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Unary or Tally Languages

I One letter alphabet Σ = {a}
I Many differences with the general case have been discovered

First example:
Theorem [Ginsurg&Rice ’62]
Each unary context-free languages is regular

I Structural complexity: classes of tally sets
I Hartmanis, 1972
I Book, 1974, 1979
I . . .

Space complexity:
I Alt&Mehlhorn, 1975
I Geffert, 1993
I . . .



Unary or Tally Languages

This talk:

I Focus mainly on descriptional complexity aspects
Optimal simulations between variants of unary automata
Unary two-way automata:
connection with the question L ?

= NL
Unary context-free grammars and pushdown automata

I Devices accepting nonregular languages



Unary Automata



Unary One-Way Deterministic Automata (1DFAs)

The structure is very simple!

- j - j - j - j
j j �j
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�

Theorem
L ⊆ {a}∗ is regular iff ∃µ ≥ 0, λ ≥ 1 s.t.

∀n ≥ µ : an ∈ L iff an+λ ∈ L

When µ = 0 the language L is said to be cyclic
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Unary One-Way Nondeterministic Automata (1NFAs)

The structure can be very complicate!

Each direct graph with
I a vertex selected as initial state
I some vertices selected as final states

is the transition diagram of a unary 1NFA!
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However, we can always obtain an equivalent 1NFA with a
I simple and
I not too big

transition graph
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Chrobak Normal Form for 1NFAs

i i iiig g��*
-

?�HHY

i iig��* ?HHY
i ii ig g g��* HHj

���HHYi- i- i- ig- ���1

Q
Q
QQs

C
C
C
C
C
CCW

I An initial deterministic path
I Some disjoint

deterministic loops

I Only one nondeterministic
decision

Theorem ([Chrobak ’86])
Each unary n-state 1NFA can be converted into an
equivalent 1NFA in Chrobak normal form with

I an initial path of O(n2) states
I total number of states in the loops ≤ n
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Conversion to Chrobak Normal Form for 1NFAs

I Subtle error in the original proof fixed by To (2009)

I Different transformation proposed by Geffert (2007)

I Polynomial time conversion algorithms
by Martinez (2004), Gawrychowski (2011), Sawa (2013)

I From the results by Geffert and Gawrychowski:
length of the initial path ≤ n2 − n
total number of states in the loops ≤ n − 1
(except when the given 1NFA is the trivial loop of n states)
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Removing Nondeterminism from Unary Automata
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i- i- i- ig- ���1

Q
Q
QQs

C
C
C
C
C
CCW

I Keep the same initial path

I Simulate all the loops “in parallel”

I A loop of lcm{`1, `2, . . .}
many states is enough

I Total number of states
≤ µ+ lcm{`1, `2, . . .}

I From a n-state 1NFA:
µ = O(n2), `1 + `2 + · · · ≤ n
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I F (n) states are also necessary in the worst case [Chrobak ’86]

Theorem ([Ljubič ’64, Chrobak ’86])
The state cost of the simulation of unary n-state 1NFAs
by equivalent 1DFAs is eΘ(

√
n ln n)
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the costs of 1NFA → 2DFA and 2NFA → 2DFA

in the general case are not polymonial
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Conjecture of Sakoda and Sipser (1978):
the costs of 1NFA → 2DFA and 2NFA → 2DFA

in the general case are not polymonial



Unary Two-Way Automata



Two-Way Automata: Few Technical Details

B i n p u t. . . C

6� -

I Input surrounded by the end-markers B and C
I w ∈ Σ∗ is accepted iff there is a computation

with input tape BwC
starting with the head on B in the initial state
reaching a final state (with the head on B)
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Almost Equivalent Automata

Definition
Two automata A and B are almost equivalent
if L(A) and L(B) differ for finitely many strings



Chrobak Normal Form Revisited

`3

i i iiig g��*
-

?�HHY

`2

i iig��* ?HHY
`1

i ii ig g g��* HHj

���HHY
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i- i- i- ig- ���1
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Q
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C
CCW
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Each unary n-state 1NFA A is almost equivalent to a 1NFA B :

I s disjoint loops of lengths `1, . . . , `s , with `1 + · · ·+ `s ≤ n

I at the beginning of the computation,
B nondeterministically selects a loop i ∈ {1, . . . , s}

I then B counts the input length modulo `i
I L(A) and L(B) can differ only on strings of length at most n2 − n
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A Normal Form for Unary 2NFAs

Theorem ([Geffert&Mereghetti&P.’03])
For each unary n-state 2NFA A there exists
an almost equivalent 2NFA M s.t.

I M makes nondeterministic choices and changes the head
direction only visiting the end-markers

I M has N ≤ 2n + 2 many states
I L(A) and L(M) can differ only on strings of length ≤ 5n2



A Normal Form for Unary 2NFAs

More details on M:
I State set: {qI , qF} ∪Q1 ∪ · · · ∪Qs

qI initial state
qF accepting state
Qi deterministic loop of length `i

I A computation is a sequence of
traversals of the input

I In each traversal M counts the
input length modulo one `i

B a a. . . C

m︷ ︸︸ ︷
qI - p1������9p2XXXXXXz p3
...

pk−1������9qF

Remark
If a string is accepted by M then it is accepted by a computation
which visits the left end-marker at most #Q times
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Converting Unary 2NFAs into 2DFAs
[Geffert&Mereghetti&P.’03]

M unary N-state 2NFA in normal form
am input string
I For p, q ∈ Q, k ≥ 1, we consider the predicate

reachable(p, q, k) ≡
∃computation path on am which

starts in the state p on B
ends in the state q on B
visits B at most k times

Then:
am ∈ L(M) iff reachable(qI , qF ,N) is true

B a a. . . C

m︷ ︸︸ ︷
p -�����9XXXXXz

≤ k

...

...
�����9q

I reachable(p, q, k) can be computed by a recursive procedure
I Implemented by a 2DFA with eO(ln2 N) states
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From Unary 2NFAs to 2DFAs

A given unary 2NFA n states
⇓

Conversion into normal form

M almost equivalent 2NFA N ≤ 2n + 2 states
⇓

Deterministic simulation

B 2DFA equivalent to M eO(ln2 N) states

Preliminary scan to accept/reject inputs of length ≤ 5n2

⇓

then simulation of B for longer inputs

C 2DFA equivalent to A eO(ln2 n) states

Theorem ([Geffert&Mereghetti&P.’03])
Each unary n-state 2NFA can be simulated
by a 2DFA with eO(ln2 n) many states

Can this upper bound be reduced
to a polynomial?

Upper bound

- superpolynomial
- subexponential
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Logspace Classes and Graph Accessibility Problem

L: class of languages accepted in logarithmic space
by deterministic machines

NL: class of languages accepted in logarithmic space
by nondeterministic machines

Problem
L ?
= NL

Graph Accessibility Problem GAP
I Given G = (V ,E ) oriented graph, s, t ∈ V

I Decide whether or not G contains a path from s to t

Theorem ([Jones ’75])
GAP is complete for NL

Hence GAP ∈ L iff L = NL
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Reduction to GAP
[Geffert&P.’11]

M unary 2NFA in normal form, with N states

I Accepting computation on am

sequence of traversals of the input
- starting in qI on B
- ending in qF on B

I Graph G (m)

vertices ≡ states
edges ≡ traversals on am

B a a. . . C

m︷ ︸︸ ︷
qI -p1�����9p2XXXXXzp3...

pk−1�����9qF

I am is accepted iff G (m) contains a path from qI to qF

To decide whether or not am ∈ L(M) reduces
to decide GAP for G (m)
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L = NL ⇒ Polynomial Deterministic Simulation!
[Geffert&P.’11]

-am
G

G (m)

- DGAP
��
�*yes

HHHjno

M′

DGAP logspace bounded deterministic machine solving GAP

O(logN) space N=#states of the given 2NFA M
poly(N) different configurations

G (m) graph associated with am

O(N2) bits
exp(N) different configurations Too many!!!
bits computed on demand:
an N-state 1DFA Ap,q tests the existence of the edge (p, q)
trying to simulate a traversal of M from p to q

M ′ resulting 2DFA poly(N) many states!!!



L = NL ⇒ Polynomial Deterministic Simulation!
[Geffert&P.’11]

-am
G

G (m)-

DGAP
��
�*yes

HHHjno
M′

DGAP logspace bounded deterministic machine solving GAP

O(logN) space N=#states of the given 2NFA M
poly(N) different configurations

G (m) graph associated with am

O(N2) bits
exp(N) different configurations Too many!!!
bits computed on demand:
an N-state 1DFA Ap,q tests the existence of the edge (p, q)
trying to simulate a traversal of M from p to q

M ′ resulting 2DFA poly(N) many states!!!



L = NL ⇒ Polynomial Deterministic Simulation!
[Geffert&P.’11]

-am
G

G (m)- DGAP
��
�*yes

HHHjno
M′

DGAP logspace bounded deterministic machine solving GAP

O(logN) space N=#states of the given 2NFA M
poly(N) different configurations

G (m) graph associated with am

O(N2) bits
exp(N) different configurations Too many!!!
bits computed on demand:
an N-state 1DFA Ap,q tests the existence of the edge (p, q)
trying to simulate a traversal of M from p to q

M ′ resulting 2DFA

poly(N) many states!!!



L = NL ⇒ Polynomial Deterministic Simulation!
[Geffert&P.’11]

-am
G

G (m)- DGAP
��
�*yes

HHHjno
M′

DGAP logspace bounded deterministic machine solving GAP
O(logN) space N=#states of the given 2NFA M
poly(N) different configurations

G (m) graph associated with am

O(N2) bits
exp(N) different configurations Too many!!!
bits computed on demand:
an N-state 1DFA Ap,q tests the existence of the edge (p, q)
trying to simulate a traversal of M from p to q

M ′ resulting 2DFA

poly(N) many states!!!



L = NL ⇒ Polynomial Deterministic Simulation!
[Geffert&P.’11]

-am
G

G (m)- DGAP
��
�*yes

HHHjno
M′

DGAP logspace bounded deterministic machine solving GAP
O(logN) space N=#states of the given 2NFA M
poly(N) different configurations

G (m) graph associated with am

O(N2) bits
exp(N) different configurations Too many!!!

bits computed on demand:
an N-state 1DFA Ap,q tests the existence of the edge (p, q)
trying to simulate a traversal of M from p to q

M ′ resulting 2DFA

poly(N) many states!!!



L = NL ⇒ Polynomial Deterministic Simulation!
[Geffert&P.’11]

-am
G

G (m)- DGAP
��
�*yes

HHHjno
M′

DGAP logspace bounded deterministic machine solving GAP
O(logN) space N=#states of the given 2NFA M
poly(N) different configurations

G (m) graph associated with am

O(N2) bits
exp(N) different configurations Too many!!!
bits computed on demand:
an N-state 1DFA Ap,q tests the existence of the edge (p, q)
trying to simulate a traversal of M from p to q

M ′ resulting 2DFA

poly(N) many states!!!



L = NL ⇒ Polynomial Deterministic Simulation!
[Geffert&P.’11]

-am
G

G (m)- DGAP
��
�*yes

HHHjno
M′

DGAP logspace bounded deterministic machine solving GAP
O(logN) space N=#states of the given 2NFA M
poly(N) different configurations

G (m) graph associated with am

O(N2) bits
exp(N) different configurations Too many!!!
bits computed on demand:
an N-state 1DFA Ap,q tests the existence of the edge (p, q)
trying to simulate a traversal of M from p to q

M ′ resulting 2DFA poly(N) many states!!!



From Unary 2NFAs to 2DFAs (under L = NL)

A given unary 2NFA n states
⇓

Conversion into normal form

M almost equivalent 2NFA N ≤ 2n + 2 states
⇓

Deterministic simulation

B 2DFA equivalent to M poly(N) states

Preliminary scan to accept/reject inputs of length ≤ 5n2

⇓

then simulation of B for longer inputs

C 2DFA equivalent to A poly(n) states

Theorem ([Geffert&P.’11])
If L = NL then each unary n-state 2NFA can be
simulated by a 2DFA with poly(n) many states



From Unary 2NFAs to 2DFAs (under L = NL)

A given unary 2NFA n states
⇓ Conversion into normal form
M almost equivalent 2NFA N ≤ 2n + 2 states
⇓

Deterministic simulation

B 2DFA equivalent to M poly(N) states

Preliminary scan to accept/reject inputs of length ≤ 5n2

⇓

then simulation of B for longer inputs

C 2DFA equivalent to A poly(n) states

Theorem ([Geffert&P.’11])
If L = NL then each unary n-state 2NFA can be
simulated by a 2DFA with poly(n) many states



From Unary 2NFAs to 2DFAs (under L = NL)

A given unary 2NFA n states
⇓ Conversion into normal form
M almost equivalent 2NFA N ≤ 2n + 2 states
⇓ Deterministic simulation
B 2DFA equivalent to M poly(N) states

Preliminary scan to accept/reject inputs of length ≤ 5n2

⇓

then simulation of B for longer inputs

C 2DFA equivalent to A poly(n) states

Theorem ([Geffert&P.’11])
If L = NL then each unary n-state 2NFA can be
simulated by a 2DFA with poly(n) many states



From Unary 2NFAs to 2DFAs (under L = NL)

A given unary 2NFA n states
⇓ Conversion into normal form
M almost equivalent 2NFA N ≤ 2n + 2 states
⇓ Deterministic simulation
B 2DFA equivalent to M poly(N) states

Preliminary scan to accept/reject inputs of length ≤ 5n2
⇓

then simulation of B for longer inputs
C 2DFA equivalent to A poly(n) states

Theorem ([Geffert&P.’11])
If L = NL then each unary n-state 2NFA can be
simulated by a 2DFA with poly(n) many states



From Unary 2NFAs to 2DFAs (under L = NL)

A given unary 2NFA n states
⇓ Conversion into normal form
M almost equivalent 2NFA N ≤ 2n + 2 states
⇓ Deterministic simulation
B 2DFA equivalent to M poly(N) states

Preliminary scan to accept/reject inputs of length ≤ 5n2
⇓

then simulation of B for longer inputs
C 2DFA equivalent to A poly(n) states

Theorem ([Geffert&P.’11])
If L = NL then each unary n-state 2NFA can be
simulated by a 2DFA with poly(n) many states



From Unary 2NFAs to 2DFAs (under L = NL)

A given unary 2NFA n states
⇓ Conversion into normal form
M almost equivalent 2NFA N ≤ 2n + 2 states
⇓ Deterministic simulation
B 2DFA equivalent to M poly(N) states

Preliminary scan to accept/reject inputs of length ≤ 5n2
⇓

then simulation of B for longer inputs
C 2DFA equivalent to A poly(n) states

Theorem ([Geffert&P.’11])
If L = NL then each unary n-state 2NFA can be
simulated by a 2DFA with poly(n) many states

Proving the conjecture of Sakoda and Sipser
for 2NFA → 2DFA in the unary case

would separate L and NL in the general case



From Unary 2NFAs to 2DFAs (under L = NL)

A given unary 2NFA n states
⇓ Conversion into normal form
M almost equivalent 2NFA N ≤ 2n + 2 states
⇓ Deterministic simulation
B 2DFA equivalent to M poly(N) states

Preliminary scan to accept/reject inputs of length ≤ 5n2
⇓

then simulation of B for longer inputs
C 2DFA equivalent to A poly(n) states

Theorem ([Geffert&P.’11])
If L = NL then each unary n-state 2NFA can be
simulated by a 2DFA with poly(n) many states

Theorem ([Kapoutsis&P.’12])
L/poly ⊇ NL iff each unary n-state 2NFA can be
simulated by a 2DFA with poly(n) many states



Normal Form for Unary 2NFAs: Consequences

(i) Subexponential simulation of unary 2NFAs by 2DFAs
[Geffert&Mereghetti&P.’03]

(ii) Polynomial simulation of unary 2NFAs by 2DFAs
under the condition L = NL [Geffert&P.’11]

(iii) Polynomial simulation of unary 2NFAs by unambiguous 2NFAs
(unconditional) [Geffert&P.’11]

(iv) Polynomial complementation of unary 2NFAs
Inductive counting argument [Geffert&Mereghetti&P.’07]

Extension to outer nondeterministic automata:
[Geffert&Guillon&P.’14]I general alphabet

I unrestricted head reversals
I nondeterministic choices only at the endmarkers
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Unary Context-Free Languages

Theorem [Ginsurg&Rice ’62]
Each unary context-free languages is regular

How large could be a finite automaton equivalent
to a given unary context-free grammar

or pushdown automaton?
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Auxiliary Pushdown Automata (AuxPDAs)

PDAs augmented with an
auxiliary worktape

‘SPACE’ ≡ worktape
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Example: Lp = {a2
m | m ≥ 0}

I Lp is nonregular

I Lp is accepted by a 1AuxPDA M which:
scans the input while counting its length
accepts iff the pushdown store is empty
i.e., the binary representation of the input length contains
exactly one digit 1

I On input an

the largest integer stored on the worktape is blog2 nc,
which is represented in O(log log n) space

Lp ∈ 1AuxPDASpace(log log n)
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Space Bounds on 1AuxPDAs

Lp is accepted using the minimum amount of space
for nonregular languages recognition:

Theorem ([P.&Shallit&Wang ’02])
If a unary language L is accepted by a 1AuxPDA
in o(log log n) space then L is regular

In contrast
with a binary alphabet,
and space measured on the ‘less’ expensive accepting computation:

Theorem ([Chytil ’86])
For each k ≥ 2 there is a non context-free language Lk
accepted by a 1AuxPDA in O(log . . . log︸ ︷︷ ︸

k

n) space
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Two-way Pushdown Automata (2PDAs)

I More powerful than PDAs, e.g., {anbncn | n ≥ 0}

I 2DPDAs can be simulated by RAMs in linear time [Cook ’71]

Main open problems:

I Power of nondeterminism, i.e., 2DPDAs vs 2PDA

I 2DPDAs vs linear bounded automata
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Unary 2PDAs

I Very powerful models, even in the deterministic version

Theorem ([Monien ’84])
The unary encoding of each language in P
is accepted by a 2DPDA

I With a constant number of input head reversals
they accept only regular languages [Liu&Weiner ’68]

I Lp = {a2m | m ≥ 0}
accepted by a 2DPDA making ≈ log2 n reversals

Problem
Does there exist a unary nonregular language
accepted by a 2PDA making o(log n) head reversals?
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Multi-Head Finite Automata

I More powerful than one-head finite automata,
even if the heads are one-way, e.g., {anbn | n ≥ 0}

I Unary case:
with a constant number of head reversals
they accept only regular languages [Sudborough ’74]
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making o(log n) head reversals?
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Final Remarks

Unary Automata and Languages

I Interesting properties and differences with respect to the
general case

I Special methods (e.g., from number theory)
I Important relationships with the general case
I Several open problems



Thank you for your attention!
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