sequences

Theorem
If L is accepted by a nTM such that c(n) = O(1),
under the weak measure, then L is regular

Proof idea:
I Let K be such that c(n) ≤ K

I Define a NFA A accepting L s.t.
the states are the crossing sequences of length ≤ K

the transition function is defined according to the
“compatibility” between crossing sequences

One-Tape Machines: Simple Bounds
Length of the crossing sequences

Theorem
If L is accepted by a nTM such that c(n) = O(1),
under the weak measure, then L is regular

Proof idea:
I Let K be such that c(n) ≤ K

I Define a NFA A accepting L s.t.
the states are the crossing sequences of length ≤ K

the transition function is defined according to the
“compatibility” between crossing sequences

One-Tape Machines: Simple Bounds
Time

Theorem
If L is accepted by a nTM such that t(n) = o(n),
under the weak measure, then t(n) = O(1) and L is regular

Proof idea:
I Let n0 s.t. t(n) < n, for each n ≥ n0
I Given x ∈ L with |x | ≥ n0, there is a computation C that

accepts x just reading a proper prefix x ′ of length ≤ t(x)

I C should also accept x ′

I Since all x ′ is read in C, t(x ′) ≥ x ′ implying |x ′| < n0
I Hence, the membership to L can be decided just testing an

input prefix of length at most n0

Remark: The same argument works for multitape machines

One-Tape Machines: Simple Bounds
Time

Theorem
If L is accepted by a nTM such that t(n) = o(n),
under the weak measure, then t(n) = O(1) and L is regular

Proof idea:
I Let n0 s.t. t(n) < n, for each n ≥ n0
I Given x ∈ L with |x | ≥ n0, there is a computation C that

accepts x just reading a proper prefix x ′ of length ≤ t(x)

I C should also accept x ′

I Since all x ′ is read in C, t(x ′) ≥ x ′ implying |x ′| < n0
I Hence, the membership to L can be decided just testing an

input prefix of length at most n0

Remark: The same argument works for multitape machines

One-Tape Machines: Simple Bounds
Time

Theorem
If L is accepted by a nTM such that t(n) = o(n),
under the weak measure, then t(n) = O(1) and L is regular

Proof idea:
I Let n0 s.t. t(n) < n, for each n ≥ n0
I Given x ∈ L with |x | ≥ n0, there is a computation C that

accepts x just reading a proper prefix x ′ of length ≤ t(x)

I C should also accept x ′

I Since all x ′ is read in C, t(x ′) ≥ x ′ implying |x ′| < n0
I Hence, the membership to L can be decided just testing an

input prefix of length at most n0

Remark: The same argument works for multitape machines

One-Tape Machines: Simple Bounds

Does it is possible to improve the lower bounds
on c(n) and t(n) for nonregular language recognition

given in the previous results?

Different bounds have found depending
I on the measure (strong, accept, weak)
I on the kind of machines (deterministic, nondeterministic)

One-Tape Machines: Simple Bounds

Does it is possible to improve the lower bounds
on c(n) and t(n) for nonregular language recognition

given in the previous results?

Different bounds have found depending
I on the measure (strong, accept, weak)
I on the kind of machines (deterministic, nondeterministic)

Deterministic Machines: Lower Bounds (strong measure)

I Hennie (1965) proved that
one-tape deterministic machines working in linear time

accept only regular languages
Furthermore, in order to accept nonregular languages

c(n) must grow at least as log n

I Trakhtenbrot (1964) and Hartmanis (1968), independently, got
a better time lower bound:

in order to recognize a nonregular language a dTM needs
time t(n) growing at least as n log n

I Optimal!
There are nonregular languages accepted in time O(n log n)

Deterministic Machines: Lower Bounds (strong measure)

I Hennie (1965) proved that
one-tape deterministic machines working in linear time

accept only regular languages
Furthermore, in order to accept nonregular languages

c(n) must grow at least as log n

I Trakhtenbrot (1964) and Hartmanis (1968), independently, got
a better time lower bound:

in order to recognize a nonregular language a dTM needs
time t(n) growing at least as n log n

I Optimal!
There are nonregular languages accepted in time O(n log n)

Deterministic Machines: Lower Bounds (strong measure)

I Hennie (1965) proved that
one-tape deterministic machines working in linear time

accept only regular languages
Furthermore, in order to accept nonregular languages

c(n) must grow at least as log n

I Trakhtenbrot (1964) and Hartmanis (1968), independently, got
a better time lower bound:

in order to recognize a nonregular language a dTM needs
time t(n) growing at least as n log n

I Optimal!
There are nonregular languages accepted in time O(n log n)

Deterministic Machines: Lower Bounds (strong measure)

I Hennie (1965) proved that
one-tape deterministic machines working in linear time

accept only regular languages
Furthermore, in order to accept nonregular languages

c(n) must grow at least as log n

I Trakhtenbrot (1964) and Hartmanis (1968), independently, got
a better time lower bound:

in order to recognize a nonregular language a dTM needs
time t(n) growing at least as n log n

I Optimal!
There are nonregular languages accepted in time O(n log n)

Nondeterministic Machines

weak measure:
I There is nonregular language accepted by a nTM

in o(n log n) time [Wagner&Wechsung ’86]

I There is a NP-complete language accepted by a nTM
in O(n) time [Michel ’91]

strong measure:
I The time lower bound n log n proved for dTMs

also holds for nTMs [Tadaki&Yamakami&Lin ’10]

accept measure:
I The n log n lower bound also holds [P.’09]

Nondeterministic Machines

weak measure:
I There is nonregular language accepted by a nTM

in o(n log n) time [Wagner&Wechsung ’86]

I There is a NP-complete language accepted by a nTM
in O(n) time [Michel ’91]

strong measure:
I The time lower bound n log n proved for dTMs

also holds for nTMs [Tadaki&Yamakami&Lin ’10]

accept measure:
I The n log n lower bound also holds [P.’09]

Nondeterministic Machines

weak measure:
I There is nonregular language accepted by a nTM

in o(n log n) time [Wagner&Wechsung ’86]

I There is a NP-complete language accepted by a nTM
in O(n) time [Michel ’91]

strong measure:
I The time lower bound n log n proved for dTMs

also holds for nTMs [Tadaki&Yamakami&Lin ’10]

accept measure:
I The n log n lower bound also holds [P.’09]

Nondeterministic Machines

weak measure:
I There is nonregular language accepted by a nTM

in o(n log n) time [Wagner&Wechsung ’86]

I There is a NP-complete language accepted by a nTM
in O(n) time [Michel ’91]

strong measure:
I The time lower bound n log n proved for dTMs

also holds for nTMs [Tadaki&Yamakami&Lin ’10]

accept measure:
I The n log n lower bound also holds [P.’09]

Nondeterministic Machines

weak measure:
I There is nonregular language accepted by a nTM

in o(n log n) time [Wagner&Wechsung ’86]

I There is a NP-complete language accepted by a nTM
in O(n) time [Michel ’91]

strong measure:
I The time lower bound n log n proved for dTMs

also holds for nTMs [Tadaki&Yamakami&Lin ’10]

accept measure:
I The n log n lower bound also holds [P.’09]

Crossing Sequences: “Cut–and–Paste”

Given:

u v�	�
 �	�

q1

q2

q3

q4

q5

u′ v ′�	�
�	�

q1

q2

q3

q4

q5

� -same crossing
sequence

Crossing Sequences: “Cut–and–Paste”

Given:

u v�	�
 �	�

q1

q2

q3

q4

q5

u′ v ′�	�
�	�

q1

q2

q3

q4

q5

� -same crossing
sequence

We can get:

u v ′�	�
�

�	

q1

q2

q3

q4

q5

Crossing Sequences: “Cut–and–Paste”

Given:

u v�	�
 �	�

q1

q2

q3

q4

q5

u′ v ′�	�
�	�

q1

q2

q3

q4

q5

� -same crossing
sequence

We can get:

u v ′�	�
�

�	

q1

q2

q3

q4

q5

and

u′ v�	�
 �	�

q1

q2

q3

q4

q5

Lower Bounds for Accept Measure

Lemma
If a string w is accepted by a computation C having a same
crossing sequence at 3 different boundaries of the input,
then there is a computation C′ with c(C′) = c(C)
accepting a shorter string w ′

Lower Bounds for Accept Measure

Lemma
If a string w is accepted by a computation C having a same
crossing sequence at 3 different boundaries of the input,
then there is a computation C′ with c(C′) = c(C)
accepting a shorter string w ′

w︷ ︸︸ ︷
x y z t

b1 b2 b3

@@I @@I ���
same crossing

sequence

Lower Bounds for Accept Measure

Lemma
If a string w is accepted by a computation C having a same
crossing sequence at 3 different boundaries of the input,
then there is a computation C′ with c(C′) = c(C)
accepting a shorter string w ′

w︷ ︸︸ ︷
x y z t

b1 b2 b3b

case b ≥ b2

� longest
crossing sequence

Lower Bounds for Accept Measure

Lemma
If a string w is accepted by a computation C having a same
crossing sequence at 3 different boundaries of the input,
then there is a computation C′ with c(C′) = c(C)
accepting a shorter string w ′

w︷ ︸︸ ︷
x y z t

b1 b2 b3b

case b ≥ b2

� longest
crossing sequence

⇒
cut y

Lower Bounds for Accept Measure

Lemma
If a string w is accepted by a computation C having a same
crossing sequence at 3 different boundaries of the input,
then there is a computation C′ with c(C′) = c(C)
accepting a shorter string w ′

w︷ ︸︸ ︷
x y z t

b1 b2 b3b

case b ≥ b2

� longest
crossing sequence

⇒
cut y

w ′︷ ︸︸ ︷
x z t
b1 = b2 b3b

Lower Bounds for Accept Measure

Lemma
If a string w is accepted by a computation C having a same
crossing sequence at 3 different boundaries of the input,
then there is a computation C′ with c(C′) = c(C)
accepting a shorter string w ′

w︷ ︸︸ ︷
x y z t

b1 b2 b3b

case b < b2

� longest
crossing sequence

Lower Bounds for Accept Measure

Lemma
If a string w is accepted by a computation C having a same
crossing sequence at 3 different boundaries of the input,
then there is a computation C′ with c(C′) = c(C)
accepting a shorter string w ′

w︷ ︸︸ ︷
x y z t

b1 b2 b3b

case b < b2

� longest
crossing sequence

⇒
cut z

Lower Bounds for Accept Measure

Lemma
If a string w is accepted by a computation C having a same
crossing sequence at 3 different boundaries of the input,
then there is a computation C′ with c(C′) = c(C)
accepting a shorter string w ′

w︷ ︸︸ ︷
x y z t

b1 b2 b3b

case b < b2

� longest
crossing sequence

⇒
cut z

w ′︷ ︸︸ ︷
x y t

b1 b2 = b3b

Accept Measure: Lower Bound for c(n)

I L[k] := set of strings having an accepting computation C
with c(C) = k

I wk := a shortest string in L[k], for L[k] 6= ∅
I nk := |wk |
I On wk each crossing sequence can appear at most twice
I At least bnk−12 c different crossing sequences
I Hence qk+1 ≥ bnk−12 c (q := number of states), then:

c(nk) ≥ k ≥ logqb
nk − 1

2
c − 1

I If c(n) is unbounded then L[k] 6= ∅ for infinitely many k

I Hence c(n) ≥ d log n, for some d > 0, infinitely many n

Accept Measure: Lower Bound for c(n)

I L[k] := set of strings having an accepting computation C
with c(C) = k

I wk := a shortest string in L[k], for L[k] 6= ∅
I nk := |wk |
I On wk each crossing sequence can appear at most twice
I At least bnk−12 c different crossing sequences
I Hence qk+1 ≥ bnk−12 c (q := number of states), then:

c(nk) ≥ k ≥ logqb
nk − 1

2
c − 1

I If c(n) is unbounded then L[k] 6= ∅ for infinitely many k

I Hence c(n) ≥ d log n, for some d > 0, infinitely many n

Accept Measure: Lower Bound for c(n)

I L[k] := set of strings having an accepting computation C
with c(C) = k

I wk := a shortest string in L[k], for L[k] 6= ∅
I nk := |wk |
I On wk each crossing sequence can appear at most twice
I At least bnk−12 c different crossing sequences
I Hence qk+1 ≥ bnk−12 c (q := number of states), then:

c(nk) ≥ k ≥ logqb
nk − 1

2
c − 1

I If c(n) is unbounded then L[k] 6= ∅ for infinitely many k

I Hence c(n) ≥ d log n, for some d > 0, infinitely many n

Accept Measure: Lower Bound for c(n)

I L[k] := set of strings having an accepting computation C
with c(C) = k

I wk := a shortest string in L[k], for L[k] 6= ∅
I nk := |wk |
I On wk each crossing sequence can appear at most twice
I At least bnk−12 c different crossing sequences
I Hence qk+1 ≥ bnk−12 c (q := number of states), then:

c(nk) ≥ k ≥ logqb
nk − 1

2
c − 1

I If c(n) is unbounded then L[k] 6= ∅ for infinitely many k

I Hence c(n) ≥ d log n, for some d > 0, infinitely many n

Accept Measure: Lower Bound for c(n)

I L[k] := set of strings having an accepting computation C
with c(C) = k

I wk := a shortest string in L[k], for L[k] 6= ∅
I nk := |wk |
I On wk each crossing sequence can appear at most twice
I At least bnk−12 c different crossing sequences
I Hence qk+1 ≥ bnk−12 c (q := number of states), then:

c(nk) ≥ k ≥ logqb
nk − 1

2
c − 1

I If c(n) is unbounded then L[k] 6= ∅ for infinitely many k

I Hence c(n) ≥ d log n, for some d > 0, infinitely many n

Accept Measure: Lower Bound for c(n)

I L[k] := set of strings having an accepting computation C
with c(C) = k

I wk := a shortest string in L[k], for L[k] 6= ∅
I nk := |wk |
I On wk each crossing sequence can appear at most twice
I At least bnk−12 c different crossing sequences
I Hence qk+1 ≥ bnk−12 c (q := number of states), then:

c(nk) ≥ k ≥ logqb
nk − 1

2
c − 1

I If c(n) is unbounded then L[k] 6= ∅ for infinitely many k

I Hence c(n) ≥ d log n, for some d > 0, infinitely many n

Accept Measure: Lower Bound for c(n)

I L[k] := set of strings having an accepting computation C
with c(C) = k

I wk := a shortest string in L[k], for L[k] 6= ∅
I nk := |wk |
I On wk each crossing sequence can appear at most twice
I At least bnk−12 c different crossing sequences
I Hence qk+1 ≥ bnk−12 c (q := number of states), then:

c(nk) ≥ k ≥ logqb
nk − 1

2
c − 1

I If c(n) is unbounded then L[k] 6= ∅ for infinitely many k

I Hence c(n) ≥ d log n, for some d > 0, infinitely many n

Accept Measure: Lower Bound for c(n)

I L[k] := set of strings having an accepting computation C
with c(C) = k

I wk := a shortest string in L[k], for L[k] 6= ∅
I nk := |wk |
I On wk each crossing sequence can appear at most twice
I At least bnk−12 c different crossing sequences
I Hence qk+1 ≥ bnk−12 c (q := number of states), then:

c(nk) ≥ k ≥ logqb
nk − 1

2
c − 1

I If c(n) is unbounded then L[k] 6= ∅ for infinitely many k

I Hence c(n) ≥ d log n, for some d > 0, infinitely many n

Accept Measure: Lower Bound for c(n)

I L[k] := set of strings having an accepting computation C
with c(C) = k

I wk := a shortest string in L[k], for L[k] 6= ∅
I nk := |wk |
I On wk each crossing sequence can appear at most twice
I At least bnk−12 c different crossing sequences
I Hence qk+1 ≥ bnk−12 c (q := number of states), then:

c(nk) ≥ k ≥ logqb
nk − 1

2
c − 1

I If c(n) is unbounded then L[k] 6= ∅ for infinitely many k

I Hence c(n) ≥ d log n, for some d > 0, infinitely many n

c(n) = o(log n) implies c(n) = O(1) and L regular

Accept Measure: Lower Bound for t(n)

If c(n) 6= O(1):
I wk is accepted by a computation Ck

using at least bnk−12 c different crossing sequences

I Ck has ≥ bnk−14 c crossing sequences of length ≥ logqbnk−14 c
(combinatorial argument)

I Hence Ck consists of at least

bnk − 1
4
c · logqb

nk − 1
4
c ≥ d |wk | log |wk |

many steps, for some d ≥ 0
I t(n) ≥ d n log n, for infinitely many n

Accept Measure: Lower Bound for t(n)

If c(n) 6= O(1):
I wk is accepted by a computation Ck

using at least bnk−12 c different crossing sequences

I Ck has ≥ bnk−14 c crossing sequences of length ≥ logqbnk−14 c
(combinatorial argument)

I Hence Ck consists of at least

bnk − 1
4
c · logqb

nk − 1
4
c ≥ d |wk | log |wk |

many steps, for some d ≥ 0
I t(n) ≥ d n log n, for infinitely many n

Accept Measure: Lower Bound for t(n)

If c(n) 6= O(1):
I wk is accepted by a computation Ck

using at least bnk−12 c different crossing sequences

I Ck has ≥ bnk−14 c crossing sequences of length ≥ logqbnk−14 c
(combinatorial argument)

I Hence Ck consists of at least

bnk − 1
4
c · logqb

nk − 1
4
c ≥ d |wk | log |wk |

many steps, for some d ≥ 0
I t(n) ≥ d n log n, for infinitely many n

Accept Measure: Lower Bound for t(n)

If c(n) 6= O(1):
I wk is accepted by a computation Ck

using at least bnk−12 c different crossing sequences

I Ck has ≥ bnk−14 c crossing sequences of length ≥ logqbnk−14 c
(combinatorial argument)

I Hence Ck consists of at least

bnk − 1
4
c · logqb

nk − 1
4
c ≥ d |wk | log |wk |

many steps, for some d ≥ 0
I t(n) ≥ d n log n, for infinitely many n

Accept Measure: Lower Bound for t(n)

If c(n) 6= O(1):
I wk is accepted by a computation Ck

using at least bnk−12 c different crossing sequences

I Ck has ≥ bnk−14 c crossing sequences of length ≥ logqbnk−14 c
(combinatorial argument)

I Hence Ck consists of at least

bnk − 1
4
c · logqb

nk − 1
4
c ≥ d |wk | log |wk |

many steps, for some d ≥ 0
I t(n) ≥ d n log n, for infinitely many n

Accept Measure: Lower Bound for t(n)

If c(n) 6= O(1):
I wk is accepted by a computation Ck

using at least bnk−12 c different crossing sequences

I Ck has ≥ bnk−14 c crossing sequences of length ≥ logqbnk−14 c
(combinatorial argument)

I Hence Ck consists of at least

bnk − 1
4
c · logqb

nk − 1
4
c ≥ d |wk | log |wk |

many steps, for some d ≥ 0
I t(n) ≥ d n log n, for infinitely many n

Hence:
t(n) = o(n log n) implies c(n) = O(1) and, thus,

L regular and t(n) = O(n)

Lower Bounds for Accept Measure

Summing up:

Theorem ([P.’09])
Let M be a nTM accepting a language L such that in each
accepting computation

I the length of crossing sequences is bounded by c(n)

I the time is bounded by t(n)

If c(n) = o(log n) then c(n) = O(1) and L is regular

If t(n) = o(n log n) then

I t(n) = O(n)

I c(n) = O(1)

I L is regular

Lower Bounds for Accept Measure

Summing up:

Theorem ([P.’09])
Let M be a nTM accepting a language L such that in each
accepting computation

I the length of crossing sequences is bounded by c(n)

I the time is bounded by t(n)

If c(n) = o(log n) then c(n) = O(1) and L is regular

If t(n) = o(n log n) then

I t(n) = O(n)

I c(n) = O(1)

I L is regular

Lower Bounds for Accept Measure

Summing up:

Theorem ([P.’09])
Let M be a nTM accepting a language L such that in each
accepting computation

I the length of crossing sequences is bounded by c(n)

I the time is bounded by t(n)

If c(n) = o(log n) then c(n) = O(1) and L is regular

If t(n) = o(n log n) then

I t(n) = O(n)

I c(n) = O(1)

I L is regular

Weak Measure

Does it is possible to extend the lower bounds
from the accept to the weak measure?

Time: negative answer

Theorem ([Michel ’91])
There exists an NP-complete language accepted in time O(n)
by a nTM under the weak measure

I Linear time is necessary for regular languages

However:
The length of crossing sequences should grow

at least as log log n [P.’09]

Weak Measure

Does it is possible to extend the lower bounds
from the accept to the weak measure?

Time: negative answer

Theorem ([Michel ’91])
There exists an NP-complete language accepted in time O(n)
by a nTM under the weak measure

I Linear time is necessary for regular languages

However:
The length of crossing sequences should grow

at least as log log n [P.’09]

Weak Measure

Does it is possible to extend the lower bounds
from the accept to the weak measure?

Time: negative answer

Theorem ([Michel ’91])
There exists an NP-complete language accepted in time O(n)
by a nTM under the weak measure

I Linear time is necessary for regular languages

However:
The length of crossing sequences should grow

at least as log log n [P.’09]

Weak Measure: Lower Bound for c(n)

I L := language accepted by the given machine M

I For each n ≥ 1:
Nn := NFA with states all crossing sequences of length ≤ c(n),

transitions defined according to the “compatibility” relation,
at most qc(n)+1 states

I Nn agrees with M on strings of length ≤ n

I An := DFA equivalent to Nn, at most 2q
c(n)+1

states
I If L is not regular, then

the number of the states of An is ≥ n+3
2 i.o. [Karp ’67]

I Hence 2q
c(n)+1 ≥ n+3

2 , implying

c(n) ≥ d log log n

for some d > 0 and infinitely many n’s

Weak Measure: Lower Bound for c(n)

I L := language accepted by the given machine M

I For each n ≥ 1:
Nn := NFA with states all crossing sequences of length ≤ c(n),

transitions defined according to the “compatibility” relation,
at most qc(n)+1 states

I Nn agrees with M on strings of length ≤ n

I An := DFA equivalent to Nn, at most 2q
c(n)+1

states
I If L is not regular, then

the number of the states of An is ≥ n+3
2 i.o. [Karp ’67]

I Hence 2q
c(n)+1 ≥ n+3

2 , implying

c(n) ≥ d log log n

for some d > 0 and infinitely many n’s

Weak Measure: Lower Bound for c(n)

I L := language accepted by the given machine M

I For each n ≥ 1:
Nn := NFA with states all crossing sequences of length ≤ c(n),

transitions defined according to the “compatibility” relation,
at most qc(n)+1 states

I Nn agrees with M on strings of length ≤ n

I An := DFA equivalent to Nn, at most 2q
c(n)+1

states
I If L is not regular, then

the number of the states of An is ≥ n+3
2 i.o. [Karp ’67]

I Hence 2q
c(n)+1 ≥ n+3

2 , implying

c(n) ≥ d log log n

for some d > 0 and infinitely many n’s

Weak Measure: Lower Bound for c(n)

I L := language accepted by the given machine M

I For each n ≥ 1:
Nn := NFA with states all crossing sequences of length ≤ c(n),

transitions defined according to the “compatibility” relation,
at most qc(n)+1 states

I Nn agrees with M on strings of length ≤ n

I An := DFA equivalent to Nn, at most 2q
c(n)+1

states
I If L is not regular, then

the number of the states of An is ≥ n+3
2 i.o. [Karp ’67]

I Hence 2q
c(n)+1 ≥ n+3

2 , implying

c(n) ≥ d log log n

for some d > 0 and infinitely many n’s

Weak Measure: Lower Bound for c(n)

I L := language accepted by the given machine M

I For each n ≥ 1:
Nn := NFA with states all crossing sequences of length ≤ c(n),

transitions defined according to the “compatibility” relation,
at most qc(n)+1 states

I Nn agrees with M on strings of length ≤ n

I An := DFA equivalent to Nn, at most 2q
c(n)+1

states
I If L is not regular, then

the number of the states of An is ≥ n+3
2 i.o. [Karp ’67]

I Hence 2q
c(n)+1 ≥ n+3

2 , implying

c(n) ≥ d log log n

for some d > 0 and infinitely many n’s

Weak Measure: Lower Bound for c(n)

I L := language accepted by the given machine M

I For each n ≥ 1:
Nn := NFA with states all crossing sequences of length ≤ c(n),

transitions defined according to the “compatibility” relation,
at most qc(n)+1 states

I Nn agrees with M on strings of length ≤ n

I An := DFA equivalent to Nn, at most 2q
c(n)+1

states
I If L is not regular, then

the number of the states of An is ≥ n+3
2 i.o. [Karp ’67]

I Hence 2q
c(n)+1 ≥ n+3

2 , implying

c(n) ≥ d log log n

for some d > 0 and infinitely many n’s

Summary of the Lower Bounds

dTM t(n)
c(n)

nTM t(n)
c(n)

strong accept weak

Summary of the Lower Bounds

dTM t(n)
c(n)

nTM t(n)
c(n)

strong accept weak
n log n
log n

Trakhtenbrot (1964) and Hartmanis (1968)
Hennie (1965) for c(n)

Summary of the Lower Bounds

dTM t(n)
c(n)

nTM t(n)
c(n)

strong accept weak
n log n
log n
n log n
log n

Tadaki, Yamakami, and Lin (2010)

Summary of the Lower Bounds

dTM t(n)
c(n)

nTM t(n)
c(n)

strong accept weak
n log n
log n
n log n n log n
log n log n

Pighizzini (2009)

Summary of the Lower Bounds

dTM t(n)
c(n)

nTM t(n)
c(n)

strong accept weak
n log n n log n
log n log n
n log n n log n
log n log n

Consequence of accept nondeterministic case

Summary of the Lower Bounds

dTM t(n)
c(n)

nTM t(n)
c(n)

strong accept weak
n log n n log n n log n
log n log n log n
n log n n log n
log n log n

For deterministic machines, accept and weak is the same

Summary of the Lower Bounds

dTM t(n)
c(n)

nTM t(n)
c(n)

strong accept weak
n log n n log n n log n
log n log n log n
n log n n log n n
log n log n log log n

t(n): simple bound
c(n): Pighizzini (2009)

Summary of the Lower Bounds

dTM t(n)
c(n)

nTM t(n)
c(n)

strong accept weak
n log n n log n n log n
log n log n log n
n log n n log n n
log n log n log log n

Optimality

Optimality of the Bounds

L = {a2m | m ≥ 0} [Hartmanis ’68]

L is accepted by a dTM M as follows:
I At the beginning all the input cells are “unmarked”
I M sweeps form left to right over the input segment and marks

off the 1st, 3th, 5th, etc. unmarked squares
I M repeats the previous step until the rightmost square of the

input segment becomes marked
I M accepts if and only if all the input segment is marked

Optimality of the Bounds

L = {a2m | m ≥ 0} [Hartmanis ’68]

L is accepted by a dTM M as follows:
I At the beginning all the input cells are “unmarked”
I M sweeps form left to right over the input segment and marks

off the 1st, 3th, 5th, etc. unmarked squares
I M repeats the previous step until the rightmost square of the

input segment becomes marked
I M accepts if and only if all the input segment is marked

a a a a a a a a a a a a input a12

Optimality of the Bounds

L = {a2m | m ≥ 0} [Hartmanis ’68]

L is accepted by a dTM M as follows:
I At the beginning all the input cells are “unmarked”
I M sweeps form left to right over the input segment and marks

off the 1st, 3th, 5th, etc. unmarked squares
I M repeats the previous step until the rightmost square of the

input segment becomes marked
I M accepts if and only if all the input segment is marked

a a a a a a a a a a a a

⇓
X a X a X a X a X a X a

Optimality of the Bounds

L = {a2m | m ≥ 0} [Hartmanis ’68]

L is accepted by a dTM M as follows:
I At the beginning all the input cells are “unmarked”
I M sweeps form left to right over the input segment and marks

off the 1st, 3th, 5th, etc. unmarked squares
I M repeats the previous step until the rightmost square of the

input segment becomes marked
I M accepts if and only if all the input segment is marked

X a X a X a X a X a X a

Optimality of the Bounds

L = {a2m | m ≥ 0} [Hartmanis ’68]

L is accepted by a dTM M as follows:
I At the beginning all the input cells are “unmarked”
I M sweeps form left to right over the input segment and marks

off the 1st, 3th, 5th, etc. unmarked squares
I M repeats the previous step until the rightmost square of the

input segment becomes marked
I M accepts if and only if all the input segment is marked

X a X a X a X a X a X a

⇓
X X X a X X X a X X X a

Optimality of the Bounds

L = {a2m | m ≥ 0} [Hartmanis ’68]

L is accepted by a dTM M as follows:
I At the beginning all the input cells are “unmarked”
I M sweeps form left to right over the input segment and marks

off the 1st, 3th, 5th, etc. unmarked squares
I M repeats the previous step until the rightmost square of the

input segment becomes marked
I M accepts if and only if all the input segment is marked

X X X a X X X a X X X a

Optimality of the Bounds

L = {a2m | m ≥ 0} [Hartmanis ’68]

L is accepted by a dTM M as follows:
I At the beginning all the input cells are “unmarked”
I M sweeps form left to right over the input segment and marks

off the 1st, 3th, 5th, etc. unmarked squares
I M repeats the previous step until the rightmost square of the

input segment becomes marked
I M accepts if and only if all the input segment is marked

X X X a X X X a X X X a

⇓
X X X X X X X a X X X X

Optimality of the Bounds

L = {a2m | m ≥ 0} [Hartmanis ’68]

L is accepted by a dTM M as follows:
I At the beginning all the input cells are “unmarked”
I M sweeps form left to right over the input segment and marks

off the 1st, 3th, 5th, etc. unmarked squares
I M repeats the previous step until the rightmost square of the

input segment becomes marked
I M accepts if and only if all the input segment is marked

X X X X X X X a X X X X

Optimality of the Bounds

L = {a2m | m ≥ 0} [Hartmanis ’68]

L is accepted by a dTM M as follows:
I At the beginning all the input cells are “unmarked”
I M sweeps form left to right over the input segment and marks

off the 1st, 3th, 5th, etc. unmarked squares
I M repeats the previous step until the rightmost square of the

input segment becomes marked
I M accepts if and only if all the input segment is marked

X X X X X X X a X X X X reject!

Optimality of the Bounds

L = {a2m | m ≥ 0} [Hartmanis ’68]

L is accepted by a dTM M as follows:
I At the beginning all the input cells are “unmarked”
I M sweeps form left to right over the input segment and marks

off the 1st, 3th, 5th, etc. unmarked squares
I M repeats the previous step until the rightmost square of the

input segment becomes marked
I M accepts if and only if all the input segment is marked

a a a a a a a a input a8

Optimality of the Bounds

L = {a2m | m ≥ 0} [Hartmanis ’68]

L is accepted by a dTM M as follows:
I At the beginning all the input cells are “unmarked”
I M sweeps form left to right over the input segment and marks

off the 1st, 3th, 5th, etc. unmarked squares
I M repeats the previous step until the rightmost square of the

input segment becomes marked
I M accepts if and only if all the input segment is marked

a a a a a a a a

⇓
X a X a X a X a

Optimality of the Bounds

L = {a2m | m ≥ 0} [Hartmanis ’68]

L is accepted by a dTM M as follows:
I At the beginning all the input cells are “unmarked”
I M sweeps form left to right over the input segment and marks

off the 1st, 3th, 5th, etc. unmarked squares
I M repeats the previous step until the rightmost square of the

input segment becomes marked
I M accepts if and only if all the input segment is marked

X a X a X a X a

Optimality of the Bounds

L = {a2m | m ≥ 0} [Hartmanis ’68]

L is accepted by a dTM M as follows:
I At the beginning all the input cells are “unmarked”
I M sweeps form left to right over the input segment and marks

off the 1st, 3th, 5th, etc. unmarked squares
I M repeats the previous step until the rightmost square of the

input segment becomes marked
I M accepts if and only if all the input segment is marked

X a X a X a X a

⇓
X X X a X X X a

Optimality of the Bounds

L = {a2m | m ≥ 0} [Hartmanis ’68]

L is accepted by a dTM M as follows:
I At the beginning all the input cells are “unmarked”
I M sweeps form left to right over the input segment and marks

off the 1st, 3th, 5th, etc. unmarked squares
I M repeats the previous step until the rightmost square of the

input segment becomes marked
I M accepts if and only if all the input segment is marked

X X X a X X X a

Optimality of the Bounds

L = {a2m | m ≥ 0} [Hartmanis ’68]

L is accepted by a dTM M as follows:
I At the beginning all the input cells are “unmarked”
I M sweeps form left to right over the input segment and marks

off the 1st, 3th, 5th, etc. unmarked squares
I M repeats the previous step until the rightmost square of the

input segment becomes marked
I M accepts if and only if all the input segment is marked

X X X a X X X a

⇓
X X X X X X X a

Optimality of the Bounds

L = {a2m | m ≥ 0} [Hartmanis ’68]

L is accepted by a dTM M as follows:
I At the beginning all the input cells are “unmarked”
I M sweeps form left to right over the input segment and marks

off the 1st, 3th, 5th, etc. unmarked squares
I M repeats the previous step until the rightmost square of the

input segment becomes marked
I M accepts if and only if all the input segment is marked

X X X X X X X a

Optimality of the Bounds

L = {a2m | m ≥ 0} [Hartmanis ’68]

L is accepted by a dTM M as follows:
I At the beginning all the input cells are “unmarked”
I M sweeps form left to right over the input segment and marks

off the 1st, 3th, 5th, etc. unmarked squares
I M repeats the previous step until the rightmost square of the

input segment becomes marked
I M accepts if and only if all the input segment is marked

X X X X X X X a

⇓
X X X X X X X X

Optimality of the Bounds

L = {a2m | m ≥ 0} [Hartmanis ’68]

L is accepted by a dTM M as follows:
I At the beginning all the input cells are “unmarked”
I M sweeps form left to right over the input segment and marks

off the 1st, 3th, 5th, etc. unmarked squares
I M repeats the previous step until the rightmost square of the

input segment becomes marked
I M accepts if and only if all the input segment is marked

X X X X X X X X accept!

Complexity

I On input an, M makes O(log n) sweeps of the tape:
c(n) = O(log n) and t(n) = O(n log n)

I M is deterministic and the previous bounds are satisfied
by all computations: strong measure

I This gives the optimality of all the lower bounds in the table

dTM t(n)
c(n)

nTM t(n)
c(n)

strong accept weak
n log n n log n n log n
log n log n log n
n log n n log n n

log n log n log log n

with the exception of those for nTMs, under the weak measure

I Unary witness

Complexity

I On input an, M makes O(log n) sweeps of the tape:
c(n) = O(log n) and t(n) = O(n log n)

I M is deterministic and the previous bounds are satisfied
by all computations: strong measure

I This gives the optimality of all the lower bounds in the table

dTM t(n)
c(n)

nTM t(n)
c(n)

strong accept weak
n log n n log n n log n
log n log n log n
n log n n log n n

log n log n log log n

with the exception of those for nTMs, under the weak measure

I Unary witness

Complexity

I On input an, M makes O(log n) sweeps of the tape:
c(n) = O(log n) and t(n) = O(n log n)

I M is deterministic and the previous bounds are satisfied
by all computations: strong measure

I This gives the optimality of all the lower bounds in the table

dTM t(n)
c(n)

nTM t(n)
c(n)

strong accept weak
n log n n log n n log n
log n log n log n
n log n n log n n

log n log n log log n

with the exception of those for nTMs, under the weak measure

I Unary witness

Complexity

I On input an, M makes O(log n) sweeps of the tape:
c(n) = O(log n) and t(n) = O(n log n)

I M is deterministic and the previous bounds are satisfied
by all computations: strong measure

I This gives the optimality of all the lower bounds in the table

dTM t(n)
c(n)

nTM t(n)
c(n)

strong accept weak
n log n n log n n log n
log n log n log n
n log n n log n n

log n log n log log n

with the exception of those for nTMs, under the weak measure

I Unary witness

Complexity

I On input an, M makes O(log n) sweeps of the tape:
c(n) = O(log n) and t(n) = O(n log n)

I M is deterministic and the previous bounds are satisfied
by all computations: strong measure

I This gives the optimality of all the lower bounds in the table

dTM t(n)
c(n)

nTM t(n)
c(n)

strong accept weak
n log n n log n n log n
log n log n log n
n log n n log n n

log n log n log log n

with the exception of those for nTMs, under the weak measure

I Unary witness

Weak Measure: Optimality for nTMs

I There are nonregular languages accepted in time O(n)
[Michel ’91]

I Regular languages require time n

I No “gap” between regular and nonregular languages

I The example in [Michel ’91] strongly relies
on an input alphabet with more than one symbol

I Up to now, we do not know any example of unary nonregular
language accepted in weak time O(n)

I Conjecture: If a nTM accepts a unary language L in time
o(n log log n) under the weak measure then L is regular

I We know an example of unary language accepted in time
O(n log log n) under the weak measure

Weak Measure: Optimality for nTMs

I There are nonregular languages accepted in time O(n)
[Michel ’91]

I Regular languages require time n

I No “gap” between regular and nonregular languages

I The example in [Michel ’91] strongly relies
on an input alphabet with more than one symbol

I Up to now, we do not know any example of unary nonregular
language accepted in weak time O(n)

I Conjecture: If a nTM accepts a unary language L in time
o(n log log n) under the weak measure then L is regular

I We know an example of unary language accepted in time
O(n log log n) under the weak measure

Weak Measure: Optimality for nTMs

I There are nonregular languages accepted in time O(n)
[Michel ’91]

I Regular languages require time n

I No “gap” between regular and nonregular languages

I The example in [Michel ’91] strongly relies
on an input alphabet with more than one symbol

I Up to now, we do not know any example of unary nonregular
language accepted in weak time O(n)

I Conjecture: If a nTM accepts a unary language L in time
o(n log log n) under the weak measure then L is regular

I We know an example of unary language accepted in time
O(n log log n) under the weak measure

Weak Measure: Optimality for nTMs

I There are nonregular languages accepted in time O(n)
[Michel ’91]

I Regular languages require time n

I No “gap” between regular and nonregular languages

I The example in [Michel ’91] strongly relies
on an input alphabet with more than one symbol

I Up to now, we do not know any example of unary nonregular
language accepted in weak time O(n)

I Conjecture: If a nTM accepts a unary language L in time
o(n log log n) under the weak measure then L is regular

I We know an example of unary language accepted in time
O(n log log n) under the weak measure

Weak Measure: Optimality for nTMs

I There are nonregular languages accepted in time O(n)
[Michel ’91]

I Regular languages require time n

I No “gap” between regular and nonregular languages

I The example in [Michel ’91] strongly relies
on an input alphabet with more than one symbol

I Up to now, we do not know any example of unary nonregular
language accepted in weak time O(n)

I Conjecture: If a nTM accepts a unary language L in time
o(n log log n) under the weak measure then L is regular

I We know an example of unary language accepted in time
O(n log log n) under the weak measure

Weak Measure: Optimality for nTMs

I There are nonregular languages accepted in time O(n)
[Michel ’91]

I Regular languages require time n

I No “gap” between regular and nonregular languages

I The example in [Michel ’91] strongly relies
on an input alphabet with more than one symbol

I Up to now, we do not know any example of unary nonregular
language accepted in weak time O(n)

I Conjecture: If a nTM accepts a unary language L in time
o(n log log n) under the weak measure then L is regular

I We know an example of unary language accepted in time
O(n log log n) under the weak measure

Weak Measure: Optimality for nTMs

I There are nonregular languages accepted in time O(n)
[Michel ’91]

I Regular languages require time n

I No “gap” between regular and nonregular languages

I The example in [Michel ’91] strongly relies
on an input alphabet with more than one symbol

I Up to now, we do not know any example of unary nonregular
language accepted in weak time O(n)

I Conjecture: If a nTM accepts a unary language L in time
o(n log log n) under the weak measure then L is regular

I We know an example of unary language accepted in time
O(n log log n) under the weak measure

Fast Recognition of Unary Languages

nTMs and Unary Languages: Basic Techniques
Tape Tracks

I We can consider a tape divided in a fixed number of tracks

I The input is written on the first track

i n p u t s t r i n g
m e m o r y s p a c e
m e m o r y s p a c e

Track 1

Track 2

Track 3

nTMs and Unary Languages: Basic Techniques
How to count input symbols

i n p u t s t r i n g
1 0 1

Track 1

Track 2

Track 3

6head

I A counter is kept on track 2,
starting from the position scanned by the tape head

I When the head is moved to the right,
the counter is incremented to count one more position
and it is shifted to the right

I This is done in O(log j) steps using track 3 as an auxiliary
variable (j = value of the counter)

I k tape positions are counted in O(k log k) moves

nTMs and Unary Languages: Basic Techniques
How to count input symbols

i n p u t s t r i n g
1 0 1

Track 1

Track 2

Track 3

6head

I A counter is kept on track 2,
starting from the position scanned by the tape head

I When the head is moved to the right,
the counter is incremented to count one more position
and it is shifted to the right

I This is done in O(log j) steps using track 3 as an auxiliary
variable (j = value of the counter)

I k tape positions are counted in O(k log k) moves

nTMs and Unary Languages: Basic Techniques
How to count input symbols

i n p u t s t r i n g
1 0 1

Track 1

Track 2

Track 3

6head

I A counter is kept on track 2,
starting from the position scanned by the tape head

I When the head is moved to the right,
the counter is incremented to count one more position
and it is shifted to the right

I This is done in O(log j) steps using track 3 as an auxiliary
variable (j = value of the counter)

I k tape positions are counted in O(k log k) moves

nTMs and Unary Languages: Basic Techniques
How to count input symbols

i n p u t s t r i n g
1 0 1

Track 1

Track 2

Track 3

6head

I A counter is kept on track 2,
starting from the position scanned by the tape head

I When the head is moved to the right,
the counter is incremented to count one more position
and it is shifted to the right

I This is done in O(log j) steps using track 3 as an auxiliary
variable (j = value of the counter)

I k tape positions are counted in O(k log k) moves

nTMs and Unary Languages: Basic techniques

How to compute n mod k n = input length
k = integer written somewhere

I Reset the counter on track 2 each time it becomes equal to k

I When the end of the input is reached, track 2 contains
n mod k

I To implement the comparison between the counter and k :

The value of k is kept on an extra track (track 4)
When the input head is moved to the right to count one more
position, the representation of k is moved one position to the
right in such a way that it is always aligned with the counter
on track 2, to make easy the comparison

I The total time is O(n log k)

nTMs and Unary Languages: Basic techniques

How to compute n mod k n = input length
k = integer written somewhere

I Reset the counter on track 2 each time it becomes equal to k

I When the end of the input is reached, track 2 contains
n mod k

I To implement the comparison between the counter and k :

The value of k is kept on an extra track (track 4)
When the input head is moved to the right to count one more
position, the representation of k is moved one position to the
right in such a way that it is always aligned with the counter
on track 2, to make easy the comparison

I The total time is O(n log k)

nTMs and Unary Languages: Basic techniques

How to compute n mod k n = input length
k = integer written somewhere

I Reset the counter on track 2 each time it becomes equal to k

I When the end of the input is reached, track 2 contains
n mod k

I To implement the comparison between the counter and k :

The value of k is kept on an extra track (track 4)
When the input head is moved to the right to count one more
position, the representation of k is moved one position to the
right in such a way that it is always aligned with the counter
on track 2, to make easy the comparison

I The total time is O(n log k)

nTMs and Unary Languages: Basic techniques

How to compute n mod k n = input length
k = integer written somewhere

I Reset the counter on track 2 each time it becomes equal to k

I When the end of the input is reached, track 2 contains
n mod k

I To implement the comparison between the counter and k :

The value of k is kept on an extra track (track 4)
When the input head is moved to the right to count one more
position, the representation of k is moved one position to the
right in such a way that it is always aligned with the counter
on track 2, to make easy the comparison

I The total time is O(n log k)

nTMs and Unary Languages: Basic techniques

How to compute n mod k n = input length
k = integer written somewhere

I Reset the counter on track 2 each time it becomes equal to k

I When the end of the input is reached, track 2 contains
n mod k

I To implement the comparison between the counter and k :

The value of k is kept on an extra track (track 4)
When the input head is moved to the right to count one more
position, the representation of k is moved one position to the
right in such a way that it is always aligned with the counter
on track 2, to make easy the comparison

I The total time is O(n log k)

nTMs and Unary Languages: Basic techniques

How to compute n mod k n = input length
k = integer written somewhere

I Reset the counter on track 2 each time it becomes equal to k

I When the end of the input is reached, track 2 contains
n mod k

I To implement the comparison between the counter and k :

The value of k is kept on an extra track (track 4)
When the input head is moved to the right to count one more
position, the representation of k is moved one position to the
right in such a way that it is always aligned with the counter
on track 2, to make easy the comparison

I The total time is O(n log k)

nTMs and Unary Languages: Basic techniques

How to compute n mod k n = input length
k = integer written somewhere

I Reset the counter on track 2 each time it becomes equal to k

I When the end of the input is reached, track 2 contains
n mod k

I To implement the comparison between the counter and k :

The value of k is kept on an extra track (track 4)
When the input head is moved to the right to count one more
position, the representation of k is moved one position to the
right in such a way that it is always aligned with the counter
on track 2, to make easy the comparison

I The total time is O(n log k)

A Unary Language Accepted in Weak Time O(n log log n)

I For each integer n let

q(n) := the smallest integer that does not divide n

I We consider the language

L = {an | q(n) is not a power of 2}

I L is recognized by the following nondeterministic algorithm:
[Mereghetti ’08]input an

guess an integer s, s > 1
guess an integer t, 2s < t < 2s+1

if n mod 2s = 0 and n mod t 6= 0 then accept
else reject

A Unary Language Accepted in Weak Time O(n log log n)

I For each integer n let

q(n) := the smallest integer that does not divide n

I We consider the language

L = {an | q(n) is not a power of 2}

I L is recognized by the following nondeterministic algorithm:
[Mereghetti ’08]input an

guess an integer s, s > 1
guess an integer t, 2s < t < 2s+1

if n mod 2s = 0 and n mod t 6= 0 then accept
else reject

A Unary Language Accepted in Weak Time O(n log log n)

I For each integer n let

q(n) := the smallest integer that does not divide n

I We consider the language

L = {an | q(n) is not a power of 2}

I L is recognized by the following nondeterministic algorithm:
[Mereghetti ’08]input an

guess an integer s, s > 1
guess an integer t, 2s < t < 2s+1

if n mod 2s = 0 and n mod t 6= 0 then accept
else reject

A Unary Language Accepted in Weak Time O(n log log n)

input an

guess an integer s, s > 1
guess an integer t, 2s < t < 2s+1

if n mod 2s = 0 and n mod t 6= 0 then accept
else reject

Implementation and complexity:

I Two extra tracks (track 5 and 6) are used to guess 2s and t
(linear time)

A Unary Language Accepted in Weak Time O(n log log n)

input an

guess an integer s, s > 1
guess an integer t, 2s < t < 2s+1

if n mod 2s = 0 and n mod t 6= 0 then accept
else reject

Implementation and complexity:

I Two extra tracks (track 5 and 6) are used to guess 2s and t
(linear time)

I Using the previous technique, n mod 2s and n mod t are
computed (time O(n log t))

A Unary Language Accepted in Weak Time O(n log log n)

input an

guess an integer s, s > 1
guess an integer t, 2s < t < 2s+1

if n mod 2s = 0 and n mod t 6= 0 then accept
else reject

Implementation and complexity:

I Two extra tracks (track 5 and 6) are used to guess 2s and t
(linear time)

I Using the previous technique, n mod 2s and n mod t are
computed (time O(n log t))

I Depending on the outcomes, the input is accepted or rejected

A Unary Language Accepted in Weak Time O(n log log n)

input an

guess an integer s, s > 1
guess an integer t, 2s < t < 2s+1

if n mod 2s = 0 and n mod t 6= 0 then accept
else reject

Implementation and complexity:

I Two extra tracks (track 5 and 6) are used to guess 2s and t
(linear time)

I Using the previous technique, n mod 2s and n mod t are
computed (time O(n log t))

I Depending on the outcomes, the input is accepted or rejected
I The overall time of a computation is O(n log t)

A Unary Language Accepted in Weak Time O(n log log n)

input an

guess an integer s, s > 1
guess an integer t, 2s < t < 2s+1

if n mod 2s = 0 and n mod t 6= 0 then accept
else reject

Implementation and complexity:

I Two extra tracks (track 5 and 6) are used to guess 2s and t
(linear time)

I Using the previous technique, n mod 2s and n mod t are
computed (time O(n log t))

I Depending on the outcomes, the input is accepted or rejected
I The overall time of a computation is O(n log t)

I Weak measure: it is enough to find a bound for one accepting
computation, namely for a t which leads to acceptance

A Unary Language Accepted in Weak Time O(n log log n)

input an

guess an integer s, s > 1
guess an integer t, 2s < t < 2s+1

if n mod 2s = 0 and n mod t 6= 0 then accept
else reject

Implementation and complexity:

I Using the previous technique, n mod 2s and n mod t are
computed (time O(n log t))

I Depending on the outcomes, the input is accepted or rejected
I The overall time of a computation is O(n log t)

I Weak measure: it is enough to find a bound for one accepting
computation, namely for a t which leads to acceptance

I We can take t = q(n)

A Unary Language Accepted in Weak Time O(n log log n)

input an

guess an integer s, s > 1
guess an integer t, 2s < t < 2s+1

if n mod 2s = 0 and n mod t 6= 0 then accept
else reject

Implementation and complexity:

I Depending on the outcomes, the input is accepted or rejected
I The overall time of a computation is O(n log t)

I Weak measure: it is enough to find a bound for one accepting
computation, namely for a t which leads to acceptance

I We can take t = q(n)

I q(n) = O(log n) [Alt&Mehlhorn ’75]

A Unary Language Accepted in Weak Time O(n log log n)

input an

guess an integer s, s > 1
guess an integer t, 2s < t < 2s+1

if n mod 2s = 0 and n mod t 6= 0 then accept
else reject

Implementation and complexity:

I The overall time of a computation is O(n log t)

I Weak measure: it is enough to find a bound for one accepting
computation, namely for a t which leads to acceptance

I We can take t = q(n)

I q(n) = O(log n) [Alt&Mehlhorn ’75]
I The time is O(n log log n)

A Unary Language Accepted in Weak Time O(n log log n)

input an

guess an integer s, s > 1
guess an integer t, 2s < t < 2s+1

if n mod 2s = 0 and n mod t 6= 0 then accept
else reject

Implementation and complexity:

I The overall time of a computation is O(n log t)

I Weak measure: it is enough to find a bound for one accepting
computation, namely for a t which leads to acceptance

I We can take t = q(n)

I q(n) = O(log n) [Alt&Mehlhorn ’75]
I The time is O(n log log n)

I With a similar argument, we can prove c(n) = O(log log n)

A Unary Language Accepted in Weak Time O(n log log n)

input an

guess an integer s, s > 1
guess an integer t, 2s < t < 2s+1

if n mod 2s = 0 and n mod t 6= 0 then accept
else reject

Implementation and complexity:

I Weak measure: it is enough to find a bound for one accepting
computation, namely for a t which leads to acceptance

I We can take t = q(n)

I q(n) = O(log n) [Alt&Mehlhorn ’75]
I The time is O(n log log n)

I With a similar argument, we can prove c(n) = O(log log n)

A Unary Language Accepted in Weak Time O(n log log n)

L = {an | the smallest integer which does not divide n
is not a power of 2}

We have proved the following:

Theorem ([P.’09])
L is accepted by a one-tape nondeterministic machine with

I t(n) = O(n log log n)

I c(n) = O(log log n)

under the weak measure

More on L: Space Complexity

The language L and its complement have been widely studied in
the literature.

Some results concerning space:

I Lc is accepted by a dTM with a separate worktape,
using the minimum amount of space O(log log n)

[Alt&Mehlhorn ’75]

I For L we can even do better:
L is accepted by a one-way nTM with a separate worktape,
using the minimum amount of space O(log log n),
under the weak measure [Mereghetti ’08]

L seems a good example of nonregular language
with “low” complexity

More on L: Space Complexity

The language L and its complement have been widely studied in
the literature.

Some results concerning space:

I Lc is accepted by a dTM with a separate worktape,
using the minimum amount of space O(log log n)

[Alt&Mehlhorn ’75]

I For L we can even do better:
L is accepted by a one-way nTM with a separate worktape,
using the minimum amount of space O(log log n),
under the weak measure [Mereghetti ’08]

L seems a good example of nonregular language
with “low” complexity

More on L: Space Complexity

The language L and its complement have been widely studied in
the literature.

Some results concerning space:

I Lc is accepted by a dTM with a separate worktape,
using the minimum amount of space O(log log n)

[Alt&Mehlhorn ’75]

I For L we can even do better:
L is accepted by a one-way nTM with a separate worktape,
using the minimum amount of space O(log log n),
under the weak measure [Mereghetti ’08]

L seems a good example of nonregular language
with “low” complexity

More on L: Space Complexity

The language L and its complement have been widely studied in
the literature.

Some results concerning space:

I Lc is accepted by a dTM with a separate worktape,
using the minimum amount of space O(log log n)

[Alt&Mehlhorn ’75]

I For L we can even do better:
L is accepted by a one-way nTM with a separate worktape,
using the minimum amount of space O(log log n),
under the weak measure [Mereghetti ’08]

L seems a good example of nonregular language
with “low” complexity

Final Remarks

Closing Remarks

We considered the “border” between regular and nonregular
languages, wrt to the time t(n) and the length of crossing
sequences c(n)

Similar investigations can be have been done (even for different
classes of languages) wrt other resources:

I Space e.g. [Sziepietowski ’94, Mereghetti ’08]

I Head reversals e.g. [Bertoni&Mereghetti&P.’94]

I Return complexity or Active visits [Wechsung ’75, Chytil ’76]

I Dual return complexity [Hibbard ’67]

I ...

Closing Remarks

We considered the “border” between regular and nonregular
languages, wrt to the time t(n) and the length of crossing
sequences c(n)

Similar investigations can be have been done (even for different
classes of languages) wrt other resources:

I Space e.g. [Sziepietowski ’94, Mereghetti ’08]

I Head reversals e.g. [Bertoni&Mereghetti&P.’94]

I Return complexity or Active visits [Wechsung ’75, Chytil ’76]

I Dual return complexity [Hibbard ’67]

I ...

Closing Remarks

We considered the “border” between regular and nonregular
languages, wrt to the time t(n) and the length of crossing
sequences c(n)

Similar investigations can be have been done (even for different
classes of languages) wrt other resources:

I Space e.g. [Sziepietowski ’94, Mereghetti ’08]

I Head reversals e.g. [Bertoni&Mereghetti&P.’94]

I Return complexity or Active visits [Wechsung ’75, Chytil ’76]

I Dual return complexity [Hibbard ’67]

I ...

Closing Remarks

We considered the “border” between regular and nonregular
languages, wrt to the time t(n) and the length of crossing
sequences c(n)

Similar investigations can be have been done (even for different
classes of languages) wrt other resources:

I Space e.g. [Sziepietowski ’94, Mereghetti ’08]

I Head reversals e.g. [Bertoni&Mereghetti&P.’94]

I Return complexity or Active visits [Wechsung ’75, Chytil ’76]

I Dual return complexity [Hibbard ’67]

I ...

Closing Remarks

We considered the “border” between regular and nonregular
languages, wrt to the time t(n) and the length of crossing
sequences c(n)

Similar investigations can be have been done (even for different
classes of languages) wrt other resources:

I Space e.g. [Sziepietowski ’94, Mereghetti ’08]

I Head reversals e.g. [Bertoni&Mereghetti&P.’94]

I Return complexity or Active visits [Wechsung ’75, Chytil ’76]

I Dual return complexity [Hibbard ’67]

I ...

Closing Remarks

We considered the “border” between regular and nonregular
languages, wrt to the time t(n) and the length of crossing
sequences c(n)

Similar investigations can be have been done (even for different
classes of languages) wrt other resources:

I Space e.g. [Sziepietowski ’94, Mereghetti ’08]

I Head reversals e.g. [Bertoni&Mereghetti&P.’94]

I Return complexity or Active visits [Wechsung ’75, Chytil ’76]

I Dual return complexity [Hibbard ’67]

I ...

Closing Remarks

We considered the “border” between regular and nonregular
languages, wrt to the time t(n) and the length of crossing
sequences c(n)

Similar investigations can be have been done (even for different
classes of languages) wrt other resources:

I Space e.g. [Sziepietowski ’94, Mereghetti ’08]

I Head reversals e.g. [Bertoni&Mereghetti&P.’94]

I Return complexity or Active visits [Wechsung ’75, Chytil ’76]

I Dual return complexity [Hibbard ’67]

I ...

Thank you for your attention!

	Introduction
	Lower Bounds
	Optimality
	Fast Recognition of Unary Languages
	Final Remarks
	Thank you for your attention!

