Limited Automata and Regular Languages

Giovanni Pighizzini Andrea Pisoni

Dipartimento di Informatica
Universita degli Studi di Milano, Italy

DCFS 2013

London, ON, Canada
July 22-25, 2013

UNIVERSITA DEGLI STUDI
DI MILANO

One-Tape Turing Machine

Very simple but powerful model!

Recursive enumerable languages

One-Tape Turing Machine

Very simple but powerful model!

Recursive enumerable languages

What about restricted versions?

One-Tape Turing Machine

Very simple but powerful model!

Recursive enumerable languages

What about restricted versions?

» No rewritings: two-way finite automata
Regular languages

One-Tape Turing Machine

Very simple but powerful model!

Recursive enumerable languages

What about restricted versions?

» No rewritings: two-way finite automata
Regular languages

» Linear space:
Context-sensitive languages [Kuroda'64]

One-Tape Turing Machine

Very simple but powerful model!

Recursive enumerable languages

What about restricted versions?

» No rewritings: two-way finite automata
Regular languages
» Linear space:
Context-sensitive languages [Kuroda'64]
» Linear time:
Regular languages [Hennie'65]

Limited Automata [Hibbard'67]

One-tape Turing machines with restricted rewritings

Limited Automata [Hibbard'67]

One-tape Turing machines with restricted rewritings

Definition
Fixed an integer d > 1, a d-limited automaton is
» a one-tape Turing machine

» which is allowed to rewrite the content of each tape cell only
in the first d visits

Limited Automata [Hibbard'67]

One-tape Turing machines with restricted rewritings

Definition
Fixed an integer d > 1, a d-limited automaton is
» a one-tape Turing machine

» which is allowed to rewrite the content of each tape cell only
in the first d visits

» End-marked tape

» The space is bounded by the input length
(this restriction can be removed without changing the
computational power and the state upper bounds)

Example: Balanced Parentheses

EIINNIINE
T

Example: Balanced Parentheses

LD D D]
T

(i) Move to the right to search a closed parenthesis

Example: Balanced Parentheses

EIINNIINNE
T

(i) Move to the right to search a closed parenthesis
(i) Rewrite it by X

Example: Balanced Parentheses

BB
T

(i) Move to the right to search a closed parenthesis
(i) Rewrite it by X

Example: Balanced Parentheses

(XD DI
T

(i) Move to the right to search a closed parenthesis
(i) Rewrite it by X

(iii) Move to the left to search an open parenthesis

>

Example: Balanced Parentheses

(XD DI
T

(i) Move to the right to search a closed parenthesis
(i) Rewrite it by X
(iii) Move to the left to search an open parenthesis
(iv) Rewrite it by X

Example: Balanced Parentheses

X dd bbb
T

(i) Move to the right to search a closed parenthesis
(i) Rewrite it by X
(iii) Move to the left to search an open parenthesis
(iv) Rewrite it by X

Example: Balanced Parentheses

(i) Move to the right to search a closed parenthesis
(i) Rewrite it by X
(iii) Move to the left to search an open parenthesis
(iv) Rewrite it by X

v)

Repeat from the beginning

Example: Balanced Parentheses

x| x| (DD D]
T

>

(i) Move to the right to search a closed parenthesis
(i) Rewrite it by X
(iii) Move to the left to search an open parenthesis
(iv) Rewrite it by X

(v) Repeat from the beginning

Example: Balanced Parentheses

x| DD D]
T

>

(i) Move to the right to search a closed parenthesis
(i) Rewrite it by X
(iii) Move to the left to search an open parenthesis
(iv) Rewrite it by X

(v) Repeat from the beginning

Example: Balanced Parentheses

x| DD D]
T

>

(i) Move to the right to search a closed parenthesis
(i) Rewrite it by X
(iii) Move to the left to search an open parenthesis
(iv) Rewrite it by X

(v) Repeat from the beginning

Example: Balanced Parentheses

x| DD D]
T

>

(i) Move to the right to search a closed parenthesis
(i) Rewrite it by X
(iii) Move to the left to search an open parenthesis
(iv) Rewrite it by X

(v) Repeat from the beginning

Example: Balanced Parentheses

SEENNE
T

>

(i) Move to the right to search a closed parenthesis
(i) Rewrite it by X
(iii) Move to the left to search an open parenthesis
(iv) Rewrite it by X

(v) Repeat from the beginning

Example: Balanced Parentheses

x| x| (DD D]
T

>

(i) Move to the right to search a closed parenthesis
(i) Rewrite it by X
(iii) Move to the left to search an open parenthesis
(iv) Rewrite it by X

(v) Repeat from the beginning

Example: Balanced Parentheses

SECENINE
T

(i
(ii

) Move to the right to search a closed parenthesis
)
(iii) Move to the left to search an open parenthesis
)
)

Rewrite it by X

(iv) Rewrite it by X
(v) Repeat from the beginning

Example: Balanced Parentheses

SEEDINE
T

>

(i) Move to the right to search a closed parenthesis
(i) Rewrite it by X
(iii) Move to the left to search an open parenthesis
(iv) Rewrite it by X

(v) Repeat from the beginning

Example: Balanced Parentheses

SECEDINE
T

(i) Move to the right to search a closed parenthesis
(i) Rewrite it by X

(iii) Move to the left to search an open parenthesis
(iv) Rewrite it by X

(v) Repeat from the beginning

Example: Balanced Parentheses

(i) Move to the right to search a closed parenthesis
(i) Rewrite it by X
(iii) Move to the left to search an open parenthesis
(iv) Rewrite it by X

v)

Repeat from the beginning

Example: Balanced Parentheses

>

x| LAxIxD D[]

T

(i) Move to the right to search a closed parenthesis
(i) Rewrite it by X
(iii) Move to the left to search an open parenthesis
(iv) Rewrite it by X

(v) Repeat from the beginning

Example: Balanced Parentheses

>

x| LAxIxD D[]

T

(i) Move to the right to search a closed parenthesis
(i) Rewrite it by X
(iii) Move to the left to search an open parenthesis
(iv) Rewrite it by X

(v) Repeat from the beginning

Example: Balanced Parentheses

SECCEIEINE
T

(i
(ii

) Move to the right to search a closed parenthesis
)
(iii) Move to the left to search an open parenthesis
)
)

Rewrite it by X

(iv) Rewrite it by X
(v) Repeat from the beginning

Example: Balanced Parentheses

>

x| x| ([(x]x]x D]

T

(i) Move to the right to search a closed parenthesis
(i) Rewrite it by X
(iii) Move to the left to search an open parenthesis
(iv) Rewrite it by X

(v) Repeat from the beginning

Example: Balanced Parentheses

>

x| x| ([x]x]x D]

T

(i) Move to the right to search a closed parenthesis
(i) Rewrite it by X
(iii) Move to the left to search an open parenthesis
(iv) Rewrite it by X

(v) Repeat from the beginning

Example: Balanced Parentheses

>

x| x| (L xx]x D]

T

(i) Move to the right to search a closed parenthesis
(i) Rewrite it by X
(iii) Move to the left to search an open parenthesis
(iv) Rewrite it by X

(v) Repeat from the beginning

Example: Balanced Parentheses

>

x| x| ([(xx]x D]

T

(i) Move to the right to search a closed parenthesis
(i) Rewrite it by X
(iii) Move to the left to search an open parenthesis
(iv) Rewrite it by X

(v) Repeat from the beginning

Example: Balanced Parentheses

x| x| ([xx]x D]

T

(i) Move to the right to search a closed parenthesis
(i) Rewrite it by X

(iii) Move to the left to search an open parenthesis
(iv) Rewrite it by X

(v) Repeat from the beginning

Example: Balanced Parentheses

>

x| x| (x]x]x]x P |

T

(i) Move to the right to search a closed parenthesis
(i) Rewrite it by X
(iii) Move to the left to search an open parenthesis
(iv) Rewrite it by X

v)

Repeat from the beginning

Example: Balanced Parentheses

>

XXX IxIxIx D]

T

(i) Move to the right to search a closed parenthesis
(i) Rewrite it by X
(iii) Move to the left to search an open parenthesis
(iv) Rewrite it by X

(v) Repeat from the beginning

Example: Balanced Parentheses

>

XXX IxIxIx D]

T

(i) Move to the right to search a closed parenthesis
(i) Rewrite it by X
(iii) Move to the left to search an open parenthesis
(iv) Rewrite it by X

(v) Repeat from the beginning

Example: Balanced Parentheses

>

XXX IxIxIx D]

T

(i) Move to the right to search a closed parenthesis
(i) Rewrite it by X
(iii) Move to the left to search an open parenthesis
(iv) Rewrite it by X

(v) Repeat from the beginning

Example: Balanced Parentheses

>

XXX IxIxIx D]

T

(i) Move to the right to search a closed parenthesis
(i) Rewrite it by X
(iii) Move to the left to search an open parenthesis
(iv) Rewrite it by X

(v) Repeat from the beginning

Example: Balanced Parentheses

>

XXX IxIxIx D]

T

(i) Move to the right to search a closed parenthesis
(i) Rewrite it by X
(iii) Move to the left to search an open parenthesis
(iv) Rewrite it by X

(v) Repeat from the beginning

Example: Balanced Parentheses

x| x| (x]xx]x) |

T

(i
(ii

) Move to the right to search a closed parenthesis
)
(iii) Move to the left to search an open parenthesis
)
)

Rewrite it by X

(iv) Rewrite it by X
(v) Repeat from the beginning

Example: Balanced Parentheses

>

x| x| (e]xx]x x|

T

(i) Move to the right to search a closed parenthesis
(i) Rewrite it by X
(iii) Move to the left to search an open parenthesis
(iv) Rewrite it by X

(v) Repeat from the beginning

Example: Balanced Parentheses

>

x| x| (e xx e x|

T

(i) Move to the right to search a closed parenthesis
(i) Rewrite it by X
(iii) Move to the left to search an open parenthesis
(iv) Rewrite it by X

(v) Repeat from the beginning

Example: Balanced Parentheses

>

x| x| (x]xxx x|

T

(i) Move to the right to search a closed parenthesis
(i) Rewrite it by X
(iii) Move to the left to search an open parenthesis
(iv) Rewrite it by X

(v) Repeat from the beginning

Example: Balanced Parentheses

>

x| x| (e xxx x|

T

(i) Move to the right to search a closed parenthesis
(i) Rewrite it by X
(iii) Move to the left to search an open parenthesis
(iv) Rewrite it by X

(v) Repeat from the beginning

Example: Balanced Parentheses

>

x| x| (Px]xxx x|

T

(i) Move to the right to search a closed parenthesis
(i) Rewrite it by X
(iii) Move to the left to search an open parenthesis
(iv) Rewrite it by X

(v) Repeat from the beginning

Example: Balanced Parentheses

x| x| (Px]xxx x|

T

(i) Move to the right to search a closed parenthesis
(i) Rewrite it by X

(iii) Move to the left to search an open parenthesis
(iv) Rewrite it by X

(v) Repeat from the beginning

Example: Balanced Parentheses

>

x| x| x| x| x| x| x| x| <

T

(i) Move to the right to search a closed parenthesis
(i) Rewrite it by X
(iii) Move to the left to search an open parenthesis
(iv) Rewrite it by X

v)

Repeat from the beginning

Example: Balanced Parentheses

>

x| x| x| x| x| x|x|x]|<]

T

(i) Move to the right to search a closed parenthesis
(i) Rewrite it by X

(iii) Move to the left to search an open parenthesis
(iv) Rewrite it by X

(v) Repeat from the beginning

Example: Balanced Parentheses

>

x| x| x| x| x| x|x|x]|<]

T

(i) Move to the right to search a closed parenthesis
(i) Rewrite it by X

(iii) Move to the left to search an open parenthesis
(iv) Rewrite it by X

(v) Repeat from the beginning

Example: Balanced Parentheses

>

x| x| x| x| x| x|x|x]|<]

T

(i) Move to the right to search a closed parenthesis
(i) Rewrite it by X

(iii) Move to the left to search an open parenthesis
(iv) Rewrite it by X

(v) Repeat from the beginning

Example: Balanced Parentheses

>

x| x| x| x| x| x|x|x]|<]

T

(i) Move to the right to search a closed parenthesis
(i) Rewrite it by X

(iii) Move to the left to search an open parenthesis
(iv) Rewrite it by X

(v) Repeat from the beginning

Example: Balanced Parentheses

>

x| x| x| x| x| x|x|x]|<]

T

(i) Move to the right to search a closed parenthesis
(i) Rewrite it by X

(iii) Move to the left to search an open parenthesis
(iv) Rewrite it by X

(v) Repeat from the beginning

Example: Balanced Parentheses

>

x| x| x| x| x| x|x|x]|<]

T

(i) Move to the right to search a closed parenthesis
(i) Rewrite it by X

(iii) Move to the left to search an open parenthesis
(iv) Rewrite it by X

(v) Repeat from the beginning

Example: Balanced Parentheses

P xx x| xxx <)

T

(i) Move to the right to search a closed parenthesis
(i) Rewrite it by X
(iii) Move to the left to search an open parenthesis
(iv) Rewrite it by X

(v) Repeat from the beginning

Special cases:

(i') If in (i) the right end of the tape is reached then
scan all the tape and accept iff all tape cells contain X

Example: Balanced Parentheses

(i) Move to the right to search a closed parenthesis
(i) Rewrite it by X
(iii) Move to the left to search an open parenthesis
(iv) Rewrite it by X

(v) Repeat from the beginning

Special cases:

(i') Ifin (i) the right end of the tape is reached then
scan all the tape and accept iff all tape cells contain X

Example: Balanced Parentheses

(i) Move to the right to search a closed parenthesis
(i) Rewrite it by X
(iii) Move to the left to search an open parenthesis
(iv) Rewrite it by X

(v) Repeat from the beginning

Special cases:

(i') Ifin (i) the right end of the tape is reached then
scan all the tape and accept iff all tape cells contain X

Example: Balanced Parentheses

(i) Move to the right to search a closed parenthesis
(i) Rewrite it by X
(iii) Move to the left to search an open parenthesis
(iv) Rewrite it by X

(v) Repeat from the beginning

Special cases:

(i') Ifin (i) the right end of the tape is reached then
scan all the tape and accept iff all tape cells contain X

Example: Balanced Parentheses

(i) Move to the right to search a closed parenthesis
(i) Rewrite it by X
(iii) Move to the left to search an open parenthesis
(iv) Rewrite it by X

(v) Repeat from the beginning

Special cases:

(i') Ifin (i) the right end of the tape is reached then
scan all the tape and accept iff all tape cells contain X

Example: Balanced Parentheses

>

x| x| x| x| x| x| x|x]|<

T

(i) Move to the right to search a closed parenthesis
(i) Rewrite it by X
(iii) Move to the left to search an open parenthesis
(iv) Rewrite it by X

(v) Repeat from the beginning

Special cases:

(i') Ifin (i) the right end of the tape is reached then
scan all the tape and accept iff all tape cells contain X

Example: Balanced Parentheses

>

x| x| x| x| x| x| x|x]|<

T

(i) Move to the right to search a closed parenthesis
(i) Rewrite it by X
(iii) Move to the left to search an open parenthesis
(iv) Rewrite it by X

(v) Repeat from the beginning

Special cases:

(i') Ifin (i) the right end of the tape is reached then
scan all the tape and accept iff all tape cells contain X

Example: Balanced Parentheses

>

x| x| x| x| x| x| x|x]|<

T

(i) Move to the right to search a closed parenthesis
(i) Rewrite it by X
(iii) Move to the left to search an open parenthesis
(iv) Rewrite it by X

(v) Repeat from the beginning

Special cases:

(i') Ifin (i) the right end of the tape is reached then
scan all the tape and accept iff all tape cells contain X

Example: Balanced Parentheses

(i) Move to the right to search a closed parenthesis
(i) Rewrite it by X
(iii) Move to the left to search an open parenthesis
(iv) Rewrite it by X

(v) Repeat from the beginning

Special cases:

(i') Ifin (i) the right end of the tape is reached then
scan all the tape and accept iff all tape cells contain X

Example: Balanced Parentheses

(i) Move to the right to search a closed parenthesis
(i) Rewrite it by X
(iii) Move to the left to search an open parenthesis
(iv) Rewrite it by X

(v) Repeat from the beginning

Special cases:

(i') Ifin (i) the right end of the tape is reached then
scan all the tape and accept iff all tape cells contain X

Example: Balanced Parentheses

(i) Move to the right to search a closed parenthesis
(i) Rewrite it by X
(iii) Move to the left to search an open parenthesis
(iv) Rewrite it by X

(v) Repeat from the beginning

Special cases:

(i') Ifin (i) the right end of the tape is reached then
scan all the tape and accept iff all tape cells contain X

(iii") If in (iii) the left end of the tape is reached then reject

Example: Balanced Parentheses

x| x| x| x| x| x|x|x]|<]

(i) Move to the right to search a closed parenthesis
(i) Rewrite it by X

(iii) Move to the left to search an open parenthesis
(iv) Rewrite it by X

(v) Repeat from the beginning

Special cases:

(i') Ifin (i) the right end of the tape is reached then
scan all the tape and accept iff all tape cells contain X

(iii") If in (iii) the left end of the tape is reached then reject

Cells can be rewritten only in the first 2 visits!

d-Limited Automata: Computational Power

d-Limited Automata: Computational Power

d = 1: regular languages [Wagner&Wechsung'86]

d-Limited Automata: Computational Power

d = 1: regular languages [Wagner&Wechsung'86]

d > 2: context-free languages [Hibbard'67]

Our Contributions

d = 1: regular languages [Wagner&Wechsung'86]
Descriptional complexity aspects

d > 2: context-free languages [Hibbard'67]

Our Contributions

d = 1: regular languages [Wagner&Wechsung'86]
Descriptional complexity aspects

d > 2: context-free languages [Hibbard'67]
New transformation

context-free languages — 2-limited automata

based on the Chomsky-Schiitzenberger Theorem

Simulation of 1-Limited Automata by Finite Automata

» Main idea:

transformation of two-way NFAs into one-way DFAs:
[Shepherdson'59]

Simulation of 1-Limited Automata by Finite Automata

» Main idea:

transformation of two-way NFAs into one-way DFAs:
[Shepherdson'59]

m First visit to a cell: direct simulation

Simulation of 1-Limited Automata by Finite Automata

» Main idea:

transformation of two-way NFAs into one-way DFAs:
[Shepherdson'59]

m First visit to a cell: direct simulation
m Further visits: transition tables

Simulation of 1-Limited Automata by Finite Automata

» Main idea:

transformation of two-way NFAs into one-way DFAs:
[Shepherdson'59]

m First visit to a cell: direct simulation
m Further visits: transition tables

| |

Simulation of 1-Limited Automata by Finite Automata

» Main idea:

transformation of two-way NFAs into one-way DFAs:
[Shepherdson'59]

m First visit to a cell: direct simulation
m Further visits: transition tables

’ | mCQxQ
f (p.q) € 7 iff P

—q

Simulation of 1-Limited Automata by Finite Automata

» Main idea:

transformation of two-way NFAs into one-way DFAs:
[Shepherdson'59]

m First visit to a cell: direct simulation
m Further visits: transition tables

’ % ‘ y ‘TXQQXQ
i (pq)emciff | x =P

m Finite control of the simulating DFA:

- transition table of the already scanned input prefix
- set of possible current states

Simulation of 1-Limited Automata by Finite Automata

» Main idea:

transformation of two-way NFAs into one-way DFAs:
[Shepherdson'59]

m First visit to a cell: direct simulation
m Further visits: transition tables

’ | mCQxQ
f (p.q) € 7 iff P

—q

m Finite control of the simulating DFA:

- transition table of the already scanned input prefix
- set of possible current states

» Simulation of 1-LAs:

Simulation of 1-Limited Automata by Finite Automata

» Main idea:

transformation of two-way NFAs into one-way DFAs:
[Shepherdson'59]

m First visit to a cell: direct simulation
m Further visits: transition tables

’ % ‘ y ‘TXQQXQ
_T (p,q) € 7 iff | x [ig

Tx

m Finite control of the simulating DFA:

- transition table of the already scanned input prefix
- set of possible current states

» Simulation of 1-LAs:

m The scanned input prefix is rewritten by a
nondeterministically chosen string

Simulation of 1-Limited Automata by Finite Automata

» Main idea:

transformation of two-way NFAs into one-way DFAs:
[Shepherdson'59]

m First visit to a cell: direct simulation
m Further visits: transition tables

’ X ‘ y ‘TXQQXQ
_T\ (p,q) € 7 iff | x [ig

T

m Finite control of the simulating DFA:

- transition table of the already scanned input prefix
- set of possible current states

» Simulation of 1-LAs:

m The scanned input prefix is rewritten by a
nondeterministically chosen string

m The simulating DFA keeps in its finite control a
sets of transition tables

1-Limited Automata — Finite Automata: Upper Bounds

Theorem
Let M be a 1-LA with n states.

DFA NFA

nondet. 1-LA

det. 1-LA

1-Limited Automata — Finite Automata: Upper Bounds

Theorem
Let M be a 1-LA with n states.

n2
> There exists an equivalent DFA with 272" states.

DFA NFA

2
nondet. 1-LA on-2"

det. 1-LA

1-Limited Automata — Finite Automata: Upper Bounds

Theorem
Let M be a 1-LA with n states.

n2
> There exists an equivalent DFA with 272" states.

» There exists an equivalent NFA with n - 2 states.

DFA NFA

2
nondet. 1-LA on2" n-2"

det. 1-LA

1-Limited Automata — Finite Automata: Upper Bounds

Theorem
Let M be a 1-LA with n states.

n2
» There exists an equivalent DFA with 272" states.

» There exists an equivalent NFA with n - 2 states.

If M is deterministic then there exists an equivalent DFA with no
more than n- (n+ 1)" states.

DFA NFA

2
nondet. 1-LA 2n-2" n-2"
det. I-LA | n-(n+1)" | n-(n+1)"

1-Limited Automata — Finite Automata: Upper Bounds

Theorem
Let M be a 1-LA with n states.

n2
> There exists an equivalent DFA with 272" states.

» There exists an equivalent NFA with n - 2 states.

If M is deterministic then there exists an equivalent DFA with no
more than n - (n+ 1)" states.

DFA NFA

2

2
nondet. 1-LA 22" n-2"
det. I-LA | n-(n+1)" | n-(n+1)"

These upper bounds do not depend on the alphabet size of M!

1-Limited Automata — Finite Automata: Upper Bounds

Theorem
Let M be a 1-LA with n states.

n2
> There exists an equivalent DFA with 272" states.

» There exists an equivalent NFA with n - 2 states.

If M is deterministic then there exists an equivalent DFA with no
more than n - (n+ 1)" states.

DFA NFA

2

n2
nondet. 1-LA 22 n-2"
det. I-LA | n-(n+1)" | n-(n+1)"

These upper bounds do not depend on the alphabet size of M!
The gaps are optimal!

Optimality: the Witness Languages
Given n > 1:

al a -.. ap adpt+1dpy2 --- d2p --- a,.. a. -+ dkn

Optimality: the Witness Languages

Given n > 1:
a d2 --- dp dnt1dny2 --- d2p --- A A, .- 3kn
X1 X2 Xk
n
L, ={xax2-xx| k>0, xi,x2,...,x € {0,1}",

Optimality: the Witness Languages
Given n > 1:
ay d2 --- dp dnt1dny2 --- d2p --- A A, .- 3kn

Xl\XZ\ /Xk

At least n of these blocks contain the same factor

L, ={xax2-xx| k>0, xi,x2,...,x € {0,1}",
<< ---<ipe{l,... k},

Xi1:Xi2:"':Xin}

Optimality: the Witness Languages
Given n > 1:
ay d2 --- dp dnt1dny2 --- d2p --- A A, .- 3kn

Xl\XZ\ /Xk

At least n of these blocks contain the same factor

L, ={xax2-xx| k>0, xi,x2,...,x € {0,1}",
<< ---<ipe{l,... k},

Xi1:Xi2:"':Xin}

Example (n=3): 001110011110110111011

Optimality: the Witness Languages
Given n > 1:
ay d2 --- dp dnt1dny2 --- d2p --- A A, .- 3kn

Xl\XZ\ /Xk

At least n of these blocks contain the same factor

L, ={xax2-xx| k>0, xi,x2,...,x € {0,1}",
<< ---<ipe{l,... k},

Xi1:Xi2:"':Xin}

Example (n=3): 001/110/011/110/110/111/011

Optimality: the Witness Languages
Given n > 1:
ay d2 --- dp dnt1dny2 --- d2p --- A A, .- 3kn

Xl\XZ\ /Xk

At least n of these blocks contain the same factor

L, ={xax2-xx| k>0, xi,x2,...,x € {0,1}",
<< ---<ipe{l,... k},

Xi1:Xi2:"':Xin}

Example (n=3): 001/110/011/110/110/111/011

How to Recognize L,: 1-Limited Automata

» Nondeterministic strategy:
Guess the leftmost positions of n input blocks
containing the same factor and Verify

How to Recognize L,: 1-Limited Automata

001110011110110111011

» Nondeterministic strategy:
Guess the leftmost positions of n input blocks
containing the same factor and Verify

» Implementation:

How to Recognize L,: 1-Limited Automata

001110011110110111011

—

» Nondeterministic strategy:
Guess the leftmost positions of n input blocks
containing the same factor and Verify

» Implementation:
1. Mark n tape cells

How to Recognize L,: 1-Limited Automata

oo1/iroo11/i10/i10111/011 (n=3)

«—

» Nondeterministic strategy:
Guess the leftmost positions of n input blocks
containing the same factor and Verify

» Implementation:
1. Mark n tape cells
2. Count the tape modulo n to check whether or not:
> the input length is a multiple of n, and
> the marked cells correspond to the leftmost symbols of some
blocks of length n

How to Recognize L,: 1-Limited Automata

oo1/iroo11/i10/i10111/011 (n=3)

—

» Nondeterministic strategy:
Guess the leftmost positions of n input blocks
containing the same factor and Verify

» Implementation:

1. Mark n tape cells

2. Count the tape modulo n to check whether or not:
> the input length is a multiple of n, and
> the marked cells correspond to the leftmost symbols of some

blocks of length n
3. Compare, symbol by symbol, each two consecutive blocks of
length n that start from the marked positions

How to Recognize L,: 1-Limited Automata

oo1/irtoo11/i10/i10111/011 (n=3)

—

» Nondeterministic strategy:
Guess the leftmost positions of n input blocks
containing the same factor and Verify

» Implementation:

1. Mark n tape cells

2. Count the tape modulo n to check whether or not:
> the input length is a multiple of n, and
> the marked cells correspond to the leftmost symbols of some

blocks of length n
3. Compare, symbol by symbol, each two consecutive blocks of
length n that start from the marked positions

How to Recognize L,: 1-Limited Automata

oo1/iz1oo11/i10/i10111/011 (n=3)

—

» Nondeterministic strategy:
Guess the leftmost positions of n input blocks
containing the same factor and Verify

» Implementation:

1. Mark n tape cells

2. Count the tape modulo n to check whether or not:
> the input length is a multiple of n, and
> the marked cells correspond to the leftmost symbols of some

blocks of length n
3. Compare, symbol by symbol, each two consecutive blocks of
length n that start from the marked positions

How to Recognize L,: 1-Limited Automata

oo1/itojo11/i10/i10111/011 (n=3)

» Nondeterministic strategy:
Guess the leftmost positions of n input blocks
containing the same factor and Verify

» Implementation:
1. Mark n tape cells
2. Count the tape modulo n to check whether or not:
> the input length is a multiple of n, and

> the marked cells correspond to the leftmost symbols of some
blocks of length n

3. Compare, symbol by symbol, each two consecutive blocks of
length n that start from the marked positions

» O(n) states

How to Recognize L,: Deterministic Finite Automata

> |dea:

How to Recognize L,: Deterministic Finite Automata

> Idea:
» For each x € {0,1}" count how many blocks coincide with x

How to Recognize L,: Deterministic Finite Automata

> |dea:

» For each x € {0,1}" count how many blocks coincide with x
» Accept if and only if one of the counters reaches the value n

How to Recognize L,: Deterministic Finite Automata

> |dea:

» For each x € {0,1}" count how many blocks coincide with x
» Accept if and only if one of the counters reaches the value n

» State upper bound:

How to Recognize L,: Deterministic Finite Automata

> |dea:
» For each x € {0,1}" count how many blocks coincide with x
» Accept if and only if one of the counters reaches the value n
» State upper bound:

m Finite control:
a counter (up to n) for each possible block of length n

How to Recognize L,: Deterministic Finite Automata

> ldea:
» For each x € {0,1}" count how many blocks coincide with x
» Accept if and only if one of the counters reaches the value n
» State upper bound:

m Finite control:
a counter (up to n) for each possible block of length n
m There are 2" possible different blocks of length n

How to Recognize L,: Deterministic Finite Automata

> |dea:

» For each x € {0,1}" count how many blocks coincide with x
» Accept if and only if one of the counters reaches the value n

» State upper bound:
m Finite control:
a counter (up to n) for each possible block of length n
m There are 2" possible different blocks of length n
m Number of states double exponential in n
more precisely (2" —1) - n*" +n

How to Recognize L,: Deterministic Finite Automata

> |dea:
» For each x € {0,1}" count how many blocks coincide with x
» Accept if and only if one of the counters reaches the value n

» State upper bound:

m Finite control:

a counter (up to n) for each possible block of length n
m There are 2" possible different blocks of length n
m Number of states double exponential in n

more precisely (2" —1)-n*" +n

» State lower bound:
m n%" (standard distinguishability arguments)

How to Recognize L,: Deterministic Finite Automata

> |dea:
» For each x € {0,1}" count how many blocks coincide with x
» Accept if and only if one of the counters reaches the value n
» State upper bound:
m Finite control:
a counter (up to n) for each possible block of length n
m There are 2" possible different blocks of length n
m Number of states double exponential in n
more precisely (2" —1)-n*" +n
» State lower bound:
m n?" (standard distinguishability arguments)

The state gap between 1-LAs and DFAs is double exponential!

Nondetermism vs. Determinism in 1-LAs

.) on
Loz O(n) 1| A exp exp DEA Ln: > 1
states states

Nondetermism vs. Determinism in 1-LAs

. ex RN 2"
Ly O(n) 1 | pexp DEA Lot > 1
states states
exp

det-1-LA

Nondetermism vs. Determinism in 1-LAs

: exp ex . 2"
Ly: O(n) LA p exp DFA Lot =7
states states
exp
Lot 2 oP(n) - o 11 A

states

Nondetermism vs. Determinism in 1-LAs

.) on
Loz O(n) 1| A exp exp DEA Ln: = 1
states states
exp exp
Los = e®(n) - gor 11 A
states

Corollary

Removing nondeterminism from 1-LAs requires exponentially many
states.

Nondetermism vs. Determinism in 1-LAs

: exp ex s 2"
Lo O(n) 1| p exp DEA Lot =7
states states
exp exp
Loz ep(n) o 1 1A
states

Corollary

Removing nondeterminism from 1-LAs requires exponentially many
states.

Cfr. Sakoda and Sipser question [Sakoda&Sipser'78]:

How much it costs in states to remove nondeterminism from
two-way finite automata?

More Than One Rewriting

For each d > 2, d-limited automata characterize CFLs [Hibbard'67]

More Than One Rewriting

For each d > 2, d-limited automata characterize CFLs [Hibbard'67]
We present a construction of 2-LAs from CFLs based on:

Theorem ([Chomsky&Schiitzenberger'63])

Every context-free language L C ¥* can be expressed as
L= h(DxNR)

where, for Qi = {(1,)1, (2,)2, -+ > (k))k}
> Dy C Qf is a Dyck language
> R C Q) is a regular language

» h:Qu — X* is an homomorphism

More Than One Rewriting

For each d > 2, d-limited automata characterize CFLs [Hibbard'67]
We present a construction of 2-LAs from CFLs based on:

Theorem ([Chomsky&Schiitzenberger'63])

Every context-free language L C ¥* can be expressed as
L= h(DxNR)

where, for Q. = {(1,)1,(2,)2,- -+, (k,)k}
> Dy C Q} is a Dyck language
> R C Qy is a regular language

> h: Q. — X* is an homomorphism

Furthermore, it is possible to restrict to non-erasing
homomorphisms [Okhotin'12]

From CFLs to 2-LAs

L context-free language, with L = h(Dx N R)

From CFLs to 2-LAs

w z € h~Yw)

L context-free language, with L = h(Dx N R)

» T nondeterministic transducer computing h~!

From CFLs to 2-LAs

Ap

w z€ h™Yw)_

L context-free language, with L = h(Dx N R)

» T nondeterministic transducer computing h~!
» Ap 2-LA accepting the Dyck language Dy

From CFLs to 2-LAs

Ap

w z€ h~Y(w)

Ar

L context-free language, with L = h(Dx N R)
» T nondeterministic transducer computing h~!
» Ap 2-LA accepting the Dyck language Dy

» Ag finite automaton accepting R

From CFLs to 2-LAs

w T z€ h~Y(w) /
AN

AR

Z?Dk?

z€eR?

L context-free language, with L = h(Dx N R)

» T nondeterministic transducer computing h~!

» Ap 2-LA accepting the Dyck language Dy

» Ag finite automaton accepting R

weL?
 EE—]

From CFLs to 2-LAs

A Z(:Dk?
D
w T zehl(w)< }th
AR z € R?
w z=0102---0k € h"H(w)

input of T

From CFLs to 2-LAs

Zng?

w e L?
e

w T zeh’l(w)/
.

z € R?

(o o [] |

input of T

[FH Ao H#itoo | - - [#H#H0k]

z=0102---0k € h"H(w)
h((r,-) = uj

Non erasing homomorphism!

From CFLs to 2-LAs

Ap

w T zeh’l(w)/
.

Z’?Dk?

z € R?

input of T

[FHAH 0| H#itoo | - - [#H#H0k]
(padded) input of Ap and Ag

w e L?
e

z=0102---0k € h"H(w)

/7(0',') = uj

Non erasing homomorphism!

From CFLs to 2-LAs

Zng?

Ap

we L?

w T zeh’l(w)/
.

z € R?

(o [[]

input of T

[FHAH 0| H#itoo | - - [#H#H0k]

(padded) input of Ap and Ag
Not stored into the tape!

z=0102---0k € h"H(w)
h(()‘,’) = uj

Non erasing homomorphism!

Each o; is produced “on the fly"

From CFLs to 2-LAs

Ap

ze h Y(w) /
.

Ar

From CFLs to 2-LAs

Ap

ze h Y(w) /
.

Ar

From CFLs to 2-LAs

A
w T zeh’l(W)/ D}—»
N

From CFLs to 2-LAs

Ap z € D7
w T Z € hil(W) / }WL7
\AR z€ER?
’::::::‘ u; ‘ ‘ W=y
#H#AHoi h(o}) = u;
Y J

#HH#i ;. first rewriting by Ap

From CFLs to 2-LAs

A
ud T zeh’l(W)/ D>%
N

[soieer] ‘ W=y
Fy y
h(o7) = uj
\ J
~;: first rewriting by Ap

> On the tape, u; is replaced directly by ####~i

From CFLs to 2-LAs

w T z€ h~Y(w) /
.

HH#H#H0
4

il

~;: first rewriting by Ap

» On the tape, u; is replaced directly by ###+#~;
» One move of Ag on input o; is also simulated

Final Remarks: 1-Limited Automata

» Nondeterministic 1-LAs can be
m double exponentially smaller than one-way deterministic
automata
m exponentially smaller than one-way nondeterministic and
two-way deterministic/nondeterminstic automata

» Witness languages over a two letter alphabet

Final Remarks: 1-Limited Automata

» Nondeterministic 1-LAs can be

m double exponentially smaller than one-way deterministic
automata

m exponentially smaller than one-way nondeterministic and
two-way deterministic/nondeterminstic automata

» Witness languages over a two letter alphabet

What about the unary case?

Final Remarks: 1-Limited Automata

» Nondeterministic 1-LAs can be

m double exponentially smaller than one-way deterministic
automata

m exponentially smaller than one-way nondeterministic and
two-way deterministic/nondeterminstic automata

» Witness languages over a two letter alphabet
What about the unary case?

Theorem

*

For each prime p, the language (a”z) is accepted by a
deterministic 1-LAs with p + 1 states, while it needs p? states to be
accepted by any 2NFA.

Final Remarks: 1-Limited Automata

» Nondeterministic 1-LAs can be

m double exponentially smaller than one-way deterministic
automata

m exponentially smaller than one-way nondeterministic and
two-way deterministic/nondeterminstic automata

» Witness languages over a two letter alphabet

What about the unary case?

Theorem

For each prime p, the language (a”z)* is accepted by a
deterministic 1-LAs with p + 1 states, while it needs p? states to be
accepted by any 2NFA.

We expect state gaps smaller than in the general case

Final Remarks: d-Limited Automata, d > 2

» Descriptional complexity aspects

m Case d =2 [P&Pisoni NCMA2013]
m Case d > 2 under investigation

Final Remarks: d-Limited Automata, d > 2

» Descriptional complexity aspects
m Case d =2 [P&Pisoni NCMA2013]
m Case d > 2 under investigation

» Determinism vs. nondeterminism
m Deterministic 2-LAs characterize deterministic CFLs
[P&Pisoni NCMA2013]
m Infinite hierarchy
For each d > 2 there is a language which is accepted by a
deterministic d-limited automaton and that cannot be

accepted by any deterministic (d — 1)-limited automaton
[Hibbard'67]

Thank you for your attention!

