Parikh Equivalence and
Descriptional Complexity

Giovanni Pighizzini

Dipartimento di Informatica
Universita degli Studi di Milano, ltaly

Workshop on Descriptional and Computational Complexity of Languages
Project Voices of CANTE — CMUP, Porto, Portugal
January 24-25, 2014

Results from joint papers with Giovanna J. Lavado and Shinnosuke Seki

(SOFSEM 2012, DLT 2012, Inf. and Comput. 2013) UNIVERSITA DEGLI STUDI

NFAs vs DFAs

Subset construction: [Rabin&Scott '59]

NFA s DFA
n states 2™ states

The state bound cannot be reduced
[Lupanov '63, Meyer&Fischer '71, Moore '71]

What happens if we do not care of the order of
symbols in the strings?

This problem is related to the concept of Parikh Equivalence

Parikh Equivalence

» ¥ ={a1,...,am} alphabet of m symbols
» Parikh's map ¢ : X* — N™:
’(/J(W) = (|W‘317 |W‘32, R ‘W"?m)
for each string w € *
» Parikh's image of a language L C X*:
(L) ={(w) |we L}
> w' =, w" iff (W) = p(w”)
> L= L7 iff (L) = (L")

Parikh's Theorem

Theorem ([Parikh '66])

The Parikh image of a context-free language is a semilinear set,
i.e, each context-free language is Parikh equivalent
to a regular language

Example:
» L={a"b"| n>0} B P
> R = (ab)* (L) = ¢(R) = {(n,n) | n = 0}

Different proofs after the original one of Parikh, e.g.
» [Goldstine '77]: a simplified proof
> [Aceto&Esik&Ingélfsdéttir '02]: an equational proof

> ...

> [Esparza&Ganty&Kiefer&Luttenberger '11]: complexity aspects

Our Goal

We want to convert nondeterministic automata and context-free
grammars into small Parikh equivalent deterministic automata

Problem (NFAs to DFAs)

NFA — DFA
n states how many states?
Problem (CFGs to DFAs)
CFG — DFA

size n how many states?

Why?

» Interesting theoretical properties:
wrt Parikh equivalence regular and context-free languages are
indistinguishable [Parikh '66]

» Connections of with:
m Semilinear sets

m Presburger Arithmetics [Ginsburg&Spanier '66]
m Petri Nets [Esparza '97]
m Logical formulas [Vermad&Seidl&Schwentick '05]
m Formal verification

[Dang&lbarra&Bultan&Kemmerer&Su'00, Goller&Mayr&To09]
m

» Unary case:
size costs of the simulations of CFGs and PDAs by DFAs
[Pighizzini&Shallit&Wang '02]

Converting NFAs

Problem (NFAs to DFAs)

NFA = DFA
n states how many states?

» Upper bound
Subset construction: 2"

» Lower bound
Conversion NFAs — DFAs in the unary case: e

©(vninn)
[Chrobak '86]

Converting NFAs: General Idea

A n-state NFA over ¥ = {a1,...,am}
nory W}/

Y O L(A)=LA)Nna:, i>1

Ao AlAxl. .. |Am m
L(Ao) = L —UiZo L(A)

I Chrobak conversion:
eO(vVninn) states
Ay ALLAS LA Parikh equivalent DFAs
\ 7 \—/

Al DFA Parikh equivalent to A

How much is the state cost of the conversion of NFAs accepting
only nonunary strings into Parikh equivalent DFAs?

Only polynomial!

(less than in unary case)

An Example

L = {ba" | n mod 210 # 0}

@) Ly = {ba" | nmod 2 # 0} C) b ():@3
a
a

Ly = {ba" | nmod 2 # 0}

Ly = {ba" | nmod 3 # 0}) Q

Ly = {aba""' | nmod 3 # 0}

v

Lz = {ba" | nmod 5 # 0}
Ly = {a*ba""? | n mod 5 # 0}

Le = {ba" | nmod 7 + 0}
2OdOeo) Le={a*ha" [nmod 70}

DFA > 211 states ' = Lll U LIQ U L/3 U LZ
DFA with only 21 states!

Converting NFAs Accepting Only Nonunary Strings

The conversion uses a modification of the following result:

Theorem ([Kopczynski& To '10])

Given ¥ = {a1,...,am}, there is a polynomial p s.t.
for each n-state NFA A over ¥,
B(L(A) =] Z
i€l
where:

» | is a set of at most p(n) indices

» fori €|, Z C N™ js a linear set of the form:

Z;:{ao—l—nlal—i—---—i—nkak ’ n,...,NK EN}
with
» 0<k<m
» the components of ag are bounded by p(n)
> «,...,a are linearly independent vectors from {0,1,... n}™

Converting NFAs Accepting Only Nonunary Strings

Outline: linear sets
Each above linear set
Zi ={ag+ mai+ -+ ngay | ni,...,ng € N}
can be converted into a poly size DFA accepting a language

Ri = wo(wy + -+ + wy)*

st. ¥(wj) =«aj, j=0,...,k, and
wi, ..., wy begin with different letters

Example: ab
> {(1,1) +m(2,1) + n(2,0) | ny, np = 0}
> ab(baa + aa)*

Converting NFAs Accepting Only Nonunary Strings

Outline: from linear to semilinear

» Standard construction for union of DFAs:
number of states = product
#1 < p(n) = Too largel!l

» Strings wp,; can be replaced by Parikh
equivalent strings Wy ; in such a way that
Wo = {Wp,; | i € I'} is a prefix code

» After this change:
Wil number of states < sum Polynomiall!l

Theorem

For each n-state NFA accepting a language none of whose words
are unary, there exists a Parikh equivalent DFA with a number of
states polynomial in n

Converting NFAs: Back to the General Case

A
nO:_un% wy
N)
Ao ALlAx] .. |Am
poly(n) Chrobak conversion:
eO(Vnlnn) ctates
Ay ALl AL AL
\\ 7 —/
/
A Theorem

For each n-state NFA there exists a Parikh
equivalent DFA with e9(V1Inn) states.
Furthermore this cost is tight

Converting CFGs

Problem (CFGs to NFAs and DFAs)

.CFG — NFA/DFA
size h how many states?

» We consider CFGs in Chomsky Normal Form

» As a measure of size we consider the number of variables
[Gruska '73]

Converting CFGs into Parikh Equivalent Automata

Conversion into Nondeterministic Automata

Problem (CFGs to NFAs)

CFG
Chomsky normal form —r NFA

. how many states?
h variables v

Upper bound:
2
m 2207 implicit construction from classical proof of Parikh’s Th.

= O(4h) [Esparza& Ganty&Kiefer&Luttenberger '11]

Lower bound: Q(2") Folklore

Converting CFGs into Parikh Equivalent Automata

Conversion into Deterministic Automata

Problem (CFGs to DFAs)

CFG
Chomsky normal form —r DFA

. how many states?
h variables v

» Upper bound: 20(4") subset construction

> Lower bound: 2¢M* tight bound for the unary case 2°(h)
[Pighizzini&Shallit&Wang '02]

Converting CFGs into Parikh Equivalent DFAs

G CFG with h variables

nonunary

Parikh equivalent NFA

2h* states

Parikh equivalent DFAs

B Theorem

For any CFG in Chomsky normal form with
h variables, there exists a Parikh equivalent
DFA with at most 20(h°) states.
Futhermore this bound is tight

Final Considerations

We obtained the following tight conversions:

’ DFA ‘
NFA eO(Wnlnn)
n states states
CFG 20(h?)
Cnf h variables states

» In both cases the most expensive part is the unary one

» It could be interesting to investigate other conversions,
e.g., automata minimization under Parkih equivalence,
and computational complexity aspects

Final Considerations

Conversions into two-way deterministic automata (2DFAs)

| DFA | 2DFA |
NFA eO(vninn) poly(n)
n states states states
CFG 20(#) 20(h)
Cnf h variables states states

Thank you for your attention!

	Introduction and Preliminaries

