
Strongly Limited Automata

Giovanni Pighizzini

Dipartimento di Informatica
Università degli Studi di Milano, Italy

NCMA 2014
Kassel, Germany
July 28–29, 2014

The Chomsky Hierarchy

type 0Turing Machines

type 1Linear Bounded Automata

type 2Pushdown Automata

type 3Finite Automata

Limited Automata [Hibbard’67]

One-tape Turing machines with restricted rewritings

Definition
Fixed an integer d ≥ 1, a d-limited automaton is

I a one-tape Turing machine
I which is allowed to rewrite the content of each tape cell

only in the first d visits

Computational power

I For each d ≥ 2, d-limited automata characterize
context-free languages [Hibbard’67]

I 1-limited automata characterize regular languages
[Wagner&Wechsung’86]

The Chomsky Hierarchy

type 0Turing Machines

type 1Linear Bounded Automata

type 22-Limited Automata

type 31-Limited Automata

Motivations

I Dyck languages are accepted without fully using capabilities
of 2-limited automata

I Chomsky-Schützenberger Theorem: Recognition of CFLs can
be reduced to recognition of Dyck languages

Question

Is it possible to restrict 2-limited automata
without affecting their computational power?

YES!

Forgetting Automata
[Jancar&Mráz&Plátek ’96]

I The content of any cell can be erased
in the 1st or 2nd visit (using a fixed symbol)

I No other changes of the tape are allowed

A Different Restriction: Strongly Limited Automata

I Model inspired by the algorithm used by 2-limited automata
to recognize Dyck languages

I Restrictions on
state changes
head reversals
rewriting operations

I Computational power: same as 2-limited automata (CFLs)

I Descriptional power: the sizes of equivalent
CFGs
PDAs
strongly limited automata

are polynomially related

Dyck Language Recognition

B

6C

(

(x

6)C

)

xx

6)C

(

(x

6)C

[

[x

6])C

[

[x

6])C

]

xx

6])C

]

xx

6])C

)

xx

6)C

C

6C−→ ←−yes!

(i) Move to the right to search a closed bracket
(ii) Rewrite it by x
(iii) Move to the left to search an open bracket
(iv) If it matches then rewrite it by x
(v) Repeat from the beginning

Special cases:
(i’) When C is reached scan all the tape

accept iff each tape cell contains x
(iii’) If in (iii) B is reached then reject
(iv’) If in (iv) a no matching open bracket is found then reject

Dyck Language Recognition

B

6C

(

(x

6)C

)

xx

6)C

(

(x

6)C

[

[x

6])C

[

[x

6])C

]

xx

6])C

]

xx

6])C

)

xx

6)C

C

6C−→ ←−yes!

I Moves to the right:
to search a closed bracket Only one state q0!

I Moves to the left:
to search an open bracket One state for each type of bracket!
to check the tape content in the final scan from right to left

I Rewritings:
each closed bracket is rewritten in the first visit
each open bracket is rewritten in the second visit
no rewritings in the final scan

Extended Dyck Language

I Strings padded with “neutral symbols”
I Similar recognition technique:

while moving to the left searching an open bracket,
neutral symbols are rewritten
the tape should finally contain only neutral symbols and x’s

B | | [| (|)] | () | C

B | | [| x x x] | () | C

B | | x x x x x x | () | C

B | | x x x x x x | x x | C

I The procedure can be adapted to generate strings
in the language

Strongly Limited Automata

B | (x)x (x

6q
X↪→q0

[x

6qq0
L99

]x

6q0q
99KL99

|x
6q0q

99KX←−

)x

6q0

q
X←↩

[x]x C

6q0
7→

. . . 66666

I Alphabet
Σ input
Γ working
Υ = Σ ∪ Γ ∪ {B,C} global alphabet

I States and moves
q0 initial state, moving from left to right

99K move to the right
q

X←↩ write X ∈ Γ, enter state q ∈ QL, turn to the left

QL moving from right to left
L99 move to the left
X←− write X , do not change state, move to the left
X↪→q0 write X , enters state q0, turn to the right

QΥ final scan
when C is reached move from right to left and
test the membership of the tape content to a “local” language

A Variant of the Chomsky-Schützenberger Theorem

Ωk,` alphabet with k types of brackets and ` neutral symbols

D̂k,` extended Dyck language over Ωk,`

Theorem ([Okhotin’12])
L ⊆ Σ∗ is context-free iff there exist

I integers k, ` ≥ 1
I a regular language R ⊆ Ω∗

k,`

I a letter-to-letter homomorphism h : Ωk,` → Σ

such that L = h(D̂k,` ∩ R)

Remarks
I k, ` are polynomial wrt the size of each CFG specifying L

I The language R is local

From CFLs to Strongly Limited Automata

L ⊆ Σ∗ given CFL

L = h(D̂k,` ∩ R)

w ∈ Σ∗ input string
w ∈ L?

x ∈ D̂k,`

h(x) = w? x ∈ R?

B a b b a a b b a a C

B (| [] (| |)) C

Strongly limited automaton M for L:
I Guess and write on the tape x ∈ D̂k,`

I While guessing each symbol xi , check if h(xi) = wi

I In the final scan checks if x ∈ R

Given a CFG G for L, the size of M is polynomial in the size of G

CFGs → Strongly Limited Automata

Polynomial size!

Simulation of Strongly Limited Automata by PDAs

The simulation of 2-limited automata by PDAs is exponential
in the description size [P&Pisoni’13]

Problem
How much it costs, in the description size,
the simulation of strongly limited automata
by PDAs? This work

Polynomial cost!

Simulation of Strongly Limited Automata by PDAs

M strongly limited automaton A simulating PDA

Tape cell c reached for the first time:

99K content not modified now, but
it could be changed in the 2nd visit

guess the symbol written in the 2nd visit and
save it on the stack with the current symbol

q
X←↩ content modified, head turned to the left

enter back mode to check previous guesses
saved on the pushdown

Visits after 1st rewriting:
no changes of content and state

These visits do not need to be simulated

Final scan (from right to left) Simulated from left to right
“in parallel” with previous moves

while guessing and simulating rewritings

Simulation of Strongly Limited Automata by PDAs

The description of the resulting PDA has polynomial size
wrt that of the given strongly limited automaton

Summing up...

I Descriptional complexity
Strongly limited automata
Context-free grammars
Pushdown automata

are polynomially related in size

I 2-limited automata can be exponentially smaller [P&Pisoni’13]

Strongly Limited Automata vs Forgetting Automata

I Strongly limited automata can use different symbols
to rewrite tape cells, e.g.,
{wwR | w ∈ {a, b}∗ does not contain two consecutive bs}

Problem
Which class of languages is accepted by strongly limited automata
that can use only one fixed symbol for rewriting?

I Forgetting Automata [Jancar&Mráz&Plátek ’96]:
only one fixed symbol for rewriting
tape changes only in 1st or 2nd visit
no restrictions on head reversals and state changes
accept exactly CFLs

Problem
Study the descriptional complexity of forgetting automata

Determinism vs Nondeterminism

I The conversion from CFGs to strongly limited automata uses
nondeterminism

I Deterministic languages as
L1 = {canbn | n ≥ 0} ∪ {da2nbn | n ≥ 0}
L2 = {anb2n | n ≥ 0}

are not accepted by deterministic strongly limited automata

Problem
Which class of languages is accepted
by deterministic strongly limited automata?

Determinism vs Nondeterminism

I The conversion from CFGs to strongly limited automata uses
nondeterminism

I Deterministic languages as
L1 = {canbn | n ≥ 0} ∪ {da2nbn | n ≥ 0}
L2 = {anb2n | n ≥ 0}

are not accepted by deterministic strongly limited automata

I Moving to the right only q0 is used
A possible modification:
a set of states QR (rewritten cells still ignored)

the simulation by PDAs remains polynomial
languages L1 and L2 are accepted by deterministic devices

Problem
Which class of languages is accepted
by the deterministic version of devices so modified?

Thank you for your attention!

