Investigations on Automata and Languages over a Unary Alphabet

Giovanni Pighizzini

Dipartimento di Informatica Università degli Studi di Milano, Italy

> FLA 2016 – Napoli January 14-16, 2016

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

Unary or Tally Languages

- One letter alphabet $\Sigma = \{a\}$
- Many differences with the general case have been discovered First example:

Theorem [Ginsurg&Rice '62]

Each unary context-free languages is regular

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

- Structural complexity: classes of tally sets
 - Hartmanis, 1972
 - Book, 1974, 1979

•

Space complexity:

- Alt&Mehlhorn, 1975
- Geffert, 1993

▶ ...

This talk:

- Focus mainly on descriptional complexity aspects
 - Optimal simulations between variants of unary automata

 Unary two-way automata: connection with the question L [?]= NL

Unary context-free grammars and pushdown automata

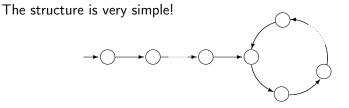
ション ふゆ く 山 マ チャット しょうくしゃ

Devices accepting nonregular languages

Unary Automata

◆□ > < 個 > < E > < E > E 9 < 0</p>

Unary One-Way Deterministic Automata (1DFAs)

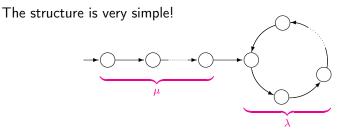


◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

Theorem $L \subseteq \{a\}^* \text{ is regular iff } \exists \mu \ge 0, \lambda \ge 1 \text{ s.t.}$ $\forall n \ge \mu : a^n \in L \text{ iff } a^{n+\lambda} \in L$

When $\mu = 0$ the language L is said to be cyclic

Unary One-Way Deterministic Automata (1DFAs)



Theorem

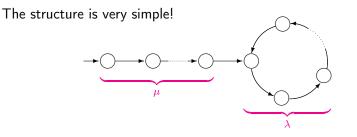
 $L \subseteq \{a\}^*$ is regular iff $\exists \mu \ge 0, \lambda \ge 1$ s.t.

 $\forall n \geq \mu : a^n \in L \text{ iff } a^{n+\lambda} \in L$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

When $\mu = 0$ the language L is said to be *cyclic*

Unary One-Way Deterministic Automata (1DFAs)



I

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

Theorem

$$L \subseteq \{a\}^*$$
 is regular iff $\exists \mu \ge 0, \lambda \ge 1$ s.t.
 $\forall n \ge \mu : a^n \in L \text{ iff } a^{n+\lambda} \in \mathbb{R}$

When $\mu = 0$ the language L is said to be *cyclic*

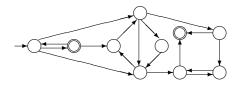
Unary One-Way Nondeterministic Automata (1NFAs)

The structure can be very complicate!

Each direct graph with

- a vertex selected as initial state
- some vertices selected as final states

is the transition diagram of a unary 1NFA!



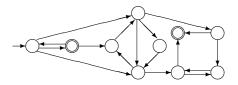
Unary One-Way Nondeterministic Automata (1NFAs)

The structure can be very complicate!

Each direct graph with

- a vertex selected as initial state
- some vertices selected as final states

is the transition diagram of a unary 1NFA!

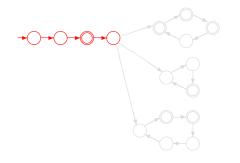


◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

However, we can always obtain an equivalent 1NFA with a

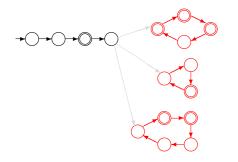
- simple and
- not too big

transition graph



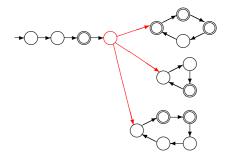
- ► An initial *deterministic path*
- Some disjoint deterministic loops
- Only one nondeterministic decision

<ロ> (四) (四) (三) (三) (三) (三)



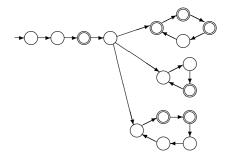
- An initial deterministic path
- Some disjoint deterministic loops
- Only one nondeterministic decision

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●



- An initial deterministic path
- Some disjoint deterministic loops
- Only one nondeterministic decision

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ 三臣 - のへで



- An initial deterministic path
- Some disjoint deterministic loops
- Only one nondeterministic decision

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

Theorem ([Chrobak '86])

Each unary n-state 1NFA can be converted into an equivalent 1NFA in Chrobak normal form with

- ▶ an initial path of O(n²) states
- ▶ total number of states in the loops ≤ n

Subtle error in the original proof fixed by To (2009)

- Different transformation proposed by Geffert (2007)
- Polynomial time conversion algorithms by Martinez (2004), Gawrychowski (2011), Sawa (2013)
- From the results by Geffert and Gawrychowski:
 - length of the initial path $\leq n^2 n$
 - total number of states in the loops $\leq n-1$ (except when the given 1NFA is the trivial loop of *n* state

ション ふゆ く 山 マ チャット しょうくしゃ

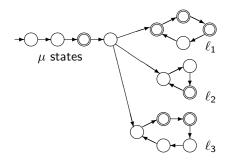
- Subtle error in the original proof fixed by To (2009)
- Different transformation proposed by Geffert (2007)
- Polynomial time conversion algorithms by Martinez (2004), Gawrychowski (2011), Sawa (2013)
- From the results by Geffert and Gawrychowski:
 - length of the initial path $\leq n^2 n$
 - total number of states in the loops $\leq n-1$ (except when the given 1NFA is the trivial loop of *n* state

ション ふゆ アメリア メリア しょうくの

- Subtle error in the original proof fixed by To (2009)
- Different transformation proposed by Geffert (2007)
- Polynomial time conversion algorithms by Martinez (2004), Gawrychowski (2011), Sawa (2013)
- From the results by Geffert and Gawrychowski:
 - length of the initial path $\leq n^2 n$
 - total number of states in the loops $\leq n-1$
 - (except when the given 1NFA is the trivial loop of *n* states)

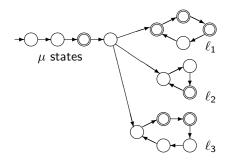
ション ふゆ アメリア メリア しょうくの

- Subtle error in the original proof fixed by To (2009)
- Different transformation proposed by Geffert (2007)
- Polynomial time conversion algorithms by Martinez (2004), Gawrychowski (2011), Sawa (2013)
- From the results by Geffert and Gawrychowski:
 - length of the initial path $\leq n^2 n$
 - total number of states in the loops ≤ n − 1 (except when the given 1NFA is the trivial loop of n states)



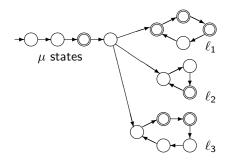
- Keep the same initial path
- Simulate all the loops "in parallel"
- ► A loop of lcm{ℓ₁, ℓ₂, ...} many states is enough
- ► Total number of states $\leq \mu + \operatorname{lcm}\{\ell_1, \ell_2, \ldots\}$
- From a *n*-state 1NFA: $\mu = O(n^2), \ \ell_1 + \ell_2 + \cdots \leq n$

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@



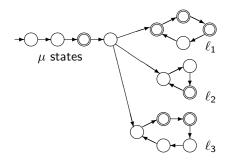
- Keep the same initial path
- Simulate all the loops "in parallel"
- ► A loop of lcm{ℓ₁, ℓ₂, ...} many states is enough
- ► Total number of states $\leq \mu + \operatorname{lcm}\{\ell_1, \ell_2, \ldots\}$
- From a *n*-state 1NFA: $\mu = O(n^2), \ \ell_1 + \ell_2 + \cdots \leq n$

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@

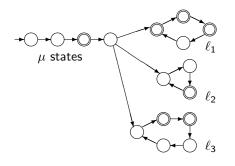


- Keep the same initial path
- Simulate all the loops "in parallel"
- ► A loop of lcm{ℓ₁, ℓ₂, ...} many states is enough
- ► Total number of states $\leq \mu + \operatorname{lcm}\{\ell_1, \ell_2, \ldots\}$
- From a *n*-state 1NFA: $\mu = O(n^2), \ \ell_1 + \ell_2 + \cdots \leq n$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●



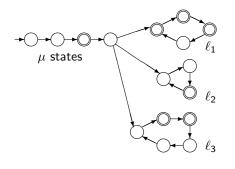
- Keep the same initial path
- Simulate all the loops "in parallel"
- ► A loop of lcm{ℓ₁, ℓ₂, ...} many states is enough
- ► Total number of states $\leq \mu + \operatorname{lcm}\{\ell_1, \ell_2, \ldots\}$
- From a *n*-state 1NFA: $\mu = O(n^2), \ \ell_1 + \ell_2 + \cdots \leq n$



How large can be $lcm{\ell_1, \ell_2, \ldots}$?

- Keep the same initial path
- Simulate all the loops "in parallel"
- ► A loop of lcm{ℓ₁, ℓ₂, ...} many states is enough
- ► Total number of states $\leq \mu + \operatorname{lcm}\{\ell_1, \ell_2, \ldots\}$
- From a *n*-state 1NFA: $\mu = O(n^2), \ \ell_1 + \ell_2 + \cdots \leq n$

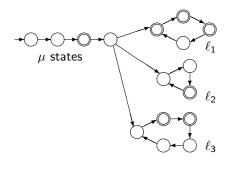
◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●



- Keep the same initial path
- Simulate all the loops "in parallel"
- ► A loop of lcm{ℓ₁, ℓ₂, ...} many states is enough
- ► Total number of states $\leq \mu + \operatorname{lcm}\{\ell_1, \ell_2, \ldots\}$
- From a *n*-state 1NFA: $\mu = O(n^2), \ \ell_1 + \ell_2 + \cdots \leq n$

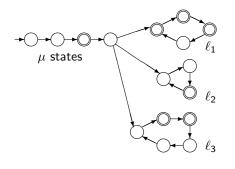
◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

How large can be lcm{ $\ell_1, \ell_2, ...$ }? $F(n) = \max\{ lcm\{\ell_1, \ell_2, ..., \ell_s\} \mid s \ge 1 \land \ell_1 + \ell_2 + \dots + \ell_s \le n \}$



- Keep the same initial path
- Simulate all the loops "in parallel"
- ► A loop of lcm{ℓ₁, ℓ₂, ...} many states is enough
- Total number of states $\leq \mu + \operatorname{lcm}\{\ell_1, \ell_2, \ldots\}$
- From a *n*-state 1NFA: $\mu = O(n^2), \ \ell_1 + \ell_2 + \cdots \leq n$

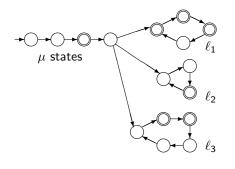
How large can be lcm{ ℓ_1, ℓ_2, \ldots }? $F(n) = \max\{ \text{lcm}\{\ell_1, \ell_2, \ldots, \ell_s\} \mid s \ge 1 \land \ell_1 + \ell_2 + \cdots + \ell_s \le n \}$ Landau's function (1903) $F(n) = e^{\Theta(\sqrt{n \ln n})} \text{ [Szalay '80]}$



- Keep the same initial path
- Simulate all the loops "in parallel"
- ► A loop of lcm{ℓ₁, ℓ₂, ...} many states is enough
- Total number of states $\leq \mu + \operatorname{lcm}\{\ell_1, \ell_2, \ldots\}$
- From a *n*-state 1NFA: $\mu = O(n^2), \ \ell_1 + \ell_2 + \cdots \leq n$

ション ふゆ く 山 マ チャット しょうくしゃ

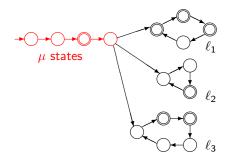
• F(n) states are also necessary in the worst case [Chrobak '86]



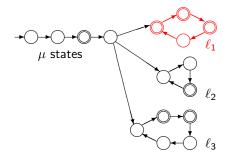
- Keep the same initial path
- Simulate all the loops "in parallel"
- ► A loop of lcm{ℓ₁, ℓ₂, ...} many states is enough
- ► Total number of states $\leq \mu + \operatorname{lcm}\{\ell_1, \ell_2, \ldots\}$
- From a *n*-state 1NFA: $\mu = O(n^2), \ \ell_1 + \ell_2 + \cdots \leq n$

• F(n) states are also necessary in the worst case [Chrobak '86]

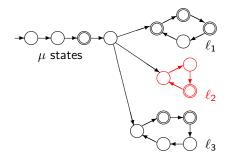
Theorem ([Ljubič '64, Chrobak '86]) The state cost of the simulation of unary n-state 1NFAs by equivalent 1DFAs is $e^{\Theta(\sqrt{n \ln n})}$



- Check if the input is "short" and accepted on the initial path μ + 1 states
- Check if the input is accepted on the first loop
 \$\ell_1\$ states
- Check if the input is accepted on the second loop l₂ states
- Check if the input is accepted on the third loop
 \$\ell_3\$ states

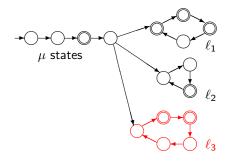


- Check if the input is "short" and accepted on the initial path µ + 1 states
- ► Check if the input is accepted on the first loop
 ℓ₁ states
- Check if the input is accepted on the second loop l₂ states
- Check if the input is accepted on the third loop
 \$\ell_3\$ states



- Check if the input is "short" and accepted on the initial path µ + 1 states
- Check if the input is accepted on the first loop l₁ states
- Check if the input is accepted on the second loop l₂ states
- Check if the input is accepted on the third loop
 \$\ell_3\$ states

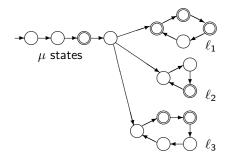
◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●



- Check if the input is "short" and accepted on the initial path µ + 1 states
- Check if the input is accepted on the first loop l₁ states
- Check if the input is accepted on the second loop l₂ states
- ► Check if the input is accepted on the third loop ℓ₃ states

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

 $\mu + \ell_1 + \ell_2 + \cdots + 2$ states are sufficient!

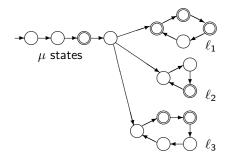


- Check if the input is "short" and accepted on the initial path µ + 1 states
- Check if the input is accepted on the first loop l₁ states
- Check if the input is accepted on the second loop l₂ states
- Check if the input is accepted on the third loop l₃ states

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

 $\mu + \ell_1 + \ell_2 + \cdots + 2$ states are sufficient!

This number is also necessary in the worst case [Chrobak '86]



- Check if the input is "short" and accepted on the initial path µ + 1 states
- Check if the input is accepted on the first loop l₁ states
- Check if the input is accepted on the second loop l₂ states
- Check if the input is accepted on the third loop
 \$\ell_3\$ states

 $\mu + \ell_1 + \ell_2 + \cdots + 2$ states are sufficient!

This number is also necessary in the worst case [Chrobak'86]

Theorem

The state cost of the simulation of unary n-state 1NFAs by 2DFAs is $\Theta(n^2)$

1DFA

1NFA

2DFA

2NFA

1DFA
$$(Chrobak '86)$$

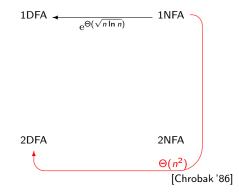
 $e^{\Theta(\sqrt{n \ln n})}$ 1NFA

2DFA

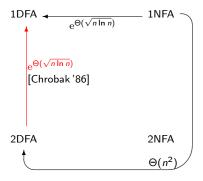
2NFA

◆□ > < 個 > < E > < E > E 9 < 0</p>

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ 三臣 - のへで

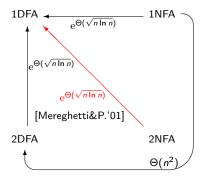


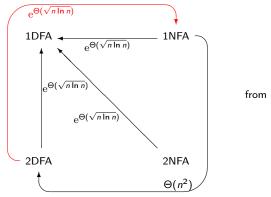
▲□▶ ▲圖▶ ▲臣▶ ★臣▶ 三臣 - のへで



・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

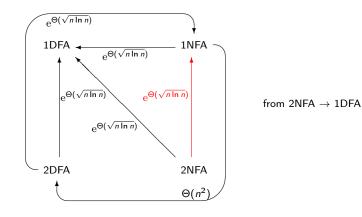
₹ 9Q@

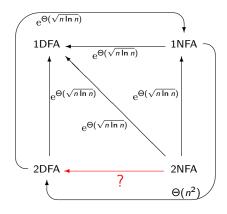




from 2DFA \rightarrow 1DFA

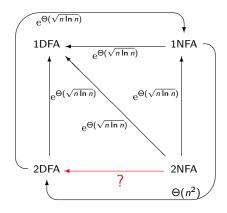
▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●





 $2NFA \rightarrow 2DFA$ Open!

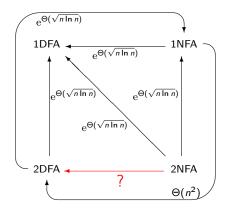
- upper bound $e^{\Theta(\sqrt{n \ln n})}$ (from 2NFA \rightarrow 1DFA)
- lower bound $\Omega(n^2)$ (from 1NFA \rightarrow 2DFA)



 $2NFA \rightarrow 2DFA$ Open!

• upper bound $e^{\Theta(\sqrt{n \ln n})}$ (from 2NFA \rightarrow 1DFA)

► lower bound $\Omega(n^2)$ (from 1NFA \rightarrow 2DFA)

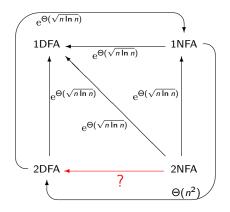


 $2NFA \rightarrow 2DFA$ Open!

• upper bound $e^{\Theta(\sqrt{n \ln n})}$ (from 2NFA \rightarrow 1DFA)

► lower bound $\Omega(n^2)$ (from 1NFA \rightarrow 2DFA)

Better upper bound $e^{O(\ln^2 n)}$ [Geffert&Mereghetti&P.'03]



 $2NFA \rightarrow 2DFA$ Open!

• upper bound $e^{\Theta(\sqrt{n \ln n})}$ (from 2NFA \rightarrow 1DFA)

► lower bound $\Omega(n^2)$ (from 1NFA \rightarrow 2DFA)

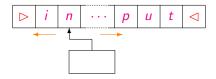
Better upper bound $e^{O(\ln^2 n)}$ [Geffert&Mereghetti&P.'03]

Conjecture of Sakoda and Sipser (1978): the costs of 1NFA \rightarrow 2DFA and 2NFA \rightarrow 2DFA in the general case are not polymonial

Unary Two-Way Automata

<□▶ <□▶ < □▶ < □▶ < □▶ < □ > ○ < ○

Two-Way Automata: Few Technical Details

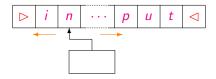


- Input surrounded by the end-markers \triangleright and \lhd
- $w \in \Sigma^*$ is accepted iff there is a computation
 - with input tape $\triangleright w \triangleleft$
 - starting with the head on ▷ in the initial state

・ロト ・ 御 ト ・ ヨ ト ・ ヨ ト ・ ヨ ・

■ reaching a final state (with the head on ▷)

Two-Way Automata: Few Technical Details



- Input surrounded by the end-markers \triangleright and \lhd
- $w \in \Sigma^*$ is accepted iff there is a computation
 - with input tape $\triangleright w \triangleleft$
 - starting with the head on \triangleright in the initial state

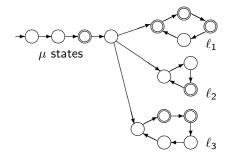
◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

• reaching a final state (with the head on \triangleright)

Definition

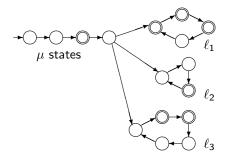
Two automata A and B are almost equivalent if L(A) and L(B) differ for finitely many strings

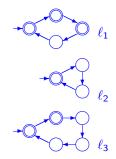
Chrobak Normal Form Revisited



▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

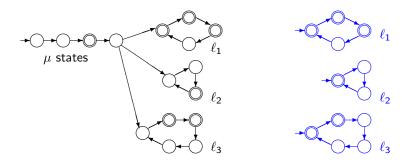
Chrobak Normal Form Revisited





◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Chrobak Normal Form Revisited



Each unary *n*-state 1NFA A is almost equivalent to a 1NFA B:

- ▶ *s* disjoint loops of lengths ℓ_1, \ldots, ℓ_s , with $\ell_1 + \cdots + \ell_s \leq n$
- ▶ at the beginning of the computation, B nondeterministically selects a loop i ∈ {1,...,s}
- then *B* counts the input length modulo ℓ_i
- L(A) and L(B) can differ only on strings of length at most $n^2 n$

Theorem ([Geffert&Mereghetti&P.'03])

For each unary n-state 2NFA A there exists an almost equivalent 2NFA M s.t.

- M makes nondeterministic choices and changes the head direction only visiting the end-markers
- ► M has N ≤ 2n + 2 many states
- L(A) and L(M) can differ only on strings of length $\leq 5n^2$

ション ふゆ く 山 マ チャット しょうくしゃ

More details on M:

- State set: $\{q_I, q_F\} \cup Q_1 \cup \cdots \cup Q_s$
 - q_I initial state
 - q_F accepting state
 - Q_i deterministic loop of length ℓ_i

- A computation is a sequence of traversals of the input
- In each traversal *M* counts the input length modulo one ℓ_i

More details on M:

- State set: $\{q_I, q_F\} \cup Q_1 \cup \cdots \cup Q_s$
 - q_I initial state
 - q_F accepting state
 - Q_i deterministic loop of length ℓ_i

- A computation is a sequence of traversals of the input
- In each traversal *M* counts the input length modulo one ℓ_i

More details on M:

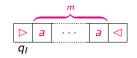
- State set: $\{q_I, q_F\} \cup Q_1 \cup \cdots \cup Q_s$
 - q_I initial state
 - q_F accepting state
 - Q_i deterministic loop of length ℓ_i

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- A computation is a sequence of traversals of the input
- In each traversal *M* counts the input length modulo one ℓ_i

More details on M:

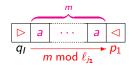
- State set: $\{q_I, q_F\} \cup Q_1 \cup \cdots \cup Q_s$
 - q_l initial state
 - q_F accepting state
 - Q_i deterministic loop of length ℓ_i
- A computation is a sequence of traversals of the input
- In each traversal *M* counts the input length modulo one ℓ_i



・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト ・ ヨ ・

More details on M:

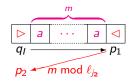
- State set: $\{q_I, q_F\} \cup Q_1 \cup \cdots \cup Q_s$
 - q_l initial state
 - q_F accepting state
 - Q_i deterministic loop of length ℓ_i
- A computation is a sequence of traversals of the input
- In each traversal *M* counts the input length modulo one ℓ_i



・ロッ ・ 一 ・ ・ ・ ・ ・ ・ ・ ・

More details on M:

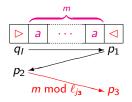
- State set: $\{q_I, q_F\} \cup Q_1 \cup \cdots \cup Q_s$
 - q_l initial state
 - q_F accepting state
 - Q_i deterministic loop of length ℓ_i
- A computation is a sequence of traversals of the input
- In each traversal *M* counts the input length modulo one ℓ_i



・ロッ ・ 一 ・ ・ ・ ・ ・ ・ ・ ・

More details on M:

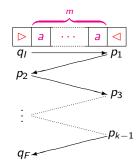
- State set: $\{q_I, q_F\} \cup Q_1 \cup \cdots \cup Q_s$
 - q_l initial state
 - q_F accepting state
 - Q_i deterministic loop of length ℓ_i
- A computation is a sequence of traversals of the input
- In each traversal *M* counts the input length modulo one ℓ_i



・ロッ ・雪 ・ ・ ヨ ・ ・ ヨ ・

More details on M:

- State set: $\{q_I, q_F\} \cup Q_1 \cup \cdots \cup Q_s$
 - q_I initial state
 - *q_F* accepting state
 - Q_i deterministic loop of length ℓ_i
- A computation is a sequence of traversals of the input
- In each traversal *M* counts the input length modulo one ℓ_i

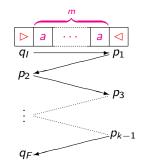


・ロッ ・雪 ・ ・ ヨ ・ ・

э

More details on M:

- State set: $\{q_I, q_F\} \cup Q_1 \cup \cdots \cup Q_s$
 - q_I initial state
 - q_F accepting state
 - Q_i deterministic loop of length ℓ_i
- A computation is a sequence of traversals of the input
- In each traversal *M* counts the input length modulo one ℓ_i



・ロッ ・ 一 ・ ・ ・ ・ ・ ・ ・ ・

-

Remark

If a string is accepted by M then it is accepted by a computation which visits the left end-marker at most #Q times

M unary N-state 2NFA in normal form a^m input string

▶ For $p, q \in Q$, $k \ge 1$, we consider the predicate reachable $(p, q, k) \equiv$

∃computation path on *a^m* which

- **starts in the state** p on \triangleright
- ends in the state q on \triangleright
- visits \triangleright at most k times

Then: $a^m \in L(M)$ iff reachable (q_i, q_F, N) is true

reachable(p, q, k) can be computed by a recursive procedure

M unary N-state 2NFA in normal form

a^m input string

▶ For $p, q \in Q$, $k \ge 1$, we consider the predicate reachable(p, q, k) ≡

∃computation path on *a^m* which

- **starts in the state** p on \triangleright
- ends in the state q on \triangleright
- visits \triangleright at most k times

Then:

 $a^m \in L(M)$ iff *reachable* (q_I, q_F, N) is true

reachable(p, q, k) can be computed by a recursive procedure

M unary N-state 2NFA in normal form

 a^m input string

For $p, q \in Q$, $k \ge 1$, we consider the predicate reachable $(p, q, k) \equiv$

 \exists computation path on a^m which

- starts in the state p on \triangleright
- ends in the state q on \triangleright
- visits \triangleright at most k times

Then:

 $a^m \in L(M)$ iff reachable (q_I, q_F, N) is true

reachable(p, q, k) can be computed by a recursive procedure

M unary N-state 2NFA in normal form

 a^m input string

For $p, q \in Q$, $k \ge 1$, we consider the predicate reachable $(p, q, k) \equiv$

 \exists computation path on a^m which

- starts in the state p on \triangleright
- ends in the state q on \triangleright
- visits \triangleright at most k times

Then:

 $a^m \in L(M)$ iff reachable (q_I, q_F, N) is true

reachable(p, q, k) can be computed by a recursive procedure

M unary N-state 2NFA in normal form

 a^m input string

For $p, q \in Q$, $k \ge 1$, we consider the predicate reachable $(p, q, k) \equiv$

 \exists computation path on a^m which

- starts in the state p on \triangleright
- ends in the state q on \triangleright
- visits \triangleright at most k times

Then:

 $a^m \in L(M)$ iff reachable (q_I, q_F, N) is true

ション ふゆ く 山 マ チャット しょうくしゃ

reachable(p, q, k) can be computed by a recursive procedure

M unary N-state 2NFA in normal form

 a^m input string

For $p, q \in Q$, $k \ge 1$, we consider the predicate reachable $(p, q, k) \equiv$

 \exists computation path on a^m which

• starts in the state p on \triangleright

- ends in the state q on \triangleright
- visits \triangleright at most k times

Then:

 $a^m \in L(M)$ iff reachable (q_I, q_F, N) is true

- reachable(p, q, k) can be computed by a recursive procedure
- Implemented by a 2DFA with $e^{O(\ln^2 N)}$ states

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

∜

- A given unary 2NFA
- M almost equivalent 2NFA
- *B* 2DFA equivalent to *M*

n states Conversion into normal form $N \le 2n + 2$ states

$$e^{O(\ln^2 N)}$$
 states

C 2DFA equivalent to A

 $e^{O(\ln^2 n)}$ states

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

 \Downarrow

- A given unary 2NFA
- *M* almost equivalent 2NFA ↓
- B 2DFA equivalent to M

n states Conversion into normal form $N \le 2n + 2$ states Deterministic simulation $e^{O(\ln^2 N)}$ states

C 2DFA equivalent to A

e^{O(In² n)} states

given unary 2NFA Α n states \Downarrow Conversion into normal form М almost equivalent 2NFA N < 2n + 2 states \Downarrow Deterministic simulation $e^{O(\ln^2 N)}$ states В 2DFA equivalent to MPreliminary scan to accept/reject inputs of length $< 5n^2$ ∜ then simulation of B for longer inputs $e^{O(\ln^2 n)}$ states С 2DFA equivalent to A

given unary 2NFA Α n states \Downarrow Conversion into normal form М almost equivalent 2NFA N < 2n + 2 states \Downarrow Deterministic simulation $e^{O(\ln^2 N)}$ states В 2DFA equivalent to MPreliminary scan to accept/reject inputs of length $< 5n^2$ \Downarrow then simulation of B for longer inputs $e^{O(\ln^2 n)}$ states 2DFA equivalent to AС

ション ふゆ く 山 マ チャット しょうくしゃ

Theorem ([Geffert&Mereghetti&P.'03]) Each unary n-state 2NFA can be simulated by a 2DFA with $e^{O(\ln^2 n)}$ many states

given unary 2NFA Α n states \Downarrow Conversion into normal form М almost equivalent 2NFA N < 2n + 2 states \Downarrow Deterministic simulation $e^{O(\ln^2 N)}$ states В 2DFA equivalent to MPreliminary scan to accept/reject inputs of length $< 5n^2$ \Downarrow then simulation of B for longer inputs $e^{O(\ln^2 n)}$ states 2DFA equivalent to AС

Theorem ([Geffert&Mereghetti&P.'03])

Each unary n-state 2NFA can be simulated by a 2DFA with $e^{O(\ln^2 n)}$ many states

Upper bound

- superpolynomial
- subexponential

From Unary 2NFAs to 2DFAs

given unary 2NFA Α n states \Downarrow Conversion into normal form М almost equivalent 2NFA N < 2n + 2 states \Downarrow Deterministic simulation $e^{O(\ln^2 N)}$ states В 2DFA equivalent to MPreliminary scan to accept/reject inputs of length $< 5n^2$ \Downarrow then simulation of B for longer inputs $e^{O(\ln^2 n)}$ states 2DFA equivalent to AС

Theorem ([Geffert&Mereghetti&P.'03]) Each unary n-state 2NFA can be simulated by a 2DFA with $e^{O(\ln^2 n)}$ many states

Can this upper bound be reduced to a polynomial?

Upper bound

- superpolynomial

うして 山口 マル・ト・ トレー ション

- subexponential

L: class of languages accepted in logarithmic space by *deterministic* machines

NL: class of languages accepted in logarithmic space by *nondeterministic* machines

Problem $L \stackrel{?}{=} NL$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- L: class of languages accepted in logarithmic space by *deterministic* machines
- NL: class of languages accepted in logarithmic space by *nondeterministic* machines

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

- L: class of languages accepted in logarithmic space by *deterministic* machines
- NL: class of languages accepted in logarithmic space by *nondeterministic* machines

Problem $L \stackrel{?}{=} NL$

・ロト ・ 日 ・ モート ・ 田 ・ うへで

- L: class of languages accepted in logarithmic space by *deterministic* machines
- NL: class of languages accepted in logarithmic space by *nondeterministic* machines

Graph Accessibility Problem GAP

- Given G = (V, E) oriented graph, $s, t \in V$
- Decide whether or not G contains a path from s to t

Problem

 $I \stackrel{?}{=} NI$

ション ふゆ く 山 マ チャット しょうくしゃ

- L: class of languages accepted in logarithmic space by *deterministic* machines
- NL: class of languages accepted in logarithmic space by *nondeterministic* machines

Graph Accessibility Problem GAP

- Given G = (V, E) oriented graph, $s, t \in V$
- Decide whether or not G contains a path from s to t

Theorem ([Jones '75]) GAP *is complete for* NL

Hence $GAP \in L$ iff L = NL

Problem $L \stackrel{?}{=} NL$

ション ふゆ く 山 マ チャット しょうくしゃ

M unary 2NFA in normal form, with N states

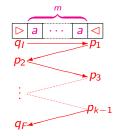
- Accepting computation on a^m
 - sequence of traversals of the input
 - starting in *q*_l on ▷
 - ending in q_F on ⊳
- ► Graph *G*(*m*)
 - vertices \equiv states
 - edges \equiv traversals on a^m

• a^m is accepted iff G(m) contains a path from q_I to q_F

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへの

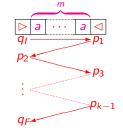
M unary 2NFA in normal form, with N states

- Accepting computation on a^m
 - sequence of traversals of the input
 - starting in q_l on \triangleright
 - ending in q_F on \triangleright
- ► Graph *G*(*m*)
 - vertices \equiv states
 - edges \equiv traversals on a^m



M unary 2NFA in normal form, with N states

- Accepting computation on a^m
 - sequence of traversals of the input
 - starting in q_l on \triangleright
 - ending in q_F on \triangleright
- ► Graph G(m)
 - vertices ≡ states
 - edges \equiv traversals on a^m



・ロッ ・ 一 ・ ・ ・ ・ ・ ・ ・ ・

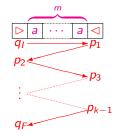
3

▶ a^m is accepted iff G(m) contains a path from q_I to q_F

M unary 2NFA in normal form, with N states

- Accepting computation on a^m
 - sequence of traversals of the input
 - starting in q_l on \triangleright
 - ending in q_F on \triangleright
- ► Graph G(m)
 - vertices ≡ states
 - edges \equiv traversals on a^m

• a^m is accepted iff G(m) contains a path from q_I to q_F



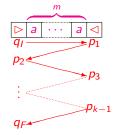
・ロッ ・ 一 ・ ・ ・ ・ ・ ・ ・ ・

-

M unary 2NFA in normal form, with N states

- Accepting computation on a^m
 - sequence of traversals of the input
 - starting in q_l on \triangleright
 - ending in q_F on \triangleright
- ► Graph G(m)
 - vertices ≡ states
 - edges \equiv traversals on a^m

To decide whether or not $a^m \in L(M)$ reduces to decide GAP for G(m)



・ロト ・ 日本 ・ 日本 ・ 日本

э

D_{GAP} logspace bounded *deterministic* machine solving GAP

$$a^m$$
 G $G(m)$

D_{GAP} logspace bounded *deterministic* machine solving GAP

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

G(m) graph associated with a^m

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

D_{GAP} logspace bounded *deterministic* machine solving GAP

G(m) graph associated with a^m

 D_{GAP} logspace bounded *deterministic* machine solving GAP

O(log N) space N=#states of the given 2NFA M
 poly(N) different configurations

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

G(m) graph associated with a^m



D_{GAP} logspace bounded *deterministic* machine solving GAP

- O(log N) space N=#states of the given 2NFA M
 poly(N) different configurations
- G(m) graph associated with a^m
 - $O(N^2)$ bits
 - *exp*(*N*) different configurations

Too many!!!

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●



D_{GAP} logspace bounded *deterministic* machine solving GAP

- $O(\log N)$ space N = # states of the given 2NFA M
- poly(N) different configurations
- G(m) graph associated with a^m
 - $O(N^2)$ bits
 - *exp*(N) different configurations

Too many!!!

bits computed on demand:

an *N*-state 1DFA $A_{p,q}$ tests the existence of the edge (p,q) trying to simulate a traversal of *M* from *p* to *q*

M' resulting 2DFA

D_{GAP} logspace bounded *deterministic* machine solving GAP

- $O(\log N)$ space N = # states of the given 2NFA M
- poly(N) different configurations
- G(m) graph associated with a^m
 - $O(N^2)$ bits
 - *exp*(*N*) different configurations

- Too many!!!
- bits computed on demand:
 an N-state 1DFA A_{p,q} tests the existence of the edge (p, q) trying to simulate a traversal of M from p to q

M' resulting 2DFA

poly(N) many states!!!

A given unary 2NFA

 \Downarrow

∜

- M almost equivalent 2NFA
- B 2DFA equivalent to M

n states Conversion into normal form $N \le 2n + 2$ states Deterministic simulation poly(N) states

C 2DFA equivalent to A

poly(n) states

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

Α	given unary 2NFA	n states	
\Downarrow		Conversion into normal form	
М	almost equivalent 2NFA	$N \leq 2n+2$ states	
\Downarrow		Deterministic simulation	
В	2DFA equivalent to M	poly(N) states	
↓	Preliminary scan to accept/reject inputs of length $\leq 5n^2$		
\mathbf{A}	then simulation of B for longer inputs		
С	2DFA equivalent to A	poly(n) states	

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

Α	given unary 2NFA	n states
\Downarrow		Conversion into normal form
М	almost equivalent 2NFA	$N\leq 2n+2$ states
\Downarrow		Deterministic simulation
В	2DFA equivalent to <i>M</i>	poly(N) states
П	Preliminary scan to accept/reject inputs of length $\leq 5 n^2$	
ψ	then simulation of B for longer inputs	
С	2DFA equivalent to A	poly(n) states

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

Theorem ([Geffert&P.'11])

If L = NL then each unary n-state 2NFA can be simulated by a 2DFA with poly(n) many states

Α	given unary 2NFA	n states
\downarrow		Conversion into normal form
М	almost equivalent 2NFA	$N\leq 2n+2$ states
\downarrow		Deterministic simulation
В	2DFA equivalent to <i>M</i>	poly(N) states
11	Preliminary scan to accept/reject inputs of length $\leq 5n^2$	
ψ	then simulation of <i>B</i> for longer inputs	
С	2DFA equivalent to A	poly(n) states

Theorem ([Geffert&P.'11])

If L = NL then each unary n-state 2NFA can be simulated by a 2DFA with poly(n) many states

Proving the conjecture of Sakoda and Sipser for $2NFA \rightarrow 2DFA$ in the unary case would separate L and NL in the general case

Α	given unary 2NFA	n states
\downarrow		Conversion into normal form
М	almost equivalent 2NFA	$N\leq 2n+2$ states
\Downarrow		Deterministic simulation
В	2DFA equivalent to <i>M</i>	poly(N) states
11	Preliminary scan to accept/reject inputs of length $\leq 5n$	
\downarrow	then simulation of <i>B</i> for longer inputs	
С	2DFA equivalent to A	poly(n) states

Theorem ([Geffert&P.'11])

If L = NL then each unary n-state 2NFA can be simulated by a 2DFA with poly(n) many states

Theorem ([Kapoutsis&P.'12])

 $L/poly \supseteq NL$ iff each unary n-state 2NFA can be simulated by a 2DFA with poly(n) many states

・ロト・日本・日本・日本・日本・日本・日本

(i) Subexponential simulation of unary 2NFAs by 2DFAs [Geffert&Mereghetti&P.'03]

- (ii) Polynomial simulation of unary 2NFAs by 2DFAs under the condition L = NL [Geffert&P.'11]
- (iii) Polynomial simulation of unary 2NFAs by unambiguous 2NFAs (unconditional) [Geffert&P.'11]
- (iv) Polynomial complementation of unary 2NFAs Inductive counting argument [Geffert&Mereghetti&P.'07]

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

- (i) Subexponential simulation of unary 2NFAs by 2DFAs [Geffert&Mereghetti&P.'03]
- (ii) Polynomial simulation of unary 2NFAs by 2DFAs under the condition L = NL [Geffert&P.'11]
- (iii) Polynomial simulation of unary 2NFAs by unambiguous 2NFAs (unconditional) [Geffert&P.'11]
- (iv) Polynomial complementation of unary 2NFAs Inductive counting argument [Geffert&Mereghetti&P.'07]

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

- (i) Subexponential simulation of unary 2NFAs by 2DFAs [Geffert&Mereghetti&P.'03]
- (ii) Polynomial simulation of unary 2NFAs by 2DFAs under the condition L = NL [Geffert&P.'11]
- (iii) Polynomial simulation of unary 2NFAs by unambiguous 2NFAs (unconditional) [Geffert&P.'11]
- (iv) Polynomial complementation of unary 2NFAs Inductive counting argument [Geffert&Mereghetti&P.'07]

- (i) Subexponential simulation of unary 2NFAs by 2DFAs [Geffert&Mereghetti&P.'03]
- (ii) Polynomial simulation of unary 2NFAs by 2DFAs under the condition L = NL [Geffert&P.'11]
- (iii) Polynomial simulation of unary 2NFAs by unambiguous 2NFAs (unconditional) [Geffert&P.'11]
- (iv) Polynomial complementation of unary 2NFAs Inductive counting argument [Geffert&Mereghetti&P.'07]

- (i) Subexponential simulation of unary 2NFAs by 2DFAs [Geffert&Mereghetti&P.'03]
- (ii) Polynomial simulation of unary 2NFAs by 2DFAs under the condition L = NL [Geffert&P.'11]
- (iii) Polynomial simulation of unary 2NFAs by unambiguous 2NFAs (unconditional) [Geffert&P.'11]
- (iv) Polynomial complementation of unary 2NFAs Inductive counting argument [Geffert&Mereghetti&P.'07]

Extension to outer nondeterministic automata:

general alphabet

[Geffert&Guillon&P.'14]

ション ふゆ く 山 マ チャット しょうくしゃ

- unrestricted head reversals
- nondeterministic choices only at the endmarkers

Pushdown Automata and Other Devices

▲□▶ ▲圖▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

Theorem [Ginsurg&Rice '62] Each unary context-free languages is regular

How large could be a finite automaton equivalent to a given unary context-free grammar or pushdown automaton?

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

Theorem [Ginsurg&Rice '62] Each unary context-free languages is regular

> How large could be a finite automaton equivalent to a given unary context-free grammar or pushdown automaton?

> > ◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

From PDAs of size *s*, accepting regular languages, to equivalent 1DFAs

	unary input	general input
PDAs	2 <i>poly(s)</i> [P.&Shallit&Wang '02]	

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

All the bounds are tight!

From PDAs of size *s*, accepting regular languages, to equivalent 1DFAs

	unary input	general input
PDAs	2 <i>poly(s)</i> [P.&Shallit&Wang '02]	non recursive [Meyer&Fischer '71]

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

All the bounds are tight!

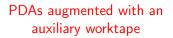
From PDAs of size *s*, accepting regular languages, to equivalent 1DFAs

	unary input	general input
PDAs	2 ^{poly(s)} [P.&Shallit&Wang '02]	non recursive [Meyer&Fischer '71]
deterministic PDAs	2 ^{0(s)} [P.'09]	2 ^{20(s)} [Valiant '75]

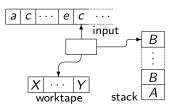
▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

All the bounds are tight!

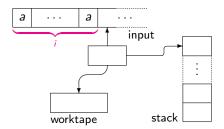
Auxiliary Pushdown Automata (AuxPDAs)



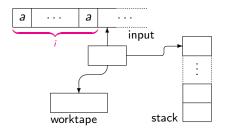
 $\texttt{'SPACE'} \equiv \texttt{worktape}$



◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

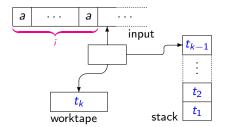


・ロト (四) (目) (日) (日) (日)



▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

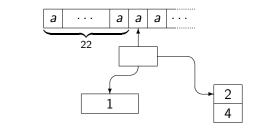
 $i = (1 \ 1 \ 0 \ \cdots \ 1 \ 0 \ 0 \ 1 \ 0)_2$



$$i = (1 \ 1 \ 0 \ \cdots \ 1 \ 0 \ 0 \ 1 \ 0)_2 = 2^{t_1} + 2^{t_2} + \cdots + 2^{t_{k-1}} + 2^{t_k}$$

$$t_1 t_2 \qquad t_{k-1} \qquad t_k$$

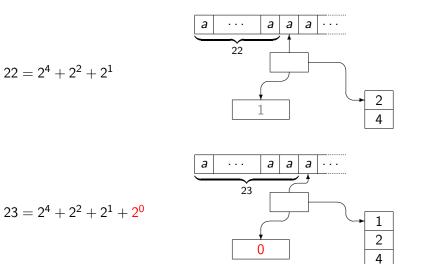
◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで



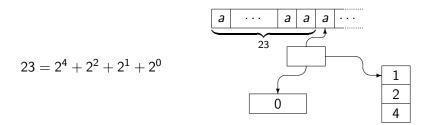
◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

$$22 = 2^4 + 2^2 + 2^1$$

$$23 = 2^4 + 2^2 + 2^1 + 2^0$$

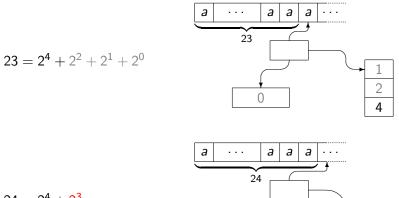


▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = 三 - のへ⊙



▲□▶ ▲圖▶ ▲臣▶ ★臣▶ 三臣 - のへで

$$24 = 2^4 + 2^3$$



3

Δ

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ 三臣 - のへで

$$24 = 2^4 + 2^3$$

• \mathcal{L}_p is nonregular

• \mathcal{L}_p is accepted by a 1AuxPDA *M* which:

- scans the input while counting its length
- accepts iff the pushdown store is empty
 i.e., the binary representation of the input length contai
 exactly one digit 1

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

▶ On input *aⁿ*

the largest integer stored on the worktape is $\lfloor \log_2 n \rfloor$, which is represented in $O(\log \log n)$ space

Example: $\mathcal{L}_p = \{a^{2^m} \mid m \ge 0\}$

- \mathcal{L}_p is nonregular
- \mathcal{L}_p is accepted by a 1AuxPDA *M* which:
 - scans the input while counting its length
 - accepts iff the pushdown store is empty i.e., the binary representation of the input length contains exactly one digit 1

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

On input aⁿ the largest integer stored on the worktape is ⌊log₂ n⌋, which is represented in O(log log n) space

Example: $\mathcal{L}_p = \{a^{2^m} \mid m \ge 0\}$

- *L_p* is nonregular
- \mathcal{L}_p is accepted by a 1AuxPDA *M* which:
 - scans the input while counting its length
 - accepts iff the pushdown store is empty i.e., the binary representation of the input length contains exactly one digit 1

ション ふゆ く 山 マ チャット しょうくしゃ

On input aⁿ

the largest integer stored on the worktape is $\lfloor \log_2 n \rfloor$, which is represented in $O(\log \log n)$ space

Example: $\mathcal{L}_{p} = \{a^{2^{m}} \mid m \geq 0\}$

- *L_p* is nonregular
- \mathcal{L}_p is accepted by a 1AuxPDA *M* which:
 - scans the input while counting its length
 - accepts iff the pushdown store is empty i.e., the binary representation of the input length contains exactly one digit 1
- On input aⁿ

the largest integer stored on the worktape is $\lfloor \log_2 n \rfloor$, which is represented in $O(\log \log n)$ space

 $\mathcal{L}_{p} \in 1$ AuxPDASpace(log log n)

Space Bounds on 1AuxPDAs

 \mathcal{L}_p is accepted using the *minimum amount of space* for nonregular languages recognition:

Theorem ([P.&Shallit&Wang '02])

If a unary language L is accepted by a 1AuxPDAin $o(\log \log n)$ space then L is regular

In contrast

- with a binary alphabet,
- and space measured on the 'less' expensive accepting computation:

Theorem ([Chytil '86])

For each $k \ge 2$ there is a non context-free language L_k accepted by a 1AuxPDA in $O(\log \dots \log n)$ space

Space Bounds on 1AuxPDAs

 \mathcal{L}_p is accepted using the *minimum amount of space* for nonregular languages recognition:

Theorem ([P.&Shallit&Wang '02])

If a unary language L is accepted by a 1AuxPDA in o(log log n) space then L is regular

In contrast

- with a binary alphabet,
- and space measured on the 'less' expensive accepting computation:

Theorem ([Chytil '86])

For each $k \ge 2$ there is a non context-free language L_k accepted by a 1AuxPDA in $O(\log ... \log n)$ space

- More powerful than PDAs, e.g., $\{a^n b^n c^n \mid n \ge 0\}$
- 2DPDAs can be simulated by RAMs in *linear time* [Cook '71]

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Main open problems:

- Power of nondeterminism, i.e., 2DPDAs vs 2PDA
- 2DPDAs vs linear bounded automata

- More powerful than PDAs, e.g., $\{a^n b^n c^n \mid n \ge 0\}$
- 2DPDAs can be simulated by RAMs in *linear time* [Cook '71]

ション ふゆ アメリア メリア しょうくしゃ

Main open problems:

- Power of nondeterminism, i.e., 2DPDAs vs 2PDA
- 2DPDAs vs linear bounded automata

Very powerful models, even in the deterministic version

Theorem ([Monien '84])

The unary encoding of each language in P is accepted by a 2DPDA

ション ふゆ く 山 マ チャット しょうくしゃ

 With a constant number of input head reversals they accept only regular languages [Liu&Weiner '68]

Very powerful models, even in the deterministic version

Theorem ([Monien '84]) The unary encoding of each language in P is accepted by a 2DPDA

ション ふゆ く 山 マ チャット しょうくしゃ

 With a constant number of input head reversals they accept only regular languages [Liu&Weiner '68]

L_p = {a^{2m} | m ≥ 0} accepted by a 2DPDA making ≈ log₂ n reversals

Very powerful models, even in the deterministic version

Theorem ([Monien '84]) The unary encoding of each language in P is accepted by a 2DPDA

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

 With a constant number of input head reversals they accept only regular languages [Liu&Weiner '68]

Very powerful models, even in the deterministic version

Theorem ([Monien '84]) The unary encoding of each language in P is accepted by a 2DPDA

 With a constant number of input head reversals they accept only regular languages [Liu&Weiner '68]

Problem

Does there exist a unary nonregular language accepted by a 2PDA making $o(\log n)$ head reversals?

► More powerful than one-head finite automata, even if the heads are *one-way*, e.g., {aⁿbⁿ | n ≥ 0}

► Unary case:

with a *constant number* of head reversals they accept only regular languages [Sudborough '74]

$$\blacktriangleright \mathcal{L}_p = \{a^{2^m} \mid m \ge 0\}$$

accepted by a 2-head automaton making $\approx \log_2 n$ reversals

- More powerful than one-head finite automata, even if the heads are *one-way*, e.g., {aⁿbⁿ | n ≥ 0}
- ► Unary case:

with a *constant number* of head reversals they accept only regular languages [Sudborough '74]

$$\blacktriangleright \mathcal{L}_p = \{a^{2^m} \mid m \ge 0\}$$

accepted by a 2-head automaton making $\approx \log_2 n$ reversals

- More powerful than one-head finite automata, even if the heads are *one-way*, e.g., {aⁿbⁿ | n ≥ 0}
- ► Unary case:

with a *constant number* of head reversals they accept only regular languages [Sudborough '74]

- More powerful than one-head finite automata, even if the heads are *one-way*, e.g., {aⁿbⁿ | n ≥ 0}
- Unary case:

with a *constant number* of head reversals they accept only regular languages [Sudborough '74]

Problem

Does there exist a unary nonregular language accepted by a multi-head automaton making $o(\log n)$ head reversals?

- More powerful than one-head finite automata, even if the heads are *one-way*, e.g., {aⁿbⁿ | n ≥ 0}
- Unary case:

with a *constant number* of head reversals they accept only regular languages [Sudborough '74]

Problem

Does there exist a unary nonregular language accepted by a multi-head automaton making $o(\log n)$ head reversals?

 Unary multi-head 2PDAs making O(1) input head reversals accept only regular languages [Ibarra '74]

Conclusion

Unary Automata and Languages

 Interesting properties and differences with respect to the general case

(ロ) (型) (E) (E) (E) (O)

- Special methods (e.g., from number theory)
- Important relationships with the general case
- Several open problems

Thank you for your attention!

▲□▶ ▲圖▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ