Parikh Equivalence and Descriptional Complexity

Giovanni Pighizzini

Dipartimento di Informatica Università degli Studi di Milano, Italy

Workshop on Descriptional and Computational Complexity of Languages Project *Voices of CANTE* – CMUP, Porto, Portugal January 24–25, 2014

Results from joint papers with Giovanna J. Lavado and Shinnosuke Seki (SOFSEM 2012, DLT 2012, Inf. and Comput. 2013)

NFAs vs DFAs

Subset construction: [Rabin&Scott '59]

 $\begin{array}{ccc}
\mathsf{NFA} & \longrightarrow & \mathsf{DFA} \\
\mathsf{n} \text{ states} & 2^{\mathsf{n}} \text{ states}
\end{array}$

The state bound cannot be reduced

[Lupanov '63, Meyer&Fischer '71, Moore '71]

What happens if we do not care of the order of symbols in the strings?

This problem is related to the concept of Parikh Equivalence

Parikh Equivalence

- $\Sigma = \{a_1, \ldots, a_m\}$ alphabet of m symbols
- ▶ Parikh's map $\psi: \Sigma^* \to \mathbb{N}^m$:

$$\psi(w) = (|w|_{a_1}, |w|_{a_2}, \dots, |w|_{a_m})$$

for each string $w \in \Sigma^*$

▶ Parikh's image of a language $L \subseteq \Sigma^*$:

$$\psi(L) = \{ \psi(w) \mid w \in L \}$$

- $L' =_{\pi} L'' \text{ iff } \psi(L') = \psi(L'')$

Parikh's Theorem

Theorem ([Parikh '66])

The Parikh image of a context-free language is a semilinear set, i.e, each context-free language is Parikh equivalent to a regular language

Example:

►
$$L = \{a^n b^n \mid n \ge 0\}$$

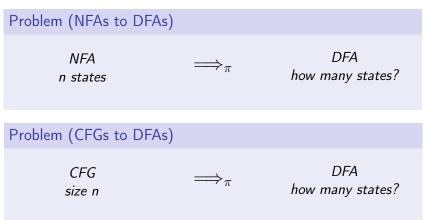
► $R = (ab)^*$ $\psi(L) = \psi(R) = \{(n, n) \mid n \ge 0\}$

Different proofs after the original one of Parikh, e.g.

- ▶ [Goldstine '77]: a simplified proof
- ► [Aceto&Ésik&Ingólfsdóttir '02]: an equational proof
- **>** ...
- ► [Esparza&Ganty&Kiefer&Luttenberger '11]: complexity aspects

Our Goal

We want to convert nondeterministic automata and context-free grammars into *small Parikh equivalent* deterministic automata



Why?

Interesting theoretical properties:
 wrt Parikh equivalence regular and context-free languages are indistinguishable
 [Parikh '66]

- Connections of with:
 - Semilinear sets
 - Presburger Arithmetics

[Ginsburg&Spanier '66] [Esparza '97]

■ Petri Nets

[Verma&Seidl&Schwentick '05]

Logical formulasFormal verification

[Dang&Ibarra&Bultan&Kemmerer&Su'00, Göller&Mayr&To'09]

..

Unary case: size costs of the simulations of CFGs and PDAs by DFAs

[Pighizzini&Shallit&Wang '02]

Converting NFAs

Problem (NFAs to DFAs)

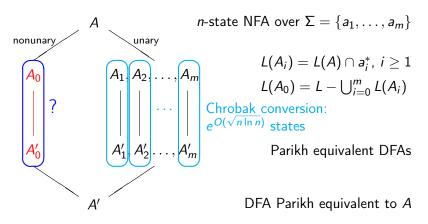
NFA n states

DFA how many states?

- ► *Upper bound*Subset construction: 2ⁿ
- Lower bound Conversion NFAs \rightarrow DFAs in the unary case: $e^{\Theta(\sqrt{n \ln n})}$

[Chrobak '86]

Converting NFAs: General Idea

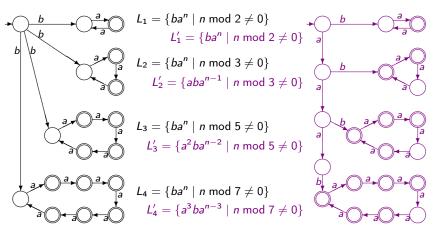


How much is the state cost of the conversion of NFAs accepting only nonunary strings into Parikh equivalent DFAs?

Only polynomial! (less than in unary case)

An Example

$$L = \{ba^n \mid n \bmod 210 \neq 0\}$$



 $DFA \ge 211$ states

 $L' = L'_1 \cup L'_2 \cup L'_3 \cup L'_4$ DFA with only 21 states!

Converting NFAs Accepting Only Nonunary Strings

The conversion uses a modification of the following result:

Theorem ([Kopczyński&To'10])

Given $\Sigma = \{a_1, \dots, a_m\}$, there is a polynomial p s.t. for each n-state NFA A over Σ ,

$$\psi(L(A)) = \bigcup_{i \in I} Z_i$$

where:

- ▶ I is a set of at most p(n) indices
- ▶ for $i \in I$, $Z_i \subseteq \mathbb{N}^m$ is a linear set of the form:

$$Z_i = \{\alpha_0 + n_1\alpha_1 + \dots + n_k\alpha_k \mid n_1, \dots, n_k \in \mathbb{N}\}$$

with

- \triangleright 0 \leq $k \leq$ m
- the components of α_0 are bounded by p(n)
- $\alpha_1, \ldots, \alpha_k$ are linearly independent vectors from $\{0, 1, \ldots, n\}^m$

Converting NFAs Accepting Only Nonunary Strings

Outline: linear sets

Each above linear set

$$Z_i = \{\alpha_0 + n_1\alpha_1 + \cdots + n_k\alpha_k \mid n_1, \dots, n_k \in \mathbb{N}\}\$$

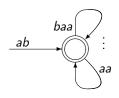
can be converted into a poly size DFA accepting a language

$$R_i = w_0(w_1 + \cdots + w_k)^*$$

s.t.
$$\psi(w_j) = \alpha_j$$
, $j = 0, ..., k$, and $w_1, ..., w_k$ begin with different letters

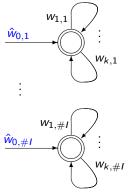
Example:

- $\{(1,1) + n_1(2,1) + n_2(2,0) \mid n_1, n_2 \ge 0 \}$
- ▶ ab(baa + aa)*



Converting NFAs Accepting Only Nonunary Strings

Outline: from linear to semilinear

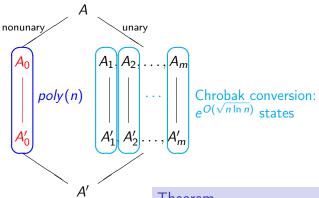


- Standard construction for union of DFAs: number of states = product #I < p(n) ⇒ Too large!!!</p>
- Strings $w_{0,i}$ can be replaced by Parikh equivalent strings $\hat{w}_{0,i}$ in such a way that $W_0 = \{\hat{w}_{0,i} \mid i \in I\}$ is a *prefix code*
- ▶ After this change: number of states ≤ sum Polynomial!!!

Theorem

For each n-state NFA accepting a language none of whose words are unary, there exists a Parikh equivalent DFA with a number of states polynomial in n

Converting NFAs: Back to the General Case



Theorem

For each n-state NFA there exists a Parikh equivalent DFA with $e^{O(\sqrt{n \ln n})}$ states. Furthermore this cost is tight

Converting CFGs

Problem (CFGs to NFAs and DFAs)

- ▶ We consider CFGs in Chomsky Normal Form
- ▶ As a measure of size we consider the *number of variables*

[Gruska '73]

Converting CFGs into Parikh Equivalent Automata

Conversion into Nondeterministic Automata

Problem (CFGs to NFAs)

CFG Chomsky normal form h variables

NFA how many states?

Upper bound:

- 2^{2^{O(h²)} implicit construction from classical proof of Parikh's Th.}
- O(4^h) [Esparza&Ganty&Kiefer&Luttenberger '11]

Lower bound: $\Omega(2^h)$ Folklore

Converting CFGs into Parikh Equivalent Automata

Conversion into Deterministic Automata

Problem (CFGs to DFAs)

CFG Chomsky normal form h variables

 \Longrightarrow_{π}

DFA how many states?

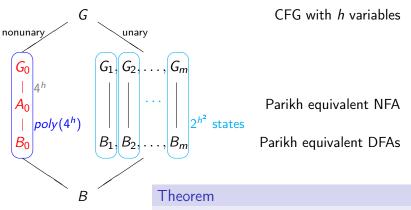
▶ Upper bound: $2^{O(4^h)}$

subset construction

▶ Lower bound: 2^{ch²}

tight bound for the unary case $2^{\Theta(h^2)}$ [Pighizzini&Shallit&Wang '02]

Converting CFGs into Parikh Equivalent DFAs



For any CFG in Chomsky normal form with h variables, there exists a Parikh equivalent DFA with at most $2^{O(h^2)}$ states. Futhermore this bound is tight

Final Considerations

We obtained the following tight conversions:

	DFA	
NFA	$e^{O(\sqrt{n \ln n})}$	
n states	states	
CFG	2 ^{O(h²)}	
Cnf <i>h</i> variables	states	

- ▶ In both cases the most expensive part is the unary one
- ▶ It could be interesting to investigate other conversions, e.g., automata minimization under Parkih equivalence, and computational complexity aspects

Final Considerations

Conversions into two-way deterministic automata (2DFAs)

	DFA	2DFA
NFA n states	$e^{O(\sqrt{n \ln n})}$ states	poly(n) states
CFG Cnf <i>h</i> variables	2 ^{O(h²)} states	2 ^{O(h)} states

Thank you for your attention!