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What is Descriptional Complexity?



A Classical Example: NFAs vs DFAs

Formal language point of view:
I The class of languages recognized by NFAs coincides with the

class of languages recognized by DFAs

Descriptional complexity point of view:
I Each n-state NFA can be simulated by a DFA with 2n states

[Rabin&Scott ’59]
I For each integer n there exists a language Ln s.t.:

I Ln is accepted by an n-state NFA
I the minimum DFA for Ln requires 2n states

[Meyer&Fischer ’71]
I Hence:

The exact cost, in terms of states, of the simulation
of NFAs by DFAs is 2n



Descriptional Complexity

Given
C a class of languages
S a formal system (e.g., class of devices, class of grammars,...)

able to represent all the languages in C

What is the size of the representations of the languages in C
by the system S?

Descriptional complexity compares different descriptions
of a same class of languages:

S ′ another formal system able to represent all the languages in C:

Question

Find the relationships between the sizes of the representations in
the system S and in the system S ′ of the languages of C



One-way and Two-way Automata



Finite State Automata

i n p u t. . .

6 -

One-way version

At each step the input head is moved
one position to the right

I 1DFA: deterministic transitions
I 1NFA: nondeterministic transitions



A Very Preliminary Example

Σ = {a, b}, fixed n > 0:

Hn = (a + b)n−1a(a + b)∗

Check the nth symbol from the left!

Ex. n = 4

i n p u t. . .

a b b a b a

1234

qY

66 6 6 6 6

6

YES!

1DFA: n + 2 states



A Preliminary Example

Σ = {a, b}, fixed n > 0:

In = (a + b)∗a(a + b)n−1

Check the nth symbol from the right!

How to locate it?

Use nondeterminism!

Guess Reading the symbol a the automaton can guess
that it is the nth symbol from the right

Verify In the next steps the automaton verifies such a guess



A Preliminary Example

Σ = {a, b}, fixed n > 0:

In = (a + b)∗a(a + b)n−1

Check the nth symbol from the right!

Ex. n = 4

i n p u t. . .

b a a a b a

q0q0q0

guess

verify

4th symbol from the right

3210

66

6

6 6 6 6

YES!

1NFA: n + 1 states



A Preliminary Example

Σ = {a, b}, fixed n > 0:

In = (a + b)∗a(a + b)n−1

Check the nth symbol from the right!

����q0 ����q1 ����q2 ����q3 ����qn���
@@R

-a -a, b -a, b -a, b

�
�
�
-

a, b

Very nice!
...but I need a deterministic automaton...

Remember the previous n input symbols!



A Preliminary Example

Σ = {a, b}, fixed n > 0:

In = (a + b)∗a(a + b)n−1

Check the nth symbol from the right!

Ex. n = 4

i n p u t. . .

b a a a b a

bb ab a ab a a aa a a b

a a b a

66 6 6 6 6

6

YES!

1DFA: 2n states

...but I need a smaller deterministic automaton...
This is the smallest one!

However...



A Preliminary Example

Σ = {a, b}, fixed n > 0:

In = (a + b)∗a(a + b)n−1

Check the nth symbol from the right!

...if the head can be moved back...

Ex. n = 4

b a a a b a a

right
endmarker

q0123

4 decision
if input symbol = a then accept

else reject

66

6

6 6 6 6

YES!

Two-way deterministic automaton (2DFA): n+... states



A Preliminary Example

Σ = {a, b}, fixed n > 0:

In = (a + b)∗a(a + b)n−1

Check the nth symbol from the right!

Summing up, In is accepted by
I a 1NFA and a 2DFA with approximatively

the same number of states n+...

I each 1DFA is exponentially larger (≥ 2n states)

In this example,
nondeterminism can be removed using two-way motion
keeping approximatively the same number of states



Two-Way Automata: Technical Details

` i n p u t. . . a
6� -

I Input surrounded by the endmarkers ` and a
I Moves

to the left
to the right
stationary

I Initial configuration
I Accepting configuration
I Infinite computations are possible
I Deterministic (2DFA) and nondeterministic (2NFA) versions



1DFA, 1NFA, 2DFA, 2NFA

What about the power of these models?

They share the same computational power, namely they
characterize the class of regular languages, however...

...some of them are more succinct



Main Example: Ln = (a + b)∗a(a + b)n−1a(a + b)∗

����q0 ����q1 ����q2 ����q3 ����qn ����qf���@@R
-a -a, b -a, b -a, b -a��- a, b ��- a, b

1NFA: n + 2 states



Main Example: Ln = (a + b)∗a(a + b)n−1a(a + b)∗
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n = 3

Minimum 1DFA: 2n + 1 states



Main Example: Ln = (a + b)∗a(a + b)n−1a(a + b)∗

2DFA ?

Even scanning from the right it seems that
we need to remember a “window” of n symbols

We use a different technique!



Main Example: Ln = (a + b)∗a(a + b)n−1a(a + b)∗

` b b a b a a b a a a a n = 4

while input symbol 6= a do move to the right
move n squares to the right
if input symbol = a then accept

else move n − 1 cells to the left
repeat from the first step

Exception: if input symbol =a then reject

2DFA: 2n+... states



Main Example: Ln = (a + b)∗a(a + b)n−1a(a + b)∗

Summing up,
I Ln is accepted by

a 1NFA
a 2DFA

with O(n) states
I Each 1DFA is exponentially larger

Also for this example,
nondeterminism can be removed using two-way motion
keeping a linear number of states

Is it always possible
to replace nondeterminism by two-way motion

without increasing too much the size?



The Question of Sakoda and Sipser



Costs of the Optimal Simulations Between Automata

1DFA

1NFA 2DFA 2NFA
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2n O(2n log n) O(2n
2
)

-? � ?

[Rabin&Scott ’59, Shepardson ’59, Meyer&Fischer ’71, . . . ]



Costs of the Optimal Simulations Between Automata

1DFA

1NFA 2DFA 2NFA
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2n O(2n log n) O(2n
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Problem ([Sakoda&Sipser ’78])
Do there exist polynomial simulations of

I 1NFAs by 2DFAs
I 2NFAs by 2DFAs ?

Conjecture

These simulations
are not polynomial



Costs of the Optimal Simulations Between Automata

1DFA

1NFA 2DFA 2NFA
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I Exponential upper bounds
deriving from the simulations of 1NFAs and 2NFAs by 1DFAs

I Polynomial lower bound
Ω(n2) for the cost of the simulation of 1NFAs by 2DFAs

[Chrobak ’86]



Sakoda and Sipser Question

I Very difficult in its general form
I Not very encouraging obtained results:

Lower and upper bounds too far
(Polynomial vs exponential)

I Hence:
Try to attack restricted versions of the problem!



NFAs vs 2DFAs: Restricted Versions

(i) Restrictions on the resulting machines (2DFAs)
I sweeping automata [Sipser ’80]
I oblivious automata [Hromkovič&Schnitger ’03]
I “few reversal” automata [Kapoutsis ’11]

(ii) Restrictions on the languages
I unary regular languages [GeffertMereghetti&P ’03]

(iii) Restrictions on the starting machines (2NFAs)
I outer nondeterministic automata [GuillonGeffert&P ’12]



Restrictions on the resulting machines



Restricted Models: Separations

1NFA

oblivious sweeping few reversals

2DFA
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-O(n2)

-exp
separation

[Sipser ’80, Berman ’80, Micali ’81, Hromkovič&Schnitger ’03, Kapoutsis ’11,
KutribMalcher&P ’12]



The Unary Case
#Σ = 1



Optimal Simulation Between Unary Automata

The costs of the optimal simulations between automata are
different in the unary and in the general case

2DFA

1DFA 1NFA

2NFA
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[Chrobak ’86, Mereghetti&P ’01]



Optimal Simulation Between Unary Automata

The costs of the optimal simulations between automata are
different in the unary and in the general case

2DFA

1DFA 1NFA

2NFA
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1NFA → 2DFA
In the unary case
this question is solved!
(polynomial conversion)



Optimal Simulation Between Unary Automata

The costs of the optimal simulations between automata are
different in the unary and in the general case

2DFA

1DFA 1NFA

2NFA
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2NFA → 2DFA
Even in the unary case
this question is open!

I eΘ(
√
n ln n) upper bound

(from 2NFA → 1DFA)
I Ω(n2) lower bound

(from 1NFA → 2DFA)

A better upper bound eO(ln2 n)

has been proved!



A Normal Form for Unary 2NFAs

Theorem ([GeffertMereghetti&P ’03])
For each unary n-state 2NFA A there exists
an almost equivalent 2NFA M s.t.

I M makes nondeterministic choices and changes the head
direction only visiting the end-markers

I M has N ≤ 2n + 2 many states
I L(A) and L(M) can differ only on strings of length ≤ 5n2



Normal Form for Unary 2NFAs: Consequences

(i) Subexponential simulation of unary 2NFAs by 2DFAs
Each unary n-state 2NFA can be simulated by a 2DFA
with eO(ln2 n) states [GeffertMereghetti&P ’03]

(ii) Polynomial complementation of unary 2NFAs
Inductive counting argument [GeffertMereghetti&P ’07]

(iii) Polynomial simulation of unary 2NFAs by 2DFAs
under the condition L = NL [Geffert&P ’11]
Hence, proving that the upper bound eO(ln2 n) is tight
would separate L and NL in the general case

(iv) Polynomial simulation of unary 2NFAs by unambiguous 2NFAs
(unconditional) [Geffert&P ’11]



Restricted 2NFAs



Restricted 2NFAs

Outer Nondeterministic Automata (OFAs) [GuillonGeffert&P ’12]:
I nondeterministic choices

are possible only when the head is visiting the endmarkers

Hence:
I No restrictions on the input alphabet
I No restrictions on head reversals
I Deterministic transitions on “real” input symbols



Outer Nondeterministic Automata (OFAs)

The results we obtained for the unary case
can be extended to 2OFAs: [GuillonGeffert&P ’12]

(i) Subexponential simulation of 2OFAs by 2DFAs
(ii) Polynomial complementation of 2OFAs
(iii) Polynomial simulation of 2OFAs by 2DFAs

under the condition L = NL
(iv) Polynomial simulation of 2OFAs by unambiguous 2OFAs

While in the unary case all the proofs rely
on the normal form,

for 2OFAs we do not have a similar tool!



Sakoda&Sipser Question: Current Knowledge

I Upper bounds

unary case
and
OFAs

general case

1NFA→2DFA 2NFA→2DFA

O(n2) eO(ln2 n)

optimal

exponential exponential

Unary case [Chrobak ’86, GeffertMereghetti&P ’03]
OFAs [GuillonGeffert&P ’12]

I Lower Bounds
In all the cases, the best known lower bound is Ω(n2)
[Chrobak ’86]



Conclusion



Final Remarks

I The question of Sakoda and Sipser is very challenging

I In the investigation of restricted versions many interesting
and not artificial models have been considered

I The results obtained under restrictions,
even if not solving the full problem,
are not trivial and, in many cases, very deep

I Connections with space and structural complexity
questions
techniques

I Connections with number theory (unary automata)



Thank you for your attention!
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