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Very simple but powerful model!

Recursive enumerable languages

What about restricted versions?

» No rewritings: two-way finite automata
Regular languages
» Linear space:
Context-sensitive languages [Kuroda'64]
» Linear time:
Regular languages [Hennie'65]
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One-tape Turing machines with restricted rewritings

Definition
Fixed an integer d > 1, a d-limited automaton is
» a one-tape Turing machine

» which is allowed to rewrite the content of each tape cell only
in the first d visits

» End-marked tape

» The space is bounded by the input length
(this restriction can be removed without changing the
computational power and the state upper bounds)
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(i) Move to the right to search a closed parenthesis
(i) Rewrite it by X

(iii) Move to the left to search an open parenthesis
(iv) Rewrite it by X

(v) Repeat from the beginning

Special cases:

(i') Ifin (i) the right end of the tape is reached then
scan all the tape and accept iff all tape cells contain X

(iii") If in (iii) the left end of the tape is reached then reject

Cells can be rewritten only in the first 2 visits!
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Our Contributions

d = 1: regular languages [Wagner&Wechsung'86]
Descriptional complexity aspects

d > 2: context-free languages [Hibbard'67]
New transformation

context-free languages — 2-limited automata

based on the Chomsky-Schiitzenberger Theorem
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Simulation of 1-Limited Automata by Finite Automata

» Main idea:

transformation of two-way NFAs into one-way DFAs:
[Shepherdson'59]

m First visit to a cell: direct simulation
m Further visits: transition tables

’ X ‘ y ‘TXQQXQ
_T\ (p,q) € 7 iff | x [ig

T

m Finite control of the simulating DFA:

- transition table of the already scanned input prefix
- set of possible current states

» Simulation of 1-LAs:

m The scanned input prefix is rewritten by a
nondeterministically chosen string

m The simulating DFA keeps in its finite control a
sets of transition tables
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Theorem
Let M be a 1-LA with n states.

n2
> There exists an equivalent DFA with 272" states.

» There exists an equivalent NFA with n - 2 states.

If M is deterministic then there exists an equivalent DFA with no
more than n - (n+ 1)" states.

DFA NFA

2

n2
nondet. 1-LA 22 n-2"
det. I-LA | n-(n+1)" | n-(n+1)"

These upper bounds do not depend on the alphabet size of M!
The gaps are optimal!
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How to Recognize L,: 1-Limited Automata

oo1/iroo11/i10/i10111/011 (n=3)
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How to Recognize L,: 1-Limited Automata

oo1/itojo11/i10/i10111/011 (n=3)

» Nondeterministic strategy:
Guess the leftmost positions of n input blocks
containing the same factor and Verify

» Implementation:
1. Mark n tape cells
2. Count the tape modulo n to check whether or not:
> the input length is a multiple of n, and

> the marked cells correspond to the leftmost symbols of some
blocks of length n

3. Compare, symbol by symbol, each two consecutive blocks of
length n that start from the marked positions

» O(n) states
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> |dea:
» For each x € {0,1}" count how many blocks coincide with x
» Accept if and only if one of the counters reaches the value n
» State upper bound:
m Finite control:
a counter (up to n) for each possible block of length n
m There are 2" possible different blocks of length n
m Number of states double exponential in n
more precisely (2" —1)-n*" +n
» State lower bound:
m n?" (standard distinguishability arguments)

The state gap between 1-LAs and DFAs is double exponential!
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Corollary

Removing nondeterminism from 1-LAs requires exponentially many
states.



Nondetermism vs. Determinism in 1-LAs

: exp ex s 2"
Lo O(n) 1| p exp DEA Lot =7
states states
exp exp
Loz ep(n) o 1 1A
states

Corollary

Removing nondeterminism from 1-LAs requires exponentially many
states.

Cfr. Sakoda and Sipser question [Sakoda&Sipser'78]:

How much it costs in states to remove nondeterminism from
two-way finite automata?
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More Than One Rewriting

For each d > 2, d-limited automata characterize CFLs [Hibbard'67]
We present a construction of 2-LAs from CFLs based on:

Theorem ([Chomsky&Schiitzenberger'63])

Every context-free language L C ¥* can be expressed as
L= h(DxNR)

where, for Q. = {(1,)1,(2,)2,- -+, (k, )k}
> Dy C Q} is a Dyck language
> R C Qy is a regular language

> h: Q. — X* is an homomorphism

Furthermore, it is possible to restrict to non-erasing
homomorphisms [Okhotin'12]
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From CFLs to 2-LAs

w T z€ h~Y(w) /
AN

AR

Z?Dk?

z€eR?

L context-free language, with L = h(Dx N R)

» T nondeterministic transducer computing h~!

» Ap 2-LA accepting the Dyck language Dy

» Ag finite automaton accepting R

weL?
 EE—]
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From CFLs to 2-LAs

Zng?

Ap

we L?

w T zeh’l(w)/
.

z € R?

(o [ [ ]

input of T

[FHAH 0| H#itoo | - - [#H#H0k]

(padded) input of Ap and Ag
Not stored into the tape!

z=0102---0k € h"H(w)
h(()‘,’) = uj

Non erasing homomorphism!

Each o; is produced “on the fly"
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From CFLs to 2-LAs

w T z€ h~Y(w) /
.

HH#H#H0
4

il

~;: first rewriting by Ap

» On the tape, u; is replaced directly by ###+#~;
» One move of Ag on input o; is also simulated
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Final Remarks: 1-Limited Automata

» Nondeterministic 1-LAs can be

m double exponentially smaller than one-way deterministic
automata

m exponentially smaller than one-way nondeterministic and
two-way deterministic/nondeterminstic automata

» Witness languages over a two letter alphabet

What about the unary case?

Theorem

For each prime p, the language (a”z)* is accepted by a
deterministic 1-LAs with p + 1 states, while it needs p? states to be
accepted by any 2NFA.

We expect state gaps smaller than in the general case
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Final Remarks: d-Limited Automata, d > 2

» Descriptional complexity aspects
m Case d =2 [P&Pisoni NCMA2013]
m Case d > 2 under investigation

» Determinism vs. nondeterminism
m Deterministic 2-LAs characterize deterministic CFLs
[P&Pisoni NCMA2013]
m Infinite hierarchy
For each d > 2 there is a language which is accepted by a
deterministic d-limited automaton and that cannot be

accepted by any deterministic (d — 1)-limited automaton
[Hibbard'67]



Thank you for your attention!



