Investigations on Automata and Languages
over a Unary Alphabet

Giovanni Pighizzini

Dipartimento di Informatica
Universita degli Studi di Milano, Italy

FLA 2016 — Napoli
January 14-16, 2016

UNIVERSITA DEGLI STUDI
DI MILANO

Unary or Tally Languages

» One letter alphabet ¥ = {a}

» Many differences with the general case have been discovered
First example:

Theorem [Ginsurg&Rice '62]
Each unary context-free languages is regular

» Structural complexity: classes of tally sets

» Hartmanis, 1972
» Book, 1974, 1979

> L

Space complexity:
» Alt&Mehlhorn, 1975
» Geffert, 1993

> ..

Unary or Tally Languages

This talk:

» Focus mainly on descriptional complexity aspects
m Optimal simulations between variants of unary automata
m Unary two-way automata:
connection with the question L ZNL

m Unary context-free grammars and pushdown automata

» Devices accepting nonregular languages

Unary Automata

Unary One-Way Deterministic Automata (1DFAs)

The structure is very simple! /@_\

Theorem
L C {a}* is regular iff 3u > 0, A > 1 s.t.

Vn>p:a"eliffamt el

When 1 = 0 the language L is said to be cyclic

Unary One-Way Nondeterministic Automata (1NFAs)

The structure can be very complicate!

Each direct graph with

> a vertex selected as initial state
> some vertices selected as final states

is the transition diagram of a unary INFA!

However, we can always obtain an equivalent 1INFA with a
» simple and
» not too big

transition graph

Chrobak Normal Form for 1INFAs

> An initial deterministic path
> Some disjoint
deterministic loops

» Only one nondeterministic
decision

Theorem ([Chrobak '86])

Each unary n-state INFA can be converted into an
equivalent INFA in Chrobak normal form with

> an initial path of O(n?) states

» total number of states in the loops < n

Conversion to Chrobak Normal Form for 1INFAs

v

Subtle error in the original proof fixed by To (2009)

v

Different transformation proposed by Geffert (2007)

v

Polynomial time conversion algorithms
by Martinez (2004), Gawrychowski (2011), Sawa (2013)

v

From the results by Geffert and Gawrychowski:
m length of the initial path < n?> — n
m total number of states in the loops < n—1
(except when the given 1INFA is the trivial loop of n states)

Removing Nondeterminism from Unary Automata

> Keep the same initial path

v

Simulate all the loops “in parallel”

A loop of lem{¢y,¢5,...}
many states is enough

v

v

Total number of states
< p+lem{ty, bo, ...}

» From a n-state 1NFA:
p=0(n?), b1 +Ll+---<n

How large can be lem{¢1, (o, ...}7?
F(n)=max{lem{l1,02,... . ls} | s> 1Nl +lo+ -+ {s<n}
Landau’s function (1903) F(n) = ®(Vninn) [Szalay '80]

Removing Nondeterminism from Unary Automata

> Keep the same initial path
> Simulate all the loops “in parallel”

> A loop of lem{¢y, s, ...}
many states is enough

» Total number of states
< p+lem{ty, bo, ...}

» From a n-state 1NFA:
p=0(n?), b1 +Ll+---<n

» F(n) states are also necessary in the worst case [Chrobak '86]

Theorem ([Ljubi¢ '64, Chrobak '86])

The state cost of the simulation of unary n-state 1NFAs
by equivalent 1DFAs is ¢©(VnInn)

From Chrobak Normal Form to Two-Way Automata

Check if the input is “short”
and accepted on the initial path
1+ 1 states

Check if the input is accepted
on the first loop {1 states

Check if the input is accepted
on the second loop /> states

Check if the input is accepted
on the third loop /3 states

i+ £y + o + - - - + 2 states are sufficient!

This number is also necessary in the worst case [Chrobak '86]

Theorem

The state cost of the simulation of unary n-state INFAs

by 2DFAs is ©(n?)

Optimal Simulations Between Unary Automata

O(v/'nlnn)

\

~ 2DFA

L

O(vnlnn)

e©(Vnlnn)

INFA ™~
y

2NFA

o(n?

[Chrobak '86, Mereghetti&P.'01]

Optimal Simulations Between Unary Automata

©(Vnlnn) \v
1DFA < 1NFA ~ 2NFA — 2DFA Open!

O(vnlnn)

A

» upper bound e®(VrInn)
(from 2NFA — 1DFA)

> lower bound Q(n?)
(from INFA — 2DFA)

Better upper bound O(In* n)
\~ 2DFA - 2NFA [Geffert&Mereghetti&P.'03]

L ‘ o)/

Conjecture of Sakoda and Sipser (1978):
the costs of INFA — 2DFA and 2NFA — 2DFA
in the general case are exponential

Unary Two-Way Automata

Two-Way Automata: Few Technical Details

» Input surrounded by the end-markers > and <
» w € X* is accepted iff there is a computation

m with input tape >w<
m starting with the head on > in the initial state
m reaching a final state (with the head on)

Almost Equivalent Automata

Definition
Two automata A and B are almost equivalent
if L(A) and L(B) differ for finitely many strings

Chrobak Normal Form Revisited

OO
=y

OO 3
Each unary n-state INFA A is almost equivalent to a INFA B:

> s disjoint loops of lengths ¢1,...,0s, with {1 +---+ £, <n

> at the beginning of the computation,
B nondeterministically selects a loop i € {1,...,s}

> then B counts the input length modulo ¢;

» L(A) and L(B) can differ only on strings of length at most n?> — n

A Normal Form for Unary 2NFAs

Theorem ([Geffert&Mereghetti&P.'03])

For each unary n-state 2NFA A there exists
an almost equivalent 2NFA M s.t.

» M makes nondeterministic choices and changes the head
direction only visiting the end-markers

» M has N < 2n+ 2 many states
» L(A) and L(M) can differ only on strings of length < 5n?

A Normal Form for Unary 2NFAs

More details on M: m
» State set: {q;,qgrtU Q1 U - U Qs ’D‘a‘... ‘a‘Q‘
m g initial state g —M—p1

B gF accepting state P> /
m Q; deterministic loop of length ¢; \
=p3

» A computation is a sequence of
traversals of the input

Pk—l
» In each traversal M counts the q /
F

input length modulo one ¢;

Remark

If a string is accepted by M then it is accepted by a computation
which visits the left end-marker at most #Q times

Converting Unary 2NFAs into 2DFAs
[Geffert& Mereghetti&P.'03]

M unary N-state 2NFA in normal form
a™ input string

» For p,g € Q, k > 1, we consider the predicate

reachable(p, q, k) =

Jcomputation path on a™ which

® starts in the state p on >
B ends in the state g on >
B visits > at most k times

Then: '
a™ € L(M) iff reachable(q;, gr, N) is true q/

» reachable(p, g, k) can be computed by a recursive procedure

» Implemented by a 2DFA with eOn* V) gtates

From Unary 2NFAs to 2DFAs

A given unary 2NFA n states
U Conversion into normal form
M almost equivalent 2NFA N < 2n -+ 2 states
U Deterministic simulation
B 2DFA equivalent to M eOIn* N) gtates

Preliminary scan to accept/reject inputs of length < 5n?
U then simulation of B for longer inputs
C 2DFA equivalent to A eOn* n) states

Theorem ([Geffert&Mereghetti&P.'03])

Each unary n-state 2NFA can be simulated Upper bound

. 2
by a 2DFA with e°U""") many states - superpolynomial

Can this upper bound be reduced - subexponential

to a polynomial?

Logspace Classes and Graph Accessibility Problem

L: class of languages accepted in logarithmic space
by deterministic machines Problem

NL: class of languages accepted in logarithmic space L < NL
by nondeterministic machines
Graph Accessibility Problem GAP
» Given G = (V, E) oriented graph, s,t € V

» Decide whether or not G contains a path from s to t

Theorem ([Jones '75])
GAP s complete for NL

Hence GAP € L iff L = NL

Reduction to GAP
[Geffert&P.'11]

M unary 2NFA in normal form, with N states

» Accepting computation on a™
m sequence of traversals of the input
- starting in g; on >
- ending in g¢ on >
» Graph G(m)
m vertices = states
m edges = traversals on a”

» a™ is accepted iff G(m) contains a path from g, to gf

To decide whether or not a™ € L(M) reduces
to decide GAP for G(m)

L =NL = Polynomial Deterministic Simulation!
[Geffert&P.'11]

m G(m /yes
2 G (m) Dgap
\no

M’

Dgap logspace bounded deterministic machine solving GAP
m O(log N) space N=4#states of the given 2NFA M
m poly(N) different configurations

G(m) graph associated with a™
= O(N?) bits
m exp(N) different configurations Too many!!!
m bits computed on demand:
an N-state 1DFA A, , tests the existence of the edge (p, q)
trying to simulate a traversal of M from p to g

M’ resulting 2DFA poly(N) many states!!!

From Unary 2NFAs to 2DFAs (under L = NL)

Preliminary scan to accept/reject inputs of length < 5n?
then simulation of B for longer inputs

A given unary 2NFA n states
[} Conversion into normal form
M almost equivalent 2NFA N < 2n+ 2 states
[k Deterministic simulation
B 2DFA equivalent to M poly(N) states
\

C

2DFA equivalent to A poly(n) states

Theorem ([Geffert&P."11])

If L = NL then each unary n-state 2NFA can be
simulated by a 2DFA with poly(n) many states

Proving the conjecture of Sakoda and Sipser
for 2NFA — 2DFA in the unary case
would separate L and NL in the general case

From Unary 2NFAs to 2DFAs (under L = NL)

Preliminary scan to accept/reject inputs of length < 5n?
then simulation of B for longer inputs

A given unary 2NFA n states
[} Conversion into normal form
M almost equivalent 2NFA N < 2n+ 2 states
[} Deterministic simulation
B 2DFA equivalent to M poly(N) states
\

C

2DFA equivalent to A poly(n) states

Theorem ([Geffert&P."11])

If L = NL then each unary n-state 2NFA can be
simulated by a 2DFA with poly(n) many states

Theorem ([Kapoutsis&P.'12])

L/poly O NL iff each unary n-state 2NFA can be
simulated by a 2DFA with poly(n) many states

Normal Form for Unary 2NFAs: Consequences

(i)
(i)
(iii)

(iv)

Subexponential simulation of unary 2NFAs by 2DFAs
[Geffert&Mereghetti&P.'03]

Polynomial simulation of unary 2NFAs by 2DFAs
under the condition L = NL [Geffert&P."11]

Polynomial simulation of unary 2NFAs by unambiguous 2NFAs
(unconditional) [Geffert&P.'11]

Polynomial complementation of unary 2NFAs
Inductive counting argument [Geffert&Mereghetti&P.'07]

Normal Form for Unary 2NFAs: Consequences

(i) Subexponential simulation of unary 2NFAs by 2DFAs
[Geffert&Mereghetti&P.'03]

(ii) Polynomial simulation of unary 2NFAs by 2DFAs
under the condition L = NL [Geffert&P."11]

(iii) Polynomial simulation of unary 2NFAs by unambiguous 2NFAs
(unconditional) [Geffert&P.'11]

(iv) Polynomial complementation of unary 2NFAs
Inductive counting argument [Geffert&Mereghetti&P.'07]

Extension to outer nondeterministic automata:
> general alphabet [Geffert& Guillon&P."14]
» unrestricted head reversals

» nondeterministic choices only at the endmarkers

Pushdown Automata and Other Devices

Unary Context-Free Languages

Theorem [Ginsurg&Rice '62]
Each unary context-free languages is regular

How large should be a finite automata equivalent
to a given unary context-free grammar
or pushdown automaton?

Unary Pushdown Automata

From PDAs of size s, accepting regular languages,

to equivalent 1DFAs

unary input

|

general input

PDAs

opoly(s)
[P.&Shallit&Wang '02]

non recursive
[Meyer&Fischer '71]

deterministic PDAs

20(s)
[P.'09]

£206)

[Valiant '75]

All the bounds are tight!

Auxiliary Pushdown Automata (AuxPDAs)

PDAs augmented with an
auxiliary worktape

‘SPACE’ = worktape

1AuxPDAs: How to Count the Input Length

to
-

worktape stack

I :(1 10 100010)2 :2t1+2t2+...+2fk—1+2fk
tit2 te—1 bk

1AuxPDAs: How to Count the Input Length

2 =2442242!

23 =24 422 4 21 4 90

N

‘-bl\)l—l

1AuxPDAs: How to Count the Input Length

RSB

23

23 =24 4224214 20

24 =24 423

Example: £, = {a*" | m > 0}

» L, is nonregular

» L, is accepted by a IAuxPDA M which:

m scans the input while counting its length

m accepts iff the pushdown store is empty
i.e., the binary representation of the input length contains
exactly one digit 1

» On input a"
the largest integer stored on the worktape is |log, n|,
which is represented in O(loglog n) space

L, € 1AuxPDASpace(log log n)

Space Bounds on 1AuxPDAs

L, is accepted using the minimum amount of space
for nonregular languages recognition:

Theorem ([P.&Shallit&Wang '02])

If a unary language L is accepted by a 1AuxPDA
in o(log log n) space then L is regular

In contrast
m with a binary alphabet,

m and space measured on the ‘less’ expensive accepting computation:

Theorem ([Chytil '86])

For each k > 2 there is a non context-free language Ly
accepted by a 1AuxPDA in O(log. . .log n) space
——

k

Two-way Pushdown Automata (2PDAs)

» More powerful than PDAs, e.g., {a"b"c" | n > 0}

» 2DPDAs can be simulated by RAMs in linear time [Cook '71]

Main open problems:

» Power of nondeterminism, i.e., 2DPDAs vs 2PDA

» 2DPDAs vs linear bounded automata

Unary 2PDAs

» Very powerful models, even in the deterministic version

Theorem ([Monien '84])
The unary encoding of each language in P
is accepted by a 2DPDA

» With a constant number of input head reversals
they accept only regular languages [Liu&Weiner '68]

> L, ={a¥" | m>0}
accepted by a 2DPDA making ~ log, n reversals

Problem

Does there exist a unary nonregular language
accepted by a 2PDA making o(log n) head reversals?

Multi-Head Finite Automata

» More powerful than one-head finite automata,
even if the heads are one-way, e.g., {a"b" | n > 0}

> Unary case:
with a constant number of head reversals
they accept only regular languages [Sudborough '74]

> Ly = (" | m>0)
accepted by a 2-head automaton making = log, n reversals

Problem

Does there exist a unary nonregular language
accepted by a multi-head automaton
making o(log n) head reversals?

» Unary multi-head 2PDAs making O(1) input head reversals
accept only regular languages [Ibarra '74]

Conclusion

Final Remarks

Unary Automata and Languages
» Interesting properties and differences with respect to the
general case
» Special methods (e.g., from number theory)
» Important relationships with the general case

» Several open problems

Thank you for your attention!

	Preliminaries
	Unary Automata
	Unary Automata
	Unary Two-way Automata

	Unary Two-Way Automata
	Other Formalisms in the Unary Case

	Pushdown Automata and Other Devices
	Conclusion

	Conclusion
	Thank you for your attention!

