Limited Automata and Descriptional Complexity

Giovanni Pighizzini (joint papers with Andrea Pisoni – DCFS 2013, NCMA 2013)

Dipartimento di Informatica Università degli Studi di Milano, Italy

Riunione PRIN 2013 Milano, 28–29 novembre 2013

The Chomsky Hierarchy

(1-tape) Turing Machines	ty	pe 0
Linear Bounded Automata	type 1	
Pushdown Automata	type 2	
Finite Automata	type 3	

Limited Automata [Hibbard'67]

One-tape Turing machines with restricted rewritings

Definition

Fixed an integer $d \ge 1$, a *d*-limited automaton is

a one-tape Turing machine

which is allowed to rewrite the content of each tape cell only in the first d visits

Computational power

- ► For each d ≥ 2, d-limited automata characterize context-free languages [Hibbard'67]
- 1-limited automata characterize regular languages [Wagner&Wechsung'86]

The Chomsky Hierarchy

(1-tape) Turing Machines	t	ype 0
Linear Bounded Automata	type	1
2-Limited Automata	type 2	
Finite Automata	type 3	

Example: Balanced Parentheses

▷ () ((())) ⊲

- (i) Move to the right to search a closed parenthesis
- (ii) Rewrite it by #
- (iii) Move to the left to search an open parenthesis
- (iv) Rewrite it by #
- (v) Repeat from the beginning

Special cases:

(i') If in (i) the right end of the tape is reached then scan all the tape and *accept* iff all tape cells contain #
(iii') If in (iii) the left end of the tape is reached then *reject*

Each cell is rewritten only in the first 2 visits!

Problem

How much it costs, in the description size, the simulation of 2-LAs by PDAs?

Our result

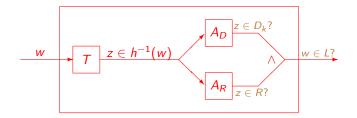
Exponential cost! (optimal)

Deterministic case

- Determinism is preserved by the simulation provided that the input of the PDA is right end-marked
- Without end-marker: double exponential size for the simulation of D2-LAs by DPDA
- Conjecture: this cost cannot be reduced

New trasformation based on:

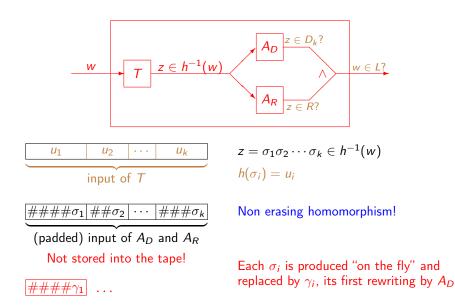
Theorem ([Chomsky&Schützenberger'63]) Every context-free language $L \subseteq \Sigma^*$ can be expressed as


 $L = h(D_k \cap R)$

where, for $\Omega_k = \{(1,)_1, (2,)_2, \dots, (k,)_k\}$:

- $D_k \subseteq \Omega_k^*$ is a Dyck language
- $R \subseteq \Omega_k^*$ is a regular language
- $h: \Omega_k \to \Sigma^*$ is an homomorphism

Furthermore, it is possible to restrict to *non-erasing* homomorphisms [Okhotin'12]

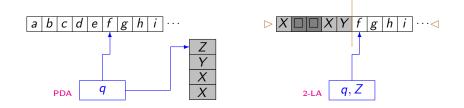

$\mathsf{CFLs} \to 2\text{-}\mathsf{Limited}$ Automata

L context-free language, with $L = h(D_k \cap R)$

- ► T nondeterministic transducer computing h⁻¹
- A_D 2-LA accepting the Dyck language D_k
- A_R finite automaton accepting R

$\mathsf{CFLs} \to 2\text{-Limited Automata}$

 $\mathsf{PDAs} \to 2\text{-}\mathsf{LAs}$


Polynomial cost!

 $\mathsf{DPDAs} \to \mathsf{D2\text{-}LAs}$

Polynomial cost!

(in the description size)

Pushdown Automata \rightarrow 2-Limited Automata

Normal form for (D)PDAs:

- ▶ at each step, the stack height increases at most by 1
- ϵ -moves cannot push on the stack

Each (D)PDA can be simulated by an equivalent (D)2-LA of polynomial size

2-Limited Automata \equiv Pushdown Automata

Summing up...

Descriptional complexity point of view

 $2-LAs \rightarrow PDAs$ Exponential gap

 $PDAs \rightarrow 2-LAs$

Polynomial upper bound

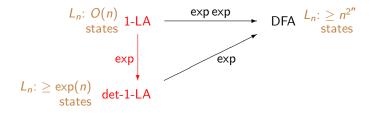
Determinism vs Nondeterminism

Deterministic Context-Free Languages \equiv Deterministic 2-LAs

On the other hand:

 $L = \{a^n b^n c \mid n \ge 0\} \cup \{a^n b^{2n} d \mid n \ge 0\} \in det\text{-3-LA} - \mathsf{DCFL}$

Infinite hierarchy [Hibbard'67]:


det-d-LA \supset det-(d - 1)-LA, for each $d \ge 2$

Costs in states of the optimal simulations of *n*-state 1-LAs by finite automata:

	DFA	NFA
nondet. 1-LA	$2^{n \cdot 2^{n^2}}$	$n \cdot 2^{n^2}$
det. 1-LA	$n \cdot (n+1)^n$	$n \cdot (n+1)^n$

These upper bounds do not depend on the alphabet size of M!

Nondetermism vs Determinism in 1-LAs

Corollary

Removing nondeterminism from 1-LAs *requires exponentially many states*

Cfr. Sakoda and Sipser question [Sakoda&Sipser'78]:

How much it costs in states to remove nondeterminism from two-way finite automata?

- Descriptional complexity aspects for d > 2
 We conjecture that for d > 2 the size gap from d-limited automata to PDAs remains exponential
- Descriptional complexity aspects in the unary case
 - Unary context-free language are regular [Ginbsurg&Rice'62]

• Ex:
$$L_n = (a^{2^n})^*$$

	size
2-LA	O(n)
DPDA	O(n)
minimal DFA	2 ⁿ
minimal 2NFA	2 ⁿ